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Abstract. Rapid protein structure determination relies greatly on the availability
of software that can automatically generate a protein model from an experimental
electron density map. Tremendous advances in this area have been achieved recently.
In favorable cases, available software can build over 90% of the final model. However,
in less favorable circumstances, particularly at medium-low resolution, only about
2/3 completeness is attained. Manual completion of these partial models is usually
feasible but time-consuming. The electron density in areas of missing fragments is
often of poorer quality, especially for flexible loops, making manual interpretation
particularly difficult. Except for the beginning and end of the protein chain, the
end points of each missing fragment are known from the partial model. Thanks
to the kinematic chain structure of the protein backbone, loop completion can be
approached as an inverse kinematics problem. A fast, two-stage inverse kinematics
algorithm is presented that fits a protein chain of known sequence to the electron
density map between two anchor points. Our approach first samples a large set of
candidates that meet the closure constraint and then refines the most promising
candidates to improve the fit. The algorithm has been tested and used to aid protein
model completion in areas of poor density, closing loops of up to 12 residues to
within 0.25A RMSD of the final refined structure. It has also been used to close
missing loops of the same length in partial models built at medium-low resolution
to within 0.6A.

1 Introduction

A protein is a linear sequence of amino acids (residues) that form a polypep-
tide chain. The function of a protein is largely dictated by its folded, 3-D
structure, which determines its ability to bind to other molecules, such as
small ligands, other proteins, or DNA. However, in general, predicting the
folded state of a protein of a given sequence is still beyond our ability.
X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy

are two widely used experimental techniques to obtain atomic coordinates of
macromolecular structures. NMR, spectroscopy enables structural biologists
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to observe dynamic properties of proteins, but is limited in protein size. X-ray
crystallography has no such limitation, but has the drawback that it requires
crystallizing protein samples. Once a sequence of X-ray diffraction images
is collected from a protein in crystalline form, a distribution of electronic
charge in R3 of the atoms constituting the molecule can be calculated. Co-
ordinates of each atom are obtained by interpreting this 3-D electron density
map (EDM) [23]. This consists of placing the atoms in 3-D space to best
match the electron density. The process, from synthesizing the protein in
the lab to depositing the obtained coordinates of its folded structure in the
Protein Data Bank (PDB) [5] may take several months, and sometimes years.

The Protein Structure Initiative (PSI), a National Institute of General
Medical Sciences program in the US, aims to reduce the time and associated
costs of determining a 3-D protein structure [43]. The long-range goal of
the PSI is to produce structural coverage of a majority of sequenced genes.
Tremendous advances in automated model building have been made over the
past few years. Various software systems are now capable of generating a
protein model from an EDM without human intervention [33,44,55,58].

The degree of completeness of these initial models, i.e., the fraction of
residues correctly placed, varies with the quality of the experimental data, yet
rarely reaches 100%. Mobility of some fragments of the molecule, temperature-
dependent atomic vibration and other factors may lead to EDM of poor qual-
ity locally, making automatic interpretation difficult. Manually completing a
partial protein model, i.e. building in the missing residues is often feasible,
but is time-consuming.

In practice, a large portion of the molecule is often resolved successfully.
The end points of any gaps in the initial model are known as well as the length
and sequence of the missing fragment (referred to as loop). Since a protein
molecule can be modelled as a long kinematic chain — with rigid groups of
atoms as links and rotatable bonds as joints — loop fitting in this case is
similar to an inverse kinematics (IK) problem [48,49]. One needs to compute
values for the degrees of freedom (DoFs) of the protein that optimize its fit
with the density while respecting the closure constraint — the loop must
bridge the gap between the two endpoints.

Exploiting this similarity, we have developed a fast, two-stage algorithm
based on IK techniques to fit a protein chain to the EDM between two an-
chor residues. The first stage aims to sample a large number of closing con-
formations!, guided by the EDM. These candidate conformations are ranked
according to density fit and conformational likelihood. Top-ranking conforma-
tions are then refined using an optimization procedure that locally searches
the sub-space of closed loop conformation for the optimal loop structure.

