
Is it possible to learn quantum 
mechanics without lots of math?

• Honestly, probably not very well.  
• However, I think it is critical to start with quantum mechanics, because it 

is really the foundation of the “bottom-up” approach to biomolecular 
modeling.

• Also, extensive analytical derivations can obscure the big picture; it took 
me many years to gain a good intuitive understanding of quantum 
mechanics, despite lots of coursework.

• I taught a course last year (Chemistry 262) that really provides a solid 
foundation for using quantum mechanics as a tool.  It provides lots of 
practical experience, but requires a fairly serious time commitment.  I 
am willing to teach it in the future if there is sufficient demand.  

• My goals for this portion of the course:
1. Provide an intuitive feel for quantum systems using model systems.
2. Introduce basics of electronic structure calculations, which are

critical for force fields and docking calculations.
3. Understand the key scientific ideas behind the jargon (what does 6-

31G* really mean, anyways?).



In quantum mechanics, classical 
variables are replaced by operators

Some examples in 1 dimension:

Position x x (“multiply by x”)

Momentum p

Kinetic energy K

Total energy E/Ĥ
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Note how Planck’s 
constant (ħ) shows up 
here.  Although it’s a bit 
beyond the scope of our 
discussion, Planck’s 
constant provides the 
fundamental measure of 
when a system is small 
enough to be “quantum”.  
Its value is ~1·10-34 J·s.

This is all a bit abstract for now, but hold tight.  
We’ll start looking at model systems soon ...



Quantum operators are quantized
• Quantization is one of the most fundamental concepts in QM.
• Basic definition:  Measured values of observable associated with a quantum 

operator can only take discrete (“quantized”) values.
• In practice you solve for the quantum states by solving an eigenvalue equation 

by various methods (analytical, matrix methods).
• The most important operator by far is energy, the “Hamiltonian” operator.  
• A simple demonstration of quantized energy is provided by atomic spectra:

Transitions between quantized states (“energy 
eigenstates”) leads to only discrete colors of light 

being absorbed/emitted.



A quantum system is completely 
specified by its wavefunction

Eigenfunctions are the wavefunctions associated with the eigenvalues:
• Eigenfunctions are indexed by “quantum numbers” (integers, or half integers for spin).
• We can define eigenfunctions of any quantum operator, but by far the most important 

are the “energy eigenfunctions”, i.e., eigenfunctions of the Hamiltonian operator.  
• All other wavefunctions can be expressed as a superposition of eigenfunctions.  

the amplitude squared has a special 
importance:  it represents probability of 
finding quantum system in a given state.

( )tr ,rΨ written as a function of coordinates and time; 
can be complex-valued
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the only values of observable associated 
with operator A will be the eigenvalues, i.e., 
those that satisfy this eigenvalue equation.



Eigenfunctions are a bit like the normal 
modes of a string or drum

These normal modes represent the 
“stationary states” of the classical 
system, which can be in some 
superposition of normal modes.  
Similarly, eigenfunctions are stationary 
states of quantum systems.  

One key difference:  Quantum eigenstates can be imaginary.



Quantum Mechanical 
Model Systems

Goal:  Gain intuition about quantum eigenfunctions and how they relate to
classical mechanics using simple, one-dimensional systems.

Outline:
1. Harmonic oscillator
2. Anharmonic oscillator (Morse; relevant to bond stretching)
3. Pendulum (relevant to torsions/internal rotations)



Harmonic Oscillator



Harmonic Oscillator Eigenstates

Similar to classical behavior:
• More probability of finding 

system near turning points.

Purely quantum behavior:
• Energy is quantized (discrete).
• Nodes (points with zero 

probability of finding system).
• Tunneling into classically 

forbidden region.
• Lowest energy state is NOT at 

zero energy; consequence of 
uncertainty principle, which we 
have not discussed.

Amplitude Probability
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w is related to width of potential, e.g., spring 
constant.  v is the quantum number.  Eigenfunctions
are analytical but somewhat complicated.



40th eigenstate of the harmonic 
oscillator

Probability

Amplitude

Qualitative conclusion:  As the energy increases (larger 
“quantum number”), the system looks increasingly classical.  The

relationship between quantum and classical mechanics is 
studied under the title “quantum-classical correspondence”.



Anharmonic (Morse) 
Oscillator:  A better 
approximation for 
vibrations of real 
chemical bond

Key points:
1. Energy levels more closely spaced 

as you approach the “dissociation 
limit”, i.e., as the potential become 
more anharmonic.

2. Probability density accumulates at 
outer turning point.

Both of these make sense classically.
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Pendulum 
Eigenstates

hindered 
internal 
rotation

anharmonic
vibrations



Double-Well Potentials
Key points:
1. Good model systems for tunneling, 

e.g., .proton transfer.
2. In a symmetric potential, the 

eigenstates must display symmetry 
as well (either “odd” or “even”).

3. In symmetric double well, the 
splitting between pairs of states 
reflects tunneling.

4. Tunneling “rate” (probability) is 
related to the dE between the 
eigenstate and the top of the barrier.

Although not shown here, the 
eigenstates above the barrier will of 
course span both wells, with some 
increase in probability density above 
the barrier.


