NORTHWESTERN UNIVERSITY
Department of Electrical Engineering
and Computer Science

L-BFGS-B — FORTRAN SUBROUTINES FOR LARGE-SCALE
BOUND CONSTRAINED OPTIMIZATION

by

Ciyou Zhu', Richard H. Byrd?, Peihuang Lu' and Jorge Nocedall

December 31, 1994

ABSTRACT

L-BFGS-B is a limited memory algorithm for solving large nonlinear optimization problems
subject to simple bounds on the variables. It is intended for problems in which information
on the Hessian matrix is difficult to obtain, or for large dense problems. L-BFGS-B can also
be used for unconstrained problems, and in this case performs similarly to its predecessor,
algorithm L-BFGS (Harwell routine VA15). The algorithm is implemented in Fortran 77.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization — gradient
methods; G.4 [Mathematics of Computing]: Mathematical Software.

General Terms: Algorithms

Additional Key Words and Phrases: variable metric method, large scale optimization, nonlinear
optimization, limited memory method.

! Department of Electrical Engineering and Computer Science, Northwestern University, Evanston 11 60208.
These authors were supported by National Science Foundation Grants CCR-9101359 and ASC-9213149, and by
Department of Energy Grant DE-FG02-87TER25047-A004.

2 Computer Science Department, University of Colorado at Boulder, Boulder Colorado 80309. This author
was supported by NSF grant CCR-9101795, ARO grant DAAL 03-91-G-0151, and AFOSR grant AFOSR-90-
0109.

1. Introduction.

The purpose of algorithm L-BFGS-B is to minimize a nonlinear function of n variables,

min f(z)

subject to the simple bounds
[<z <u,

where the vectors [and u represent lower and upper bounds on the variables. Not all the
variables need to have bounds; in fact the algorithm is also appropriate and efficient for solving
unconstrained problems. The user must supply the gradient g, but knowledge about the Hessian
matrix of f is not required. For this reason the algorithm can be useful for solving large
problems in which the Hessian matrix is difficult to compute or is dense.

The algorithm is described in detail in [8], and proceeds roughly as follows. At each iteration
a limited memory BFGS approximation to the Hessian is updated. This limited memory matrix
is used to define a quadratic model of the objective function f. A search direction is then
computed using a two-stage approach: first, the gradient projection method [15], [3], [18],[9]
is used to identify a set of active variables, i.e. variables that will be held at their bounds;
then the quadratic model is approximately minimized with respect to the free variables. The
search direction is defined to be the vector leading from the current iterate to this approximate
minimizer. Finally a line search is performed along the search direction using the subroutine
described in [17]. A novel feature of the algorithm is that the limited memory BFGS matrices
are represented in a compact form [7] that is efficient for bound constrained problems.

The user can control the amount of storage required by L-BFGS-B by selecting a parameter
m that determines the number of BFGS corrections saved. The algorithm requires roughly
(12 + 2m)n storage locations, and since small values of m (say 3 < m < 20) are recommended,
it can be used to solve very large problems. The computational cost of one iteration of the
algorithm is modest, ranging from 4mn + n multiplications when no bounds are active, to
approximately m?n multiplications when all variables are at their bounds.

If no bounds are active at the solution, it is appropriate to stop the iteration when the
norm of the gradient ¢ is sufficiently small. The corresponding quantity for the case when
some bounds are active is the norm of the projected gradient, which we denote by ||proj ¢||,
and which is defined, for example, in [8]. Both the output of L-BFGS-B and its documentation,
make reference to the projected gradient.

L-BFGS-B is an extension of the limited memory algorithm (L-BFGS) for unconstrained
optimization described in [16] and implemented as Harwell routine VA15 [12]. The main
improvement is the ability of L-BFGS-B to deal with bounds on the variables. Even though
this requirement makes the new algorithm far more complex than its predecessor, the two
codes perform similarly on unconstrained problems. Therefore I-BFGS-B could be considered
to supersede L-BFGS — except for one fact that can be important in some applications:
L-BFGS-B requires 8 more n-vectors of storage.