The algorithm has been successfully tested and used to complete initial
models. At a resolution of 2.0A, it closed gaps as long as 12 residues to within

! The chemical equivalent term for a configuration in robotics
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0.25A RMSD? of the manually resolved structure. In a partial model built
at 2.8A, it closed missing loops of the same length to within 0.6A all atom
RMSD in areas of poor density.

2 Description of problem

Rapid protein structure determination depends critically on the availability
of software that can automatically generate a protein model from an EDM. At
high resolution, existing programs may provide over 90% of the protein main
chain of the final model [4]. At medium to low resolution levels (2.3A < d <
2.9A), the initial model resulting from these programs is typically a gapped
polypeptide chain, and only about 2/3 completeness is attained. Programs
targeting lower resolution levels, notably RESOLVE [58] and MAID [44],
rely on pattern recognition techniques, unambiguous density and elementary
stereochemical constraints. Thus, poorly defined areas of the EDM pose a
considerable challenge.

In a crystallographic experiment, the phase angle of the diffracted beam is
lost, and only the magnitudes are recorded [23]. The phase angle is recovered
at a later stage, but may have a substantial error associated with it, leading
to systematic errors in the EDM. The resolution at which diffraction data
was collected also affects the interpretability of the map. High resolution
data allows the crystallographer to distinguish detail at the atomic level,
whereas the EDM appears “blurred” at lower resolution. It is often difficult or
even impossible to obtain high resolution EDMs of some proteins. A protein
crystal contains many replicas of the protein, which all contribute to the
resulting EDM. If the structures of these replicas are not identical, localized
disorder in the EDM may result. Temperature-dependent atomic vibrations
and the existence of mobile regions in the protein are among the causes of
local disorder.

Initial protein models, whether obtained manually or by automated pro-
cedures, are only approximately correct. Their coordinates typically serve
as initial values for standard maximum likelihood (ML) algorithms, which
improve the model coordinates using appropriate statistical techniques [53].
Iterating model building and refinement steps to improve the completeness
and quality of atomic models has clear advantages [55,59]. Phase information
from the updated model is combined with experimental phases to improve the
electron density that is used to generate a new model. Missing fragments in
a model hinder the ability of this procedure to converge to the correct phases
and model, since significant parts of the EDM remain unaccounted for by the
model. Thus, filling in the gaps with fragments whose coordinates are within
the radius of convergence of ML algorithms may significantly improve the
EDM at an early stage in the process.

2 Root of the sum of the squared distances between corresponding atoms. It is
computed after the loops are optimally aligned in 3-D.
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The input to our algorithm is the EDM, the parts of the structure that
were resolved by the automatic model builder, and the two anchor residues
that need to be bridged (henceforth denoted N-anchor and C-anchor). In the
majority of partially resolved structures, the amino acid sequence is correctly
assigned. Thus, we assume that the gap length and residue sequence of the
missing fragment are known. Our goal is to propose candidate structures for
the missing fragment that fall within the radius of convergence of existing
refinement tools (1 - 1.5A RMSD [53]).

The EDM is likely to have systematic errors due to erroneous phases.
Consequently the parts that are solved — including the anchor residues of
the missing fragment — may also be misplaced. Moreover, the density in
the gap is somewhat disordered and thus not entirely reliable. Our protein
model assumes idealized geometry, namely all bond lengths and bond angles
are fixed to their idealized values [25]. These parameters vary very little in
proteins [31], and their variance falls within the error margins of our input.
Thus, the only DoF's in our model are the backbone torsional angles denoted
the ¢ and v angles (one pair per residue). To simplify slightly our problem
we will not have any side-chain DoFs and therefore no side-chain atoms in
our protein model, with the exception of the CG atom. Side-chains can be
built onto the model once the backbone is fully in place. We will include all
CpB and O atoms since they do not add any DoFs, yet help to orient the
backbone. See Figure 1 for an illustration.

