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Abstract— This paper addresses the problem of generating
uniform deterministic samples over the spheres and the
three-dimensional rotation group, SO(3). The target applica-
tions include motion planning, optimization, and verification
problems in robotics and in related areas, such as graphics,
control theory and computational biology. We introduce an
infinite sequence of samples that is shown to achieve: 1)
low-dispersion, which aids in the development of resolution
complete algorithms, 2) lattice structure, which allows easy
neighbor identification that is comparable to what is obtained
for a grid in R

d , and 3) incremental quality, which is
similar to that obtained by random sampling. The sequence
is demonstrated in a sampling-based motion planning algo-
rithm.

I. INTRODUCTION

Many important algorithms developed in robotics and

related areas require careful sampling over spheres. In

recent years, the paradigm of sampling-based motion

planning has led to algorithms that can solve many chal-

lenging problems by combining collision detection, search

algorithms, and sampling strategies over the configuration

space. General sampling over spheres arises in many

forms of planning and optimization in which some number

of directions are locally explored. For example, some

potential field approaches [3], [10] involve sampling local

directions to obtain an approximate gradient descent. The

exact expression of the gradient may be too costly or even

unavailable. One important special case of sampling over

spheres is sampling over the 3D rotation group, SO(3),
which involves sampling over half of the three-sphere, S3.

One of the main motivations for this paper is the problem

of motion planning for a rigid body in R
3.

We are particularly interested in the development of

deterministic sampling methods. Although most existing

motion planning methods currently use random sam-

pling, they are limited to probabilistic forms of com-

pleteness. With deterministic sampling, resolution com-

pleteness guarantees are possible. This is particularly

valuable in the area of system verification, in which one

must guarantee that a system behaves correctly under all

possible trajectories. The intractability of most of these

problems leads naturally to sampling based approaches.

While it may be valuable to verify a system down to

some level of resolution, random sampling might leave

doubts about whether the space was adequately covered.

Fig. 1. Distribution of points on the sphere S2 generated by a grid
(Sukharev [20]) on each spherical face.

In some cases, deterministic sampling has even led to prac-

tical performance improvements in comparison to random

sampling [13], [14], [15]. The techniques presented in the

present paper build on recent work to develop uniform,

deterministic sampling techniques for motion planning [6],

[12], [13].

The particular problem of sampling over spheres

presents many unique challenges. The vast majority of

sampling literature considers placing points in a unit d-

dimensional cube, [0,1]d ⊂R
d (see [12], [15]). This might

correctly capture some configuration spaces that arise in

robotics; however, the majority of applications involve

other topological spaces, such as RP3, which arises from

rigid body rotations, or toroidal manifolds, which arise

from a series of revolute joints of a manipulator. In these

cases, special sampling techniques should be developed

because quality measures for sets of samples depend on

the topology. For example, the maximum distance that a

configuration could be from its nearest sample depends on

the metric, which is induced partly by the topology.

In addition to topological issues, the way that a con-

figuration space is parameterized is of critical importance

to defining notions of uniformity. A collection of samples

that are uniform with respect to one parameterization of

the configuration space might seem extremely biased using

another parameterization. It might seem that there is no

way to avoid this frustrating issue, but fortunately for the

case of SO(3), there is an intrinsic notion of uniformity



that is given by the Haar measure [7] (this will be defined

in Section II). Using this notion, the natural parame-

terization of SO(3) is the set of unit quaternions (with

antipodal identification), and our sampling methods will

be developed to achieve rigorous notions of uniformity in

this case.

To maximize the potential for impact on motion plan-

ning and related areas, our goal has been to develop a

sampling method that achieves 1) uniformity, 2) lattice

structure, and 3) incremental quality. Uniformity means

good covering of the space is obtained without unwanted

bias, clumping or gaps. This can be formulated in terms

of optimizing discrepancy or dispersion [14], [15], [4].

The uniformity notion considered here is actually more

“uniform” than what is obtained by random sampling.

Lattice structure means that for every sample, the location

of nearby samples can easily be determined as part of a

regular pattern (as in neighbors on a grid, for example).