L-BFGS-B is, at present, the only limited memory quasi-Newton algorithm capable of
handling bounds on the variables; other published codes [5], [6], [13], [16] are only able to
solve unconstrained problems. We note also that the nonlinear conjugate gradient method
[14], which is used for solving many large unconstrained problems, has not been adequately
extended to handle bounds on the variables, and L-BFGS-B can be used in its place.

The advantages of L-BFGS-B are: (i) the code is easy to use, and the user need not supply
information about the Hessian matrix or about the structure of the objective function; (ii) the

storage requirements of the algorithm are modest and can be controlled by the user; (iii) the
cost of the iteration is low, and is independent of the properties of the objective function. Due
to this, L-BFGS-B is recommended for solving large problems in which the Hessian matrix is
not sparse or is difficult to compute.

However L-BFGS-B suffers from the following drawbacks: (i) it is not rapidly convergent,
and on difficult problems can take a large number of function evaluations to converge; (ii) on
highly ill-conditioned problems the algorithm may fail to obtain high accuracy in the solu-
tion; (iii) the algorithm cannot make use of knowledge about the structure of the problem to
accelerate convergence.

The code can be obtained by anonymous ftp to eecs.nwu.edu. After logging in go to the
directory pub/Ibfgs.

2. How to use the routine.

The simplest way to use the code is to modify one of the drivers provided in the package
(see section 3). Most users will only need to make a few changes to the drivers to run their
applications.

L-BFGS-B is written in FORTRAN 77, in double precision. The user is required to calculate
the function value f and its gradient g. In order to allow the user complete control over these
computations, reverse communication is used. The routine Ibfgsb.f must be called repeatedly
under the control of the variable task. The calling statement of L-BFGS-B is

call Ibfgsb(n,m,x,l,unbd,f,g factr,wa,iwa,task,iprint,isbmin,csave,lsave,isave dsave)
Following is a description of all the parameters used in this call.

n is an INTEGER variable that must be set by the user to the number of variables. It is not
altered by the routine.

m is an INTEGER variable that must be set by the user to the number of corrections used
in the limited memory matrix. It is not altered by the routine. Values of m less than
3 are not recommended, and large values of m can result in excessive computing time.
The range 3 < m < 20 is recommended.

x is a DOUBLE PRECISION array of length n . On initial entry it must be set by the user to
the values of the initial estimate of the solution vector. Upon successful exit, it contains
the values of the variables at the best point found.

1 is a DOUBLE PRECISION array of length n that must be set by the user to the values of
the lower bounds on the variables. If the i-th variable has no lower bound, 1(i) need not

be defined.

u is a DOUBLE PRECISION array of length n that must be set by the user to the values
of the upper bounds on the variables. If the i-th variable has no upper bound, u(i) need

not be defined.

nbd is an INTEGER array of dimension n that must be set by the user to the type of bounds
imposed on the variables:

nbd(i) = 0if x(i) is unbounded,

1 if x(i) has only a lower bound,

2 if x(i) has both lower and upper bounds
3 if x(i) has only an upper bound.

f is a DOUBLE PRECISION variable. If the routine lbfgsb.f returns with task(1:2)= "FG’,

f must be set by the user to contain the value of the function f at the point x.

g isa DOUBLE PRECISION array of length n . If the routine Ibfgsb.f returns with task(1:2)=
'FG’, g must be set by the user to contain the components of the gradient ¢ at the point
X.

factr is a DOUBLE PRECISION variable that must be set by the user. It is a tolerance in
the termination test for the algorithm. The iteration will stop when

