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Monte Carlo Techniques

Monte Carlo:
The use of statistical methods to solve 
math problems that may or may not 
(initially) involve probability

Monte Carlo Algorithm:

1) Devise a random variable whose mean is the solution

2) Devise a way to generate samples

3) Collect statistics
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Why Use Monte Carlo?

Advantages:

1) Usually easy to formulate (independent of problem)

2) Scales well (easy in any dimension)

Disadvantages:

1) Solutions are imprecise or “noisy”

2) Can be very slow
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Basic Monte Carlo

Sample with uniformly distributed random points
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Rejection Method

Compute the integral as a percent of an area
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Rejection Method

Compute the integral as a percent of an area

)(
*

abh
N

N −≈α

],0[],[ hba ×

Sample points are uniformly 
distributed random variables 
on

h

ba

)(xf

),)((),( 21 ξξ habayx −+=
++≤ * then )( if Nxfy

]1,0[~ξ

CS174 Winter 00 Lecture 8 Copyright © Mark Meyer

Why is Monte Carlo Good Here?

Why not use quadrature?

1) Integrand may be discontinuous

2) Quadrature is useless in high dimensions
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Probability Density Function

Probability Density Function (PDF):

],[0)( baxxf ∈∀≥

1)( =∫
b

a
dxxf

∫=<≤ 2

1

)()( 21

x

x
dxxfxxxP

is a function from [a,b] to R such that:

1)

2)

3)

CS174 Winter 00 Lecture 8 Copyright © Mark Meyer

Theorem
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Primary Estimators

Using a uniform PDF
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where      is drawn from Xix
One sample is usually not enough
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Average Estimator

Take an average of multiple samples
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Why can’t we use a nonuniform PDF?

This is what we called basic monte carlo
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NonUniform PDFs

We can rewrite any integral with a PDF
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Variance Reduction

Variance 222 )( ZZZ −=σ

2
2

2

)(

)(
)( ασ −= ∫

b

a

dx
xg

xf
Z

∫
= b

a
dxxf

xf
xg

)(

)(
)(

)(

)(

Xg

Xf
Z =If

then

with gX ~

will give zero variance

This is known as importance sampling
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Monte Carlo in Image Synthesis

How to sample the source?
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Uniform Sampling

Archimedes Theorem
Given a sphere inscribed within a cylinder,
for any      , both surfaces have equal areaz∆

So we can generate uniform samples by 
sampling the cylinder and projecting inwards
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Uniform Sampling

Sampling the top of the sphere

This is useful for sampling the light sources

Sample the cylinder and project inwards
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Incorporating Indirect Lighting
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Weighted Sampling

Sampling the hemisphere with a         distribution

But how do we sample the disk?

Sample the base and project upwards
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Weighted Sampling

Sampling the disk
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Monte Carlo Rendering