Fig. 1. A 3-residue example of the protein model used in this work

When computing the missing loop for a given gap, the two anchor residues
will be incorporated onto the ends of the loop. This provides us with a mea-
sure of loop closure. Closure is measured at both ends as the RMSD distance
of the three backbone atoms of the anchor residue attached to the loop (mo-
bile anchor) from their positions on the anchor residue attached to the solved
structure (stationary anchor).
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3 Related Work

3.1 Exact inverse kinematics solvers

The problem of fitting a protein backbone fragment between two anchor
points is closely related to the IK problem in robotics [19]. It is known that
for manipulators in a 3-D workspace there are a finite number of solutions
to the IK problem when the number of DoF's does not exceed six. However,
there is no analytical method that can compute these solution for all types
of manipulators. In the case of a 6R manipulator, which is the most relevant
to this work, an analytic solution can always be obtained and the number of
unique solutions is at most sixteen [56]. An efficient algorithm was derived
in [47] which was later applied to the manipulation and conformational anal-
ysis of small molecular chains [48,49]. When a robot is hyper-redundant a
method based on a backbone curve can be used (e.g., [13]). Biologists have
also developed their own specialized IK tools. A method for computing con-
formations of ring molecules, when rotation is possible around all backbone
bonds, was introduced as early as 1970 [29]. An IK solution for three consec-
utive residues having ideal geometry was later devised [64]. Most recently a
new formulation was developed that extends the domain to any three residues
(not necessarily consecutive) with arbitrary geometry [17].

3.2 IK solutions by optimization

Optimization techniques have also been applied to the IK problem. A method
for bounding the exact IK solutions within small intervals in the context of
drug design was proposed in [67]. When the number of DoFs exceeds six,
no analytical solution is known. Currently, only optimization-based solutions
exist. The random tweak method [27,57] closes a loop by iteratively changing
its DoF's until the desired distances between its two terminals are reached.
It uses the Jacobian matrix of these distances (with respect to the torsional
DoFs) to compute the DoF changes at each iteration. The cyclic coordinate
descent (CCD) [63] method closes a kinematic chain by iteratively adjusting
its DoF's until a desired closure tolerance is reached. This method was later
applied to protein chains [9].

3.3 Motion planning for closed loops

Searching for the loop conformation that best matches an EDM has much in
common with techniques used in roadmap-based motion planning for sam-
pling robot configurations and connecting them. A number of works offer
methods for planning the motion of closed kinematic loops. Common to many
of them is the use of the probabilistic roadmaps (PRM) framework [37]. The
work in [66] samples configurations by first ignoring the closure constraint and
then enforcing the constraint through gradient descent. Nearby configurations
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are connected by the chaining of local steps that are generated in null space of
the Jacobian matrix. In [32] configurations are sampled by breaking the loop
into an active part, for which forward kinematics sampling techniques are
used, and a passive part, for which an exact IK solution is computed. Nearby
samples are connected by using a local planner for the active part and letting
the passive part follow the motion. An extension of this method [16] samples
the active part of the chain one DoF at a time, making sure its endpoints are
always reachable by the passive part. This method was recently applied to the
sampling of protein loop conformations and to the study of the flexibility of
such loops [15]. Another extension to [32] is proposed in [65]. A roadmap for
solving a slightly different problem, known as point-to-point IK for redundant
robots, described in [3], also takes into account joint constraints and obsta-
cle avoidance. A polynomial-time complete planner for the reconfiguration of
closed loops with spherical joints and no obstacles is proposed in [60].

3.4 Methods for redundant manipulators

The refinement method we use exploits the redundancy of the protein chain to
minimize a target function without breaking chain closure. It is closely related
to the planning of instantaneous motion of redundant manipulators. Here the
redundant DoF's are used for concurrent optimization of additional criteria
(beyond the completion of the main task) or the execution of additional lower
priority tasks. Some examples include [8,12,38,39].

3.5 The loop closure problem in biology

Our problem is closely related to the loop closure problem in structural bi-
ology, where loops are predicted based on sequence information alone. The
methods proposed for this problem can be roughly divided into two types: ab
initio methods and database search methods. The ab initio methods search
the loop conformation space while database methods screen the Protein Data
Bank (PDB) [5] for known structures that closely meet the requirements of
the desired loop.