(fi — frt1)/ max(|fi41], |fe], 1) < factrxepsmch (1)

where epsmch is the machine precision which is automatically generated by the code.
Typical values for factr on a computer with 15 digits of accuracy in double precision are:
factr=1.d+12 for low accuracy; factr=1.d+7 for moderate accuracy; factr=1.d+1 for
extremely high accuracy. If the user sets factr=0, the test will stop the algorithm only
if the objective function remains unchanged after one iteration.

wa is a DOUBLE PRECISION array of length (2m+ 4)n + 12m? 4 12m used as workspace.
This array must not be altered by the user.

iwa is an INTEGER array of length 3n used as workspace. This array must not be altered
by the user.

task is a CHARACTER string of length 60 that must be set to 'START’ on initial entry.
On a return with task(1:2)="FG’ the user must evaluate the function f and gradient g
at the returned value of x. On a return with task(1:5) =’NEW_X’ an iteration of the
algorithm has concluded, and f and g contain f(x) and g(x) respectively. The user can
decide whether to continue or stop the iteration. When:

task(1:4)="CONYV” the termination test in L-BFGS-B has been satisfied;

task(1:4)="ABNO’ the routine has terminated abnormally without being able to sat-
isfy the termination conditions; x contains the best approximation found; f and g
contain f(x) and g(x) respectively;

task(1:5)="ERROR’ the routine has detected an error in the input parameters.
On exit with task =’CONV’,’ABNO’ or ’"TERROR’, the variable task contains additional
information that the user can print. This array should not be altered by the user unless

the user wants to stop the run for some reason. See driver2.f and driver3.f for detailed
explanation on how to stop the run by assigning task(1:4)="STOP’ in the driver.

iprint is an INTEGER variable that must be set by the user. It controls the frequency and
type of output generated:
iprint=-1 no output is generated;
iprint=0 print only one line at the last iteration;

0<iprint<99 print also f and ||proj g|| every iprint iterations;

iprint=99 print details of every iteration except components of n-vectors;

iprint=100 print also the changes of active sets and the final n-vector x;

iprint=101 print details of every iteration including the changes of active sets and the
n-vectors x and g.

When iprint > 0, the file iterate.dat will be created to summarize the iteration.

isbmin is an INTEGER variable that must be set by the user. The default setting is isbmin
=1. This variable determines the type of method used for the solution of the inner
subspace minimization subproblems,
isbmin = 1 the direct primal method will be used,
2 the dual method will be used,
3 the conjugate gradient method will be used.
csave is a CHARACTER working array of length 60. This array must not be altered by the

user.

Isave is a LOGICAL working array of dimension 4. This array must not be altered by the
user. On exit with task = '"NEW_X", the following information is available:
Isave(1) = .true. the initial x did not satisfy the bounds;
Isave(2) = .true. the problem contains bounds;
Isave(3) = .true. each variable has upper and lower bounds;

isave is an INTEGER working array of dimension 44. This array must not be altered by the
user. On exit with task = "NEW _X", it contains information that the user may want to
access. For example,
isave(30) = the current iteration number;

isave(34) = the number of function and gradient evaluations performed so far.
See the subroutine Ibfgsb.f for a description of other information contained in isave.

dsave is a DOUBLE PRECISION working array of dimension 29. This array must not be
altered by the user. On exit with task = '"NEW X", it contains information that the user
may want to access. For example,
dsave(2) = value of f at the previous iteration;

dsave(13) = the infinity norm of the projected gradient of f at x.

See the subroutine lbfgsh.f for a description of other information contained in dsave.