Incremental quality means that if the sampling method

is considered as an infinite sequence, then the sequence

may be truncated after any finite number of samples and

good coverage will be obtained. This is an important char-

acteristic of pseudo-random number sequences, making

them desirable for many past motion planning algorithms

[1], [5], [9], [19], [22]. We would like to obtain the

same behavior, even though the sequence is deterministic,

uniform, and has lattice structure.

II. QUALITY MEASURES FOR THE DISTRIBUTIONS OF

POINTS ON SPHERES

We consider generating samples over spheres and

SO(3). Let Sd represent a d-dimensional sphere, embedded

in R
d+1 as

Sd = {x ∈ R
d+1 | ‖x‖ = 1}.

The set of all rotations in R
3 is denoted as SO(3), which

is defined as the set of all 3× 3 orthonormal matrices.

It will be helpful to sometimes represent SO(3) as the

set, H, of unit quaternions, each of which is expressed as

h = a + bi + c j + dk, with the identification h ∼ −h [11].

Note that it appears that H = S3, except that antipodal

points on S3 are identified in the definition of H. This

leads to a close relationship between sampling on sphere

and sampling on SO(3).

Now that the spaces have been defined, the next task is

to define the quality of samples. Consider sphere Sd over

which the finite set of points A is generated.

Definition 2.1: For a finite point set A generated over

the sphere Sd the discrepancy of A with respect to a given

family R of subsets of Sd , called ranges, is defined by

D
R

(A) = sup
R∈R

∣∣∣∣
|A∩R|

|A|
−µ(R)

∣∣∣∣ ,

where µ denotes the rotation invariant measure of the

sphere Sd in Euclidean space R
d+1, and | · | applied to

a finite set denotes its cardinality.

In the case of SO(3) the measure defined on S3 as above

corresponds to the Haar measure defined over the set of

all rotation matrices.

The range spaces that are usually considered on the

sphere are the set of spherical caps, i.e., intersections of

the sphere with half spaces; or the set of spherical slices,

i.e., intersections of two half-spheres [4], [16].

Definition 2.2: The dispersion of a finite set A is de-

fined by

d
R

(A) = sup
q∈Sd

min
p∈A

ρ(q, p),

in which ρ is a rotation invariant metric over Sd .

Having these definitions of uniformity in mind, in what

follows we propose a general approach to sampling on

spheres and SO(3). As a particular example we show

how to generate a low-dispersion and low-discrepancy

sample set which has additional useful properties: it is

incremental, has lattice structure, and it can be efficiently

generated. We show how these samples can be applied to

the problems of motion planning.

III. EXPLOITING THE REGULARITY OF PLATONIC

SOLIDS

Our general approach to sampling is based on Platonic

solids. In R
3, a Platonic solid or regular polyhedron, is a

polyhedron for which every face is a copy of a regular

polygon, fixed over all faces, and the degree of every

vertex is fixed. Let (v,e, f ) denote the numbers of ver-

tices, edges, and faces of a regular polyhedron. Although

there are an infinite number of regular polygons, there

are only five regular polyhedra: tetrahedron (4,6,4), cube

(8,12,6), octahedron (6,12,8), icosahedron (12,30,20), and

dodecahedron (20,30,12). The notion of regular polyhe-

dron can be generalized to higher dimensions to obtain

a regular polytope. In R
4, it turns out that there are six

regular polytopes: simplex (5,10,10,5), cube (16,32,24,8),

cross polytope (8,24,32,16), 24 cell (24,96,96,24), 120

cell (600,1200,720,120), 600 cell (120,720,1200,600). The

forth element in each sequence denotes the number of 3D

cells (which are regular polyhedra). Finally, in R
d for any

d > 4, there are only three regular polytopes: simplex,

cube, and cross polytope.

We first address the problem of generating a uniformly

distributed set of points over Sd . Consider inscribing any

(d +1)-dimensional regular polytope inside of Sd , so that

all of its n vertices lie in Sd . The set of vertices are

beautifully arranged around Sd so that the points are

evenly spaced. Furthermore, the edges of the polytope

yield a regular lattice structure that is natural for building

roadmaps in planning problems. For the case of sampling

SO(3), we simply use a set of vertices that lie in one



hemisphere (making sure that no antipodal pairs of points

appear in the set). The edges can be obtained directly from

the polytope by making the appropriate identification of

antipodal pairs.