Ab initio methods For loops that have six DoFs or less, exact methods
that enumerate all possible solutions can be used, e.g. [17,29,47,49,64]. It is
also possible to use the exact solver hierarchically as in [64] and thus handle
longer loops. Examples of search methods include sampling biased by the
database distribution of the ¢/1 angle pairs [52], uniform conformational
search [7], sampling from a small set of ¢/ pairs [20,21] or sampling from a
small library of short representative fragments [41]. Other algorithms sample
conformations randomly and then enforce the closure constraints, e.g. the
random tweak method [27,57] or the CCD-based method [9]. Various methods
exist for optimization of candidate loops, such as molecular dynamics [7,28,69]
and Monte Carlo [1,14] simulations.
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Database search methods Work on extracting loop candidates from the
PDB started with [35]. Loops are chosen that have the right length and meet
the required geometric constraints. The applicability of this approach was
initially limited to loops of length 4 [26], but later work suggested an upper
limit of 9 [61]. A recent study claims the limit should be raised to 15 [24].

Crystallography In the crystallography community a variety of semi-automated
tools and techniques have been developed to assist in completing partial mod-

els. The interactive graphics program O [34] selects fragments from a database

to close loops. These fragments can be refined against the EDM using tor-
sion angle refinement based on grid summation [36]. Oldfield [54] developed

a method combining a random search of conformation space with grid- and
gradient-based refinement techniques to close loops.

4 Methods

Our algorithm for computing missing loops proceeds in two stages: candidate
generation and refinement. In the first stage, candidate loops are built using
the CCD algorithm. Our implementation puts additional constraints on the
DoF's to take EDM fit and collision avoidance into account. Next, initial con-
formations are ranked according to density fit and conformational likelihood
and top-ranking ones are passed on to the refinement procedure. Refinement
is achieved by minimizing a target function that quantifies the goodness of
the fit of the conformation and the EDM. An optimization protocol based
on simulated annealing (SA) and Monte Carlo minimization (MCM) searches
for the global minimum of the target function while maintaining loop closure.
Each candidate is optimized 50 times and the best scoring loops are returned.

Our approach tries to compensate for the deficient density information by
taking advantage of the loop closure constraint to guide the loop to its correct
positioning in space. In the first stage, the use of the closure constraint enables
the generation of loops that lie within 2A RMSD of the true solution. The
approximate enforcement of the closure constraint during loop refinement
prevents the search from diverging and limits the searched space to motions
that preserve loop closure.

Our implementation of the algorithm discussed below, makes use of the
following software packages: Clipper [18], the CCP4 Coordinate Library [42]
and the exact IK solver of [17].

4.1 Stage 1: Generating loop candidates

We start by constructing a protein chain C of length L in a random confor-
mation, where residue 0 is a copy of the N-anchor, and residue L — 1 is a
copy of the C-anchor. This chain is attached to either the N-; or C-anchor,
thus determining the closing direction.
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Upon starting the procedure, the position of the mobile anchor will not
coincide with the position of the stationary anchor. The algorithm adjusts
each backbone dihedral angle in turn such that the distance between the
three backbone atoms of the mobile anchor and the corresponding atoms of
the stationary anchor are minimized. A total of 2000 iterations are allowed
for closure up to a preset tolerance distance d.j,seq. Chains that did not close
are discarded. We calculate an average density and conformational likelihood
score for all conformations, and the 95-th percentile is submitted to stage
two.

Random Initial Conformations Five hundred random starting confor-
mations are obtained from sampling (¢, v);,i = 0...L — 1 angle pairs from
PDB-derived distributions. A finite sum of 2-D Gaussians is thereto fitted to
frequencies calculated from the Top500 database [46] of non-redundant pro-
tein structures, using the program EMMIX [50]. We obtained distributions
for each of the 20 amino acids. The angles ¢g and vy, _; remain fixed at their
initial values.