3. The Drivers.

Several sample drivers have been prepared to facilitate the use of the code. They range
from a simple driver using all the default settings, to some more sophisticated drivers that give
the user more control over the execution of the code.

driverl.f is the simplest driver. It demonstrates how to solve a sample problem using all
the default settings of the code. We recommend that every user of L-BFGS-B read this
driver. It gives a good idea of how the code works, and at the end of driverl.f there is a
detailed description of the parameters used in L-BFGS-B.

driver2.f is a more sophisticated driver. It illustrates various ways of terminating the run,
and alternative ways of generating output. This driver is designed for users who need
specially formatted output or for users who wish to have more control over the execution
of the run.

driver3.f is a time-controlled driver. It shows how to terminate a run after some prescribed
CPU time has elapsed, and how to print the desired information before exiting. When
running very time-consuming applications the user may wish to impose a limit on CPU
time. Terminating the run in this way, however, will not produce the final output of the
run. This driver shows how to generate all desired output in this case.

driver4.f is an extensive driver. It runs the code on 67 test problems (33 bound constrained,
34 unconstrained) from the CUTE collection [4], each with three different subspace min-
imization methods. This driver is used for testing and profiling the code.

4. Termination and Error Messages.

The user can terminate execution at various stages of the algorithm by setting task(1:4)=
'STOP’ at an appropriate place in the driver. This allows the user to determine a stopping
condition based on such factors as projected gradient, number of function evaluations or time
spent. Several possibilities are illustrated in driver2.f. In addition, the code may terminate
because the built-in stopping test (1) has been met, because an input error has been detected,
or because the code cannot make further progress.

The built-in stopping test (1) is controlled by the parameter factr; see section 2. It is
designed to terminate the run when the change in the objective function fis sufficiently small.
The test can be made more stringent by decreasing factr, and can be almost disabled by setting
factr= 0. If the stopping test is satisfied, task(1:4) will contain the string "CONV’. Note that
(1) is scale-dependent due to the scalar 1 in the denominator: when factr > 0, if fis multiplied
by a constant and the code is re-run, then termination may occur at a different solution point.

In addition to the stopping test (1), the algorithm has another built-in stopping test based
on the projected gradient: if

[proj gllee =0
the execution will terminate. This test is included because the algorithm can proceed only when
the projected gradient is nonzero; otherwise a stationary point has already been reached. In
this case the variable task contains the string '"CONVERGENCE: NORM OF PROJECTED
GRADIENT = 0.

It can occur sometimes that the line search cannot make any progress, as described in
section 5. In this case the run is terminated, and task contains the string ’ABNORMAL
TERMINATION IN LINE SEARCH’.

When the code has detected an error in the input, task(1:5) will contain the string
"ERROR’. In this case the user can print all the information contained in task (i.e task(1:60)),
which will provide details of the error.

5. Implementation.

The algorithm implemented in L-BFGS-B is described in detail in [8]. However a few
additions and modifications were made during the development of the code.

First we describe several devices for dealing with failures of the code and for trying to
improve performance in the region were rounding errors begin to dominate the computation.
The line search program of Moré and Thuente [17] is used to compute the steplength parameter.
If the line search is unable to find a point with a sufficiently lower value of the objective after
20 evaluations of the objective function, we conclude that the current direction is not useful.
In this case all correction vectors are discarded and the iteration is restarted along the steepest
descent direction. If the line search fails along this steepest descent direction, the algorithm
terminates as described in section 4. This type of failure will usually occur only if the user has
specified high accuracy in the solution and L-BFGS is having difficulties meeting this accuracy.
Our restarting strategy sometimes leads to successful termination in these difficult cases — but
not always.

Similarly, if during the course of the iteration the L-BFGS matrix, or a related submatrix
becomes singular or indefinite, all correction vectors are discarded and the iteration is restarted
along the steepest descent direction. This device is also used if the search direction is not a
descent direction (i.e. if gtd > 0). We emphasize that all the difficulties just described occur
only when rounding errors begin to dominate the computation.

Machine and Scale Dependencies.

