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Monte Carlo Techniques

Monte Carlo:
The use of statistical methods to solve
math problems that may or may not
(initially) involve probability

Monte Carlo Algorithm:

1) Devise a random variable whose mean is the solution
2) Devise a way to generate samples

3) Collect statistics
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Why Use Monte Carlo?

Advantages:

1) Usually easy to formulate (independent of problem)

2) Scales well (easy in any dimension)

Disadvantages:

1) Solutions are imprecise or “noisy”
2) Can be very slow
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Basic Monte Carlo

Sample with uniformly distributed random points

a:f;f(x)dx | |,

F(x) f(X)

X is a uniformly distributed
random variable on [, D]

Rejection Method

Compute the integral as a percent of an area

a:ij(x)dx

. N’
= L'Toﬁh(b_a)

N" is the # of samples below f (X)

N is the total # of samples




Rejection Method

Compute the integral as a percent of an area

N-k
a=—->~h(b-a
- h(o-2)

Sample points are uniformly
distributed random variables
on [a, b] X[O, h] —

¢ ~[01
(x,y) =(a+(b-a)é;, hSy)
if y< f(x)thenN" ++

Why is Monte Carlo Good Here?

Why not use quadrature?

1) Integrand may be discontinuous

2) Quadrature is useless in high dimensions
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Probability Density Function

Probability Density Function (PDF):
is a function from [a,b] to R such that:

1) f(x)=0 [Ix [ a,b]
2)Jff(x) dx=1

3) P(xlsx<x2):r2f(x)dx

Theorem

If gis a PDF on [a, b] , then
[ h(g(3) cx= ["h(3) (g(x) dx)
= E[h(X)]

where Xis distributed (~) according to g
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Primary Estimators

Using a uniform PDF

a:ij(x)dx
1

=[ 11 (0(6-a)] b2

SE[fOOb-a)] .
= f(x)(b-a) -

where X is drawn from X

dx

One sample is usually not enough
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Average Estimator

Take an average of multiple samples

b,;a; f(x)

a=

where X; are drawn from X

This is what we called basic monte carlo

Why can’t we use a nonuniform PDF?




NonUniform PDFs

We can rewrite any integral with a PDF
a:fﬁ(@dx
b f (X
= [~ (g(x) dx)

_ 1 f(%)
N4 g(x) R

But what is the best PDF to choose?

Variance Reduction

Variance O'Z(Z) :<ZZ>—<Z>2

If Z:M with X ~¢
a( )
then JZ(Z)ZJ'f (X)d a’
2 9(X)
g(x) = ' will give zero variance
L f (X) dx
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Monte Carlo in Image Synthesis

light source

N
I‘0
NS y
ya i
diffuse surface

L'= BI L (w) cosO dw
T[Q

:p—l'o'[cosedw
T y

Cot7awiner o Lecture & How to sample the source? Coyright & Nark veyer

Uniform Sampling

Archimedes Theorem
Given a sphere inscribed within a cylinder,
for any Az, both surfaces have equal area

———__ S0 we can generate uniform samples by

\/: ;‘, sampling the cylinder and projecting inwards
_‘/%;'_—k&. _‘ z=1-2¢ 1
(e - ):5- ax 9 — 2
N /f ' e
| X = cosO/1- 22
\\ ey //

— y=sn 9\/1_7ZZ
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Uniform Sampling

Sampling the top of the sphere

Sample the cylinder and project inwards
SN Ereeng
A, 0=,
N ;__a"l S x=cosb1-2
\..,5 P y= snf1-2%

This is useful for sampling the light sources
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Incorporating Indirect Lighting

light source

0
‘ Y . indirect path
diffuse surface

L':BIL(w) cosO dw
T[Q

L
indirect path

=P J'L(co) cosf dew+2 = J’cose dw
T[Q—y n y

o o Lectre This is known as stratification Copyrght & Wark beyer




Weighted Sampling

Sampling the hemisphere with a cos@ distribution

Sample the base and project upwards

X, Y =uniform sampling of the disk

But how do we sample the disk?
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Weighted Sampling

Sampling the disk

if £0[0,] is uniformly distributed, then X = F (&),
where F isthe CDF of g, is distributed according to g

Proof Disk sampling is thus:
P(X <x) = P(F (&) <x) r=y&
=P = F(X) 0 =21,
=F(X) X =r cosf

X=rsné
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Monte Carlo Rendering
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