Electron Density Constraints A change to the DoF's of a residue is calcu-
lated as follows: The CCD algorithm proposes a distance minimizing dihedral
angle ¢; for residue i. Based on ¢, it will propose a minimizing ;. (In our
implementation, we change each DoF in turn, although this is not strictly
necessary.) We will denote these angles as a proposed angle pair (¢, 9)?.

To guide the loop, a heuristic electron density constraint has been added
to the CCD algorithm. For each pair i, we define a set of atoms A; that is
subject to change by angle pair i, and not affected by changes in angle pair
i+ 1. Hence, A; = {CB*,C%, O, Nt Caitt}).

We evaluate electron density values corresponding to trial positions in a
two dimensional, square neighborhood U )» about (¢,)P in conformation
space. A simple local scoring function is adopted; the sum of the electron
density values at atom center positions of A4;. We set (¢, 1)), to the trial posi-
tion with maximum density score, i.e (¢,9); = arg MAaX(y p)ev,, v S(p,v),

where S(¢, 1) = ZAjeAi p(Aj(c)), and A;(c) denotes the center of atom A;.
The size of Uy, y)» is reduced linearly in the number of CCD iterations to
allow closure of the chain.

4.2 Stage 2: Refining loop candidates

Target function A candidate loop structure is refined by minimizing the
least squares residuals between the EDM p° and the density calculated from
the model p°. This is a standard procedure used in crystallography for re-
finement of protein models [11,22]. The target function sums the squared
differences between the observed density and the calculated density at each
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grid point in some volume V around the loop:

T(q) = [Sp°(gi) + = p°(g:)]" (1)

g€V

The calculated density at each grid point is a sum of contributions of all atoms
whose center lies within a cutoff distance from this point. The calculated
density contribution of an atom is a sum of isotropic 3-D Gaussians [62]. The
factors S and k scale p° to p¢ and are computed once at initialization.

Optimization with closure constraints Our method is based on the
approach described in [8,38] for optimizing an objective function while per-
forming a given task by taking advantage of manipulator redundancy. The
redundant DoFs define a subspace of configuration space termed the self-
motion manifold. Motions on this manifold do not influence the main task
and thus can be used to move the manipulator configuration towards a min-
imum of the objective function. However, since this manifold may be very
complex these motions are in general difficult to compute. It is therefore
common to approximate the self-motion manifold by its tangent space. This
space is simply defined as the null-space of the linearized instantaneous kine-
matic relation between the linear and angular velocities of the end effector (a
frame attached to the end of the chain) and the joint velocities, also known as
the chain’s Jacobian matrix [19]. For an n-DoF chain in R? at configuration
q, the Jacobian J(q) is a 6 x n matrix satisfying the equation:

&= J(q)q. (2)

Thus J(q) = df (q¢)/d(q) where f(q) is the chain’s forward kinematics function
mapping joint coordinates to end effector position and orientation. The rank
of the Jacobian in R? is at most 6 and thus the dimensionality of its null space
is at least n — 6. In general, an instantaneous change in the configuration is
computed by inverting Equation 2 and exploiting the null space to optimize
the objective function. We get:

G=J'(q)2 + N(g)N"(q)y, 3)

where JT is the pseudo-inverse of the Jacobian and N(gq) is an orthonormal
basis for the null-space. When optimizing an objective function for a closed
loop, the instantaneous change in position and orientation of the end, %, is
set to zero. y is taken to be the gradient vector of the objective function.
Projecting it onto the null space of the Jacobian produces a motion that
minimizes the objective function while not disturbing the chain closure. In
general, the step size of the motions (the magnitude of the vector ¢) needs
to be small since the Jacobian approximation of the self-motion manifold is
valid only in a small neighborhood in configuration space surrounding the
current configuration.
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Implementation details

Computing the null space: We use the atom group local frames method [68] to
represent the protein as a kinematic chain and the method prescribed in [10]
to efficiently compute the Jacobian for any given sub-chain of the loop. The
null space is computed by applying the SVD [30] to the Jacobian matrix. We
get the decomposition J(q) = UXVT, where the orthogonal matrix V is a
basis of for the row-space of J(¢). The null-space basis N(q) is simply the set
of vectors of V' that correspond to singular values (the diagonal elements of
X)) that are equal to zero.