L-BFGS-B computes the machine precision epsmch by means of the routine dpmeps from
MINPACK-2 [2]. The machine precision epsmch is used only twice in the algorithm: in the
stopping test (1) and in the skipping criterion for BFGS updating described below. These
two computations are therefore machine-dependent. As explained in the previous section, the
stopping test (1) can be controlled by means of the variable factr; the user may want to
experiment with this variable. When factr is set equal to zero, this machine dependence is
removed. The BFGS skipping test is necessary to guarantee the positive definiteness of the
limited memory matrices when bounds on the variables are present. In L-BFGS-B the matrix
update is skipped when

ygsk
—ngk

< epsmch,

where yr = gr+1 — gk and sp = xp41 — @; (see [11]). This ensures that ygsk is sufficiently
positive. The user can determine how many times the BFGS update was skipped by printing
the variable isave(26). Our numerical experience indicates that skipping occurs rarely.

Effort was taken to ensure that L-BFGS-B is as scale-invariant as possible. However com-
plete scale-invariance was not possible to achieve; indeed the limited memory algorithm itself
is not invariant to linear transformations in the variables. However, the algorithm is invariant
with respect to scalar multiples of the variables and the objective function, and we have been
able to maintain that invariance in the code with only a few exceptions. The main exception is
the first iteration, where the step is quite dependent on scaling of the variables. In addition, as
noted before, the test (1) is not invariant to scaling of the objective function when factr > 0.
However, since this test can easily be altered or essentially disabled by the user, this is not an
important drawback.

A technical point on the step computation.

There is one significant difference between L-BFGS-B and the algorithm described in [8],
but it occurs at a fairly low level and is of interest only to those readers wishing to understand
the code in detail.

The implementation of the primal and dual approaches for subspace minimization was
unified. With the notation used in section 5 of [8], it can be shown that the matrix

(I - %MWTZZTW)*M,

which appears in the primal direct method is identical to the matrix
(I+0MWTAATWY M

of the dual method. Moreover, these matrices can be written as the inverse of

-D—-YTzzTy LY - R,

L - RY 05T AATS

where L4 is the strict lower triangle of ST AATS and Ry is the upper triangle of ST ZZTY. We
have used this matrix in both the primal and dual approaches, and as a result the performance
of the two methods is now similar. Although this matrix is not positive definite, it can be
factorized symmetrically by using Cholesky factorization of the submatrices.

6. Numerical Results.

We now present results of L-BFGS-B on a set of test problems from the CUTE collection
[4]. We tested only bound constrained problems with n > 5 and unconstrained problems with
n > 100. As a benchmark we also present the results obtained by the SR1 and Fxact Hessian
options of the LANCELOT package [10]. LANCELOT was run using all its default options.
All runs were performed on a Sparcstation-2 with 32Mb of main memory, and all runs were
terminated when the norm of the projected gradient is less than 107>, i.e.

Iproj glls < 1077, (2)
The meaning of some of the variables used in the tables is as follows.
nbnd: the number of active bounds at the solution of LANCELOT-SR1.
nfg: the total number of function or gradient evaluations.

nf: the total number of function evaluations. (In LANCELOT, the number of function evalu-
ations may differ from the number of gradient evaluations.)

Tables 1.1 and 1.2 indicate that L-BFGS-B is a competitive code, which is remarkable since
it does not use any specific knowledge of the objective function, as is the case in both versions
of LANCELOT. Although, as is to be expected, L-BFFGS-B used more function evaluations
than LANCELOT, the CPU times were comparable, though with great variability. It is an
interesting fact that L-BFGS-B is sometimes unable to reduce the projected gradient sufficiently
to satisfy the stopping condition even though the function value obtained is very good. More

specifically, in the runs marked by C1 in the tables, L-BFGS-B obtained at least as good
function value (to five digits) as LANCELOT but the gradient did not meet the stopping
condition. We do not interpret these as failures of the algorithm, but feel that this property of
L-BFGS deserves further study.

Tables 1.3 and 1.4 show the effect of varying the number m of updates saved. Increasing m
definitely improves the reliability of the algorithm. Although increasing m often reduces the
number of function evaluations, this effect is not consistent, and it does cause an increase in
CPU time in most cases. In Tables 1.5 and 1.6 we consider the dual and conjugate gradient
approaches for subspace minimization. With the new implementation described in section 5, the
computation time for the primal and dual approaches is quite similar. The conjugate gradient
approach seems to require more time on problems where computational time is significant.