Unfortunately, there are only a few combinations of n

and d, for which these ideal samples may be constructed

for Sd and SO(3). This might be suitable for some appli-

cations, such as picking a set of candidate directions from

Sd for gradient descent of a potential function; however,

in general, we would like to a have a nice distribution of

points for any value of n.

To the best of our knowledge, it is impossible to

perfectly space n points around Sd , for any n and for

d > 1. One simple idea that increases the number of

samples is place one point in the center of each of the

c d-cells of some regular polytope, and lift it to Sd . If we

take the union of these points with the set of v polytope

vertices, a nice point set of size c + v may be obtained.

If more points are placed; however, the problem becomes

more complicated. Therefore, we are willing to tolerate

some distortion in the distribution of points. It still seems

useful, however, to borrow some of the properties of the

regular polytopes to generate good samples. The general

idea pursued in this paper is to sample uniformly on

the surface of the regular polytope, and then transform

generated distribution on the surface of the sphere. We

next describe this general method and discuss the induced

distortion.

Consider a (d + 1)-dimensional regular polytope in-

scribed in the sphere Sd . Suppose there exists a good

method of sampling the surface of this polytope. The

faces (d-dimensional cells) of the polytope, if projected

outward to the surface of the sphere, form a tiling of

the surface with the d-dimensional spherical polytopes.

Consider some particular face, F , and its corresponding

spherical face, F ′. Each point inside F can be described

by the barycentric coordinate systems induced by vertices

of F after its triangulation. Now imagine that a distribution

of points is generated inside F . Each of the points in

this distribution can be obtained through several steps of

linear interpolation between the vertices of the barycentric

coordinate systems. The distribution on F ′ can be obtained

then through similar steps of interpolating between the

vertices of F ′, except that the interpolation should be done

on the surface of the sphere [17]. This idea is similar to

the one proposed in [2] for stratified sampling of spherical

triangles. As an example, consider a cube inscribed in the

sphere S2, and sample the surface of the cube by putting

the Sukharev grid [12], [20] on each square face. Using

the proposed method we get a distribution of samples on

S2 as shown on Figure 1.

The distribution of points on the sphere Sd obtained

by this method will introduce distortion since spherical

arcs corresponding to the intervals inside F with the same

length may have different lengths in F ′. The amount of

the distortion, and therefore bounds on the dispersion and

discrepancy, can be obtained through the analysis of the

maximal arc differences.

This idea can also be adapted to SO(3) (and in general

to the projective space of any dimension). Take a four-

dimensional regular polytope inscribed in S3 and use only

half of the faces to generate the distribution on the surface.

We pick the faces so that in the set of used faces, there

must not exist a pair of antipodal points, one from each

of two different faces. This way the obtained samples

will cover exactly half of the sphere, which forms SO(3)
surface.

Next we show how to generate a layered Sukharev

grid sequence on Sd based on the inscribed cube and

the bounds on the dispersion and the discrepancy of this

sequence.

IV. A SAMPLE SEQUENCE BASED ON CUBES

In this section first we make an overview of the tech-

niques existing for sampling unit cubes. Next we show

a particular sequence adapted to the spheres using the

proposed general method and we analyze the uniformity

properties of this sequence.

A. Sampling in Cubes

The subject of uniform sampling inside unit cube [0,1]d

has been studied extensively for decades (see [14], [15]).

Here are some brief concepts.

There are two main sampling families that are consid-

ered in the literature: point sets and sequences.

For a point set, the number of points, n, that should be

placed in the set is specified in advance, and a set of n

points is chosen so that the sampling criterion (dispersion

or discrepancy) is optimized. The notion of ordering

between the points is not defined for the point sets. As

an example we could consider the point sets generated

by classical grid and Sukharev grid [20] of resolution l

in [0,1]d . Each of these sets contains l points per axis

and ld points total. The difference between them is in the

way each of these grids places its points in each of the ld

subregions of the cube. Classical grid places a vertex in

the origin of each region, whereas Sukharev grid places

a vertex at the center of each region. It was proven that

the Sukharev grid optimizes the l∞ dispersion over all of

the point sets of size ld [15], [20]. Classical grid has low

dispersion but is not dispersion optimal.