Target function gradient: We derive an analytical expression for the gradient
of the target function with respect to the torsional DoFs of the loop. The
gradient is computed using a recursive method [2], which is linear in the
number of DoFs of the chain. The naive approach in this case has quadratic
complexity.

MCM and SA: A gradient descent search for the minimum of the target
function is prone to get stuck quickly in a local minimum. To increase the
radius of convergence, we use the MCM approach [45]. At each step, a ran-
dom move in conformation space is proposed, the new conformation is then
minimized by gradient descent and the resulting local minimum is accepted
or rejected using the Metropolis criterion [51]. The effect of minimization is
to considerably increase the probability of acceptance of a trial move, which
enables the search to make more progress. This, however, comes at the cost
of significantly increasing the computation time needed for each simulation
step. To further improve the ability of our search to escape from local min-
ima we envelope the MCM method with an SA [40] protocol, which changes
the pseudo-temperature of the search and thus controls the probability of
acceptance of uphill moves.

Random moves: We employ two methods for generating the random moves
that are needed for MCM. The first is to choose a random direction in the
null-space of a randomly chosen sub-chain, and taking a step with a randomly
picked magnitude that depends on the current temperature of the SA proto-
col. The number of DoFs in the sub-chain is at least eight so that the null
space is at least two-dimensional. A similar method for generating motion
on the self-motion manifold was described in [66]. Before performing mini-
mization, we make sure the loop closure tolerance has not been exceeded, by
computing the effect of the change on the end of the loop. A second method
for generating random steps is the use of an exact IK solver [17]. One of
the solutions is chosen at random as the proposed move. The use of an ex-
act solver allows us to jump between unconnected parts of the self-motion
manifold which the Jacobian-based moves are unable to do.
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Approximate closure The closure constraint is relaxed a little during this
stage. A maximum RMSD of 0.5A is allowed at both ends of the loop. Since
there are errors in the positions of the anchor residues, and because the re-
sulting loop will be subsequently refined together with the rest of the protein,
this tolerance is acceptable. By allowing approximate closure, larger steps,
can be taken in the null space of the Jacobian.

Refinement search protocol The refinement protocol is composed of three
nested loops (See Figure 2. The inner loop performs MCM search by using
the two methods described above for generating random trial moves. The
middle loop performs the SA protocol by gradually reducing the pseudo-
temperature of the MCM search. The outer loop enhances the SA proto-
col by simulating restarts of the SA protocol each time at a lower starting
pseudo-temperature. The magnitude of attempted random null-space moves
is reduced together with the current pseudo-temperature of the simulation
to increase the chance that the random moves will be accepted. The use of
exact IK moves is discontinued below some temperature since initial tests
showed that their probability of acceptance becomes practically zero below
this value. They do however play an important role in the initial stages of
the search, when large moves are taken. Our initial tests indicated that using
exact IK moves in the early stages of the search significantly increases the
chance of finally converging to the global maximum.

for start_temp = high_start_TEMP downto low_start_TEMP {
temp = start_temp;
for SA_steps = 1 to 8 {
for MCM_steps = 1 to NUM_ITERS {
M = ProposeRandomMove (temp) ;
MinimizeMove (M) ;
AcceptMove (M) ;
}
temp = temp - TEMP_step;

Fig. 2. Pseudo-code for refinement search protocol

5 Experimental results

The algorithm was developed and tested on missing loops from various struc-
tures provided by the JCSG. Below, we provide results for two representative
examples, protein structures TM0423 [6] (376 residues) and TMO0813 (342
residues). Both are publicly available from the PDB under ID numbers 1KQ3
and 1J5X respectively.
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TMO0423 is annotated as a glycerol dehydrogenase from the organism
Thermotoga Maritima. Standard, publicly available crystallographic software
was used to obtain a data set. We built an initial model using RESOLVE at
2.0A. 88% of the residues in this protein were correctly built and assigned to
the sequence.