BOUND CONSTRAINED PROBLEMS

L-BFGS-B L-BFGS-B LANCELOT LANCELOT
Problem n nbnd | m=5 (Primal) | m=17 (Primal) SR1 Hessian

nfg time | nfg time nf time nf time
BDEXP 1000 0 15 2.31 16 3.50 27 13.74 11 6.54
BIGGS5 6 1 121 0.88 69 1.51 | 41 0.62 19 0.30
BQPGASIM 50 7 25 0.28 23 0.43 8 0.58 4 0.34
BQPGAUSS 2003 27 | *F1 (TE-3) | *Cl1 (4E-4) 20 1957.59 9 1751.29
HATFLDC 25 0 23 0.19 23 0.41 5 0.11 5 0.19
HS110 50 50 2 0.02 2 0.02 2 0.17 2 0.16
HS45 5 5 11 0.03 11 0.01 3 0.05 3 0.03
JNLBRNGA 15625 5657 | 332 740.33 | 296 1133.88 | 24 1263.77 | 22 1502.96
JNLBRNGB 1024 516 424 62.73 | 426 125.17 6 7.21 6 5.56
LINVERSE 999 338 | 291 56.85 | 369 159.31 | 27 194.08 | 28 149.99
MAXLIKA 8 1| 1665 88.38 | 158 10.27 98 24.33 9 2.24
MCCORMCK 1000 0 15 1.85 15 2.05 7 5.25 5 3.97
NONSCOMP 1000 2 45 6.79 60 17.24 9 4.70 9 4.43
OBSTCLAE 5625 2724 258 207.20 | 308 455.60 7 1442.00 6 1422.62
OBSTCLAL 1024 508 40 5.84 40 1045 | 11 9.45 9 7.69
OBSTCLBL 1024 475 50 7.83 55 16.62 8 15.42 8 18.45
OBSTCLBM 15625 4309 146 353.04 | 138 573.84 7 1106.37 6 2017.70
OBSTCLBU 1024 475 44 6.57 41 11.48 9 16.10 8 8.45
PALMERIA 6 0 799 4.95 | 262 4.50 | 113 2.29 68 1.37
PALMERI1E 8 0| "F1 (7E-2) | 290 5.06 | 190 6.95 | 204 7.38
PALMER2A 6 0| 518 3.67 | 182 4.12 | 180 3.05 | 157 2.60
PALMER2E 8 0 *F1 (2E-3) | 291 6.98 | 268 8.01 | 113 3.89
PALMER3A 6 0 716 5.13 | 140 3.31 | 176 3.02 | 147 2.48
PALMERS3E 8 0 *F1 (4E-4) | 221 3.59 | 141 3.81 68 1.76
PALMER4A 6 0 483 3.30 | 128 2.82 98 1.54 48 0.80
PALMERAE 8 0 *F1 (3E-3) | 172 2.89 | 206 4.78 67 1.95
PROBPENL 500 0 3 0.10 3 0.11 3 1.72 2 1.67
S368 100 29 21 16.84 21 16.93 37 91.24 8 21.14
TORSION1 1024 436 43 6.35 32 8.16 13 11.04 11 10.18
TORSION2 1024 436 61 10.08 55 18.33 | 10 12.31 5 12.69
TORSION3 1024 748 23 2.76 22 3.61 7 8.43 6 4.05
TORSION4 1024 748 49 5.87 43 8.32 7 6.73 6 4.85
TORSIONG 14884 12316 | 362 707.22 | 360 1157.74 | 10 130.73 9 130.31

Table 1.1. Test results of L-BFGS-B, using the default option (primal method) for subspace
minimization, and results of LANCELOT’s SR1 and exact Hessian options, on bound constrained
problems from the CUTE collection.