For sequences the ordering of the points becomes im-

portant. Each next point in a sequence should be chosen

so that the sampling criterion is optimized. Sequences are

particularly suitable for the motion planning algorithms,

where the number of points needed to solve a given

problem is not known in advance.



When designing sequences that optimize dispersion, it

is useful to consider multiresolution grid sequences [13].

A multiresolution grid of resolution l is a grid with 2l

points per axis and 2dl points total. From this definition it

follows that a grid of resolution l contains all of the points

from resolution l − 1. The natural way to make this grid

incremental is to build it one resolution at a time. During

construction of the points from the same resolution level,

the recursive procedure at each step adds those points

that maximally decrease the discrepancy of the sequence,

which extends van der Corput’s one-dimensional sequence

[21].

As an example, consider a square, [0,1]2, with four

grid points inside. The best order of placing these points

is: (0, 0), (0.5, 0.5), (0, 0.5), (0.5, 0). To add the next

12 points from resolution 3, what point should be placed

first, second, and third out of this sequence? The idea is

that every four points should follow the same ordering

of quadrants as the first four points (i.e., the first point

should fall into the left-bottom rectangle, the next into

right-top, and so on). Where exactly the point should be

placed within the left-bottom rectangle should be decided

by the same criterion that was used to place the first 4

points. In this case the next point is (0.25, 0.25).

The resulting sequence has several important properties:

it is incremental, it has low dispersion at each resolution

level, it has optimal discrepancy with respect to the

set of canonical rectangles, it has lattice structure, and

there are efficient methods for generating the sequence

and performing nearest neighbor queries on it [13]. This

makes multiresolution grid sequences particularly useful

for motion planning applications.

We will be using a layered version of this sequence.

A layered Sukharev grid of resolution l is a point set

containing all the points of Sukharev grids of resolutions

1,2,4, ...2l . It follows that this grid has n =
l

∑
i=0

(2i)d =

(2d(l+1)−1)/(2d −1) points total.

A layered Sukharev grid sequence builds one Sukharev

grid of resolution 2i at a time, i = 1,2, .... Points from each

of these grids then are generated by the same procedure

as for building multiresolution grid sequences.

In what follows we generalize layered Sukharev grid

sequence to the sphere Sd . We first show how the points

should be generated in each of the spherical cubes, and

then how all these points can be combined into one

sequence on the sphere.

B. Layered Sukharev Grid Sequence for a Spherical Cube

Consider a face, F , of a (d + 1)-cube inscribed in a

sphere Sd . F is a d-dimensional cube, which in each of

its corners has d edges. If we project all of these edges

onto the surface of the sphere they form arcs, which

delineate a spherical d-cube, F ′. The lengths, α , of these

arcs are equal for all edges of F . If we consider those

equatorial angles that correspond to the edges coming

from a common vertex of F , we can define an angular

coordinate system for the spherical face F ′. Indeed, the

coordinates (x1,x2, ...xn−1) with all possible values xi ∈
[0,α] specify all possible points of F ′.

The construction of the sequence, T , essentially follows

the construction of the layered Sukharev grid sequence

for the unit cube, except that instead of the Euclidean

coordinate system we use the angular coordinate system

defined above.

To analyze the dispersion and discrepancy of this se-

quence we need several definitions. Define the points of

the Sukharev spherical grid of resolution 2l as follows:

Pd
l =

{(
i1α

2l + 1
2l+1 ,

i2α

2l + 1
2l+1 , ...,

i
d

α

2l + 1
2l+1

)
:

i ∈ Z,0 ≤ i ≤ 2l −1
}
.

Next we define the set of spherical canonical rectangles,

which is an extension to the canonical rectangles defined

in [13].