TMO0813 is annotated as a conserved hypothetical protein from Thermo-
toga Maritima. High resolution data was excluded from the data set, and
an initial model was built by RESOLVE at 2.8A. The completeness of this
model was found to be 61%.

We use RMSD between top ranking loops and their corresponding regions
from the final, refined structure as a measure of performance. Note that since
we use idealized geometry while the bond lengths and angles are allowed to
vary in the final structure, a discrepancy of 0.2 - 0.3A is expected even for
an exactly correct loop. In refinement, the protein structure may undergo
rigid translations or rotations. More importantly, the stationary anchors can
move independently. To exclude the effects of refinement steps, we tested the
algorithm on an artificially created gap of length 7 in TM0423. We removed
residues 19 to 25 from the initial model, and compared our top ranking can-
didates to this extracted fragment. We found a lowest RMSD of 0.35A.

Next, we selected gaps from the initial models. TM0423 has a loop of
length 7 missing, extending from residue 251 to residue 259, and a longer
loop of length 12, from residue 51 to 64. The minimum, all-atom RMSD
achieved for both loops is 0.25. Figure 3a depicts the best scoring 12 residue
loop together with the final, refined structure.

The low resolution model TMO0813 is very incomplete, and we selected a
loop of length 12 extending from residue 83 to 96. The all-atom RMSD of
candidate conformations submitted to the second stage of the algorithm did
not get below 2.12A. Nonetheless, the minimum, all atom RMSD achieved
for these loops upon completion of the algorithm is 0.56A. The best scoring
final conformation and its starting conformation for stage two are shown in
Figure 3b.

The flipped residue problem A recurring problem in some of the loop
candidates we generate is commonly known as the flipped residue problem.
It is notoriously hard to resolve for model refinement tools. A loop candidate
is generated where the backbone is in good agreement with the density, yet
when comparing with the manually solved structure, the orientation of one
or two residues is off by 180°. This is illustrated in Figure 4. Our elaborate
SA protocol is designed to alleviate this problem but is often not enough. It is
very difficult for the search algorithm to recover from such flips. It requires a
large concerted move in configuration space of the DoF's in the vicinity of the
flip that has a small effect on the position of the chain in the 3-D workspace.
Developing heuristics to fix a flip once the refinement is completed requires
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Fig. 3. Fitting loops into the density. (a) Highest scoring loop for residues 51 to 64
from TMO0423 in cyan, together with the PDB structure in magenta. The RMSD
is 0.25A. (b) Highest scoring loop for residues 83 to 96 from TMO0813 in magenta,
together with its starting conformation in yellow (output of stage 1). The RMSD
between the starting conformation and the PDB structure is 2.1A. The refinement
procedure reduces it to 0.6A. The EDM is represented by an iso-surface shown in
blue wire mesh.

knowledge of its exact location, which may be difficult to ascertain without
knowing the global minimum.

VAL - 35 GLU - 36 ASP-37

Fig. 4. An example of a one residue flip. The oxygen (red protrusion) of the middle
residue in the computed loop (cyan) is in the opposite direction of the oxygen in
the PDB structure (yellow) while the residues before and after are well aligned.

6 Conclusion

Existing crystallographic software sometimes fails to model parts of a protein,
resulting in an initial structure with gaps. In this paper we presented a novel
method for the computation of these missing fragments. The use of robotics
IK techniques enabled the inclusion of a closure constraint, thus augmenting
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reduced information available in areas of poor quality density. The experi-
mental results demonstrated that our approach computed loops of up to 12
residues in good agreement with the final, refined structure. The method also
performs well when using low resolution EDMs.

‘We have shown that protein model building procedures can greatly benefit
from the use of robotics techniques and algorithms. Collaborative initiatives
between the crystallography and robotics communities could therefore fa-
vorably impact the development of fully automated structure determination
pipelines.

The algorithm is currently undergoing extensive testing to gauge its per-
formance, and will eventually be made publicly available. It is anticipated
that the flipped residues problem can be overcome with elementary heuris-
tic techniques. Another interesting extension to the algorithm would be the
inclusion of stereochemical constraints.
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