Definition 4.1: Given positive integers d and m, let Qd
m

be the following family of the d-dimensional spherical

canonical rectangles:

Qd
m =

{[
i1α

2m ,
(i1+ j1)α

2m

)
× ...×

[
i
d

α

2m ,
(i

d
+ j

d
)α

2m

)
:

i, j ∈ Z,0 ≤ i ≤ 2m −1,1 ≤ j ≤ min(2m − i,2)
}
.

The following results can be stated about the dispersion

and discrepancy of T .

Proposition 4.2: The dispersion of the sequence T at

the resolution level, l, is

dρ(T ) ≤
2π

d
√

n(2d −1)+1
.

Proof: The largest spherical cap which does not contain

any of the points in T will be smaller than the spher-

ical cap with the center at (α/2,α/2, ...,α/2) and the

spherical radius π/2l . Since 2l =
(

d
√

n(2d −1)+1
)

/2

we have that the dispersion is not bigger than π/2l =

2π/
(

d
√

n(2d −1)+1
)

.

Proposition 4.3: The relationship between the discrep-

ancy of the sequence T at the resolution level, l, taken over

Q̃d
l =

l⋃
m=0

Qd
m and the discrepancy of the optimal over Q̃d

l

sequence, To, is:

D
Q̃d

l

(T ) ≤ D
Q̃d

l

(To)+(Vmax −Vmin).

Proof: The optimal sequence, To, may place the points

in some different order than T . The maximal change in

discrepancy that may occur in T comparing to To is the

difference between the maximal, Vmax, and the minimal,

Vmin, volumes of the spherical canonical rectangles. There-

fore, D
Q̃d

l

(T ) ≤ D
Q̃d

l

(To)+(Vmax −Vmin).



Proposition 4.4: The sequence T has the following

properties:

• The position of the i-th sample in the sequence T can

be generated in O(log i) time.

• For any i-th sample any of the 2d nearest grid neigh-

bors from the same layer can be found in O((log i)/d)
time.

Proof: For the i-th sample it takes O(log
2d i) =

O((log i)/d) to find its resolution level l. Once l is found,

the corresponding point in Sukharev grid of resolution 2l

needs to be generated. It was proved in [13] that this takes

O(log i). Therefore, the total running time for generating

one point is O((log i)/d + log i) = O(log i).

The layer of the i-th sample is the Sukharev grid of

resolution 2l . Any of the 2d nearest grid neighbors from

this layer can be found in O((log i)/d) using the algorithm

described in [13].

In our analysis we essentially ignored all of the points

from the layers below the i-th sample layer, since the

number of them is not significant. In practice, it may

be efficient to use other layers for generating nearest

neighbors. Better bounds on dispersion and discrepancy

may also be achieved then.

C. Layered Sukharev Grid Sequence for Sd

Now, that we have defined a sequence for each of the

spherical cubes, we need to define an ordering in which all

of the points from those sequences will be placed on the

surface of the sphere. One straightforward way to do this

is to place one point from each of the faces’ sequences at

a time. The order in which each face should be considered

is decided from the following considerations.

Let the union of all of the spherical canonical rectangles

determine the range space for the whole sphere. Using

the criterion of optimizing the discrepancy over the range

space, the ordering of the first 2(d + 1) points for the

resolution level 0 of the sphere can be explicitly computed.

Hence, from this point on we can assume that we have

such an ordering. Therefore, each next set of 2(d + 1)
points from each of the sequences should follow the same

ordering, since this will minimize the discrepancy over

the range space. This will guarantee that Proposition 4.3

holds for the generated sequence on the sphere.

Our ongoing research is directed on proving that the

same result holds for the larger range spaces, i.e., the ones

that include combinations of the spherical rectangles from

different spherical cubes.

We can state the following result for the dispersion of

the sequence, Ts, on the sphere:

Proposition 4.5: The dispersion of the sequence Ts at

the resolution level l containing n = 2(d + 1) · (2d(l+1) −

Random Random Layered Sukharev

Quaternions Euler Angles Grid Sequence
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Fig. 2. This problem involves moving a robot (black) from the north
pole to the south pole. Multiple views of the geometry of the problem
are shown (obstacles are drawn in lighter shades) as well as comparisons
of the number of nodes generated by different sampling strategies.

1)/(2d −1) points is

dρ(T ) ≤
2π

d

√
n(2d−1)
2(d+1) +1

.

Proof: Applying the same argument as in the proof

of Proposition 4.2, and considering that now 2l =(
d
√

n(2d −1)/(2(d +1))+1
)

/2, we obtain the desired

bound.

V. EXPERIMENTS

We have implemented our algorithm in C++ and applied

to implementations of PRM-based planner [9] in the

Motion Strategy Library. The experiments reported here

were performed on a 2 Ghz Pentium IV running Linux

and compiled under GNU C++.

Performance results are shown in Figures 2, 3. The

models that we designed are allowed only to rotate;

therefore, the configuration space is RP3. We compared

the number of nodes generated by the basic PRM planner

using a pseudo-random sequence of quaternions [18], a

pseudo-random sequence of Euler angles, and the layered

Sukharev grid sequence. The results for pseudo-random

quaternions and Euler angles sequences were averaged

over 50 trials. When we tested the deterministic sequence,

we made sure that each particular problem does not have

any advantage due to coincidental alignment with the
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Fig. 3. In this example the goal is to move a robot along the corridor.
Comparisons of the number of nodes generated by different sampling
strategies are shown.

grid directions of the sequence. Therefore, in each trial

a fixed, random quaternion rotation was premultiplied to

each sample, to displace the entire sequence. The results

obtained were averaged over 50 trials (a different random

rotation was used in each).

Based on our experiments we have observed that the

performance of the deterministic sequence is equivalent

to the performance of the random sequence for the PRM-

based planner, which makes it an alternative approach to

random sampling. It is important to note, however, that

for some applications, such as verification problem, only

deterministic guarantees are acceptable, making random

sequences not appropriate.

The results we obtained for the problem in Figure 3

using Euler angles emphasizes the importance of using

quaternions and sampling in a way that respects the

Haar measure. This problem was never solved using the

random Euler angles. The experiment was running for

several days, generated 80000 nodes, but never found the

solution. It is generally known that Euler angle param-

eterization has its drawbacks, such as gimbal lock and

interpolation problems. However, in motion planning, it

has been a popular way to parameterize rotations. This

example demonstrates the inadequateness of Euler angles

parameterization. The interpolation method, ignoring the

dependence between the three rotations (yaw-pitch-roll),

tries to rotate around three axes simultaneously. In the

configuration space with the narrow corridor this results

only in those configurations that are in collision.

VI. CONCLUSIONS

We have proposed a general framework for performing

deterministic uniform sampling over spheres and SO(3).
We have developed and implemented a particular sequence

which extends the layered Sukharev grid sequence de-

signed for the unit cube. We have tested the performance

of the sequence in PRM-like motion planning algorithms,

which demonstrated that this sequence is a useful alter-

native to a random sampling. This is in addition to the

advantages that this sequence has over random sampling,

such as deterministic resolution completeness guarantees

and the regular lattice structure.

There are many ways to improve the current work. The

spherical distortion grows with the size of the polytope

faces and with the dimension. One improvement would

be to use regular polytopes that have more faces. For

example, for the case of SO(3), a 600-face polytope exists

(only 300 of them would be used because of antipodal

identification). The difficulty is that our current approach

would require sampling over a simplex, as opposed to a

cube. Another possibility is to cut and unroll the (d +1)-
dimensional polytope so that all of its d-dimensional faces

form a connected subset of R
d . It may then be possible

to adapt a sampling method for rectangular subsets of R
d

to Sd by rolling the polytope back up after sampling.

Another important direction of research is to determine

how to combine deterministic sampling methods for two

spaces into a method over the Cartesian product space. For

example, how can a sample sequence developed for [0,1]3

and another developed for SO(3) be combined to yield a

good sequence for a six-dimensional configuration space

that corresponds to a set of translations and rotations for

a 3D rigid body? In the case of random sampling, it is

trivial to combine independent random samples; however,

for deterministic methods, one must be very careful to

avoid degeneracies. This is the reason, for example, why

the Halton sequence [8] uses relatively prime integers as

the basis for each dimension.
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