* . Termination because the number of function evaluations reached 9999.

** . Termination because the code could make no further progress in reducing f.
(In cases ** and * the value in parentheses is the norm of the projected gradient at the final iterate.)

C1: Gradient stopping test (2) was not met but the final function value was at least as good as that
obtained by LANCELOT SR1.

F1: Gradient stopping test (2) was not met but the final function value was greater than that obtained
by LANCELOT SR1.

10

UNCONSTRAINED PROBLEMS

L-BFGS-B L-BFGS-B LANCELOT LANCELOT
Problem n | m=5 (Primal) | m=17 (Primal) SR1 Hessian

nfg time nfg time nf time nf time
ARWHEAD 1000 13 1.09 | **C1 (2E-b) 5 4.66 6 4.79
BDQRTIC 100 101 1.28 47 1.29 11 1.06 12 1.07
BROYDN7D 1000 373 66.30 398 104.51 | 112 62.72 125 66.52
CRAGGLVY 1000 95 13.33 89 19.08 15 9.81 15 9.89
DIXMAANA 1500 12 1.34 13 1.66 8 8.71 6 7.96
DIXMAANB 1500 12 1.36 12 1.43 9 10.18 8 8.96
DIXMAANC 1500 14 1.61 14 1.85 10 8.91 12 11.28
DIXMAAND 1500 15 1.70 15 2.08 13 13.07 20 15.73
DIXMAANE 1500 188 24.28 169 41.07 14 13.01 7 8.74
DIXMAANF 1500 163 21.04 126 30.71 26 21.17 33 22.11
DIXMAANG 1500 158 20.38 127 30.94 32 24.78 25 18.05
DIXMAANH 1500 156 20.30 124 30.01 37 28.07 36 24.44
DIXMAANI 1500 | 1237 166.37 | 1066 273.08 11 11.56 8 9.30
DIXMAANK 1500 130 16.59 146 35.36 34 25.98 51 32.56
DIXMAANL 1500 134 16.93 120 28.04 | 105 67.67 50 35.88
DQDRTIC 1000 19 1.47 19 1.73 3 2.47 3 2.55
DQRTIC 500 43 1.46 43 2.96 34 6.13 34 6.11
EIGENALS 110 574 17.21 302 15.77 21 4.72 22 4.36
EIGENBLS 110 | 1116 33.36 | 1041 55.73 | 186 98.47 193 95.55
EIGENCLS 462 | 2900 563.81 | 2507 599.32 | 456 2010.40 543 2299.42
ENGVALI1 1000 23 2.02 20 2.38 8 6.28 8 6.03
FLETCHBY 100 | CI (2BE0) | ©*°C1 __(9E-1) | "F2 _(2B+44) | *F1_(3E+4)
FREUROTH 1000 | **C1 (2E-5) | **C1 (1E-3) 11 7.53 11 7.27
GENROSE 500 | 1244 60.86 | 1315 116.82 | 590 103.92 586 99.79
MOREBV 1000 79 6.85 77 12.22 2 3.89 2 3.85
NONDIA 1000 23 1.79 23 2.56 C2 C2 30 12.54
NONDQUAR 100 | 1001 10.09 828 25.82 16 0.86 16 0.86
PENALTY1 1000 60 3.91 60 7.58 64 118.89 64 117.61
PENALTY3 100 | **C1 (3E-3) | **C1 (3E-3) | 100 436.12 | **C1 (2E-4)
QUARTC 1000 47 3.10 47 5.86 36 12.74 36 12.68
SINQUAD 1000 183 17.17 210 32.76 | 132 81.51 132 79.20
SROSENBR 1000 20 1.18 19 1.77 14 6.85 11 5.92
TQUARTIC 1000 27 1.77 27 2.80 13 7.76 13 5.93
TRIDIA 1000 763 48.90 534 78.98 3 3.96 3 391

Table 1.2.Test results of L-BFGS-B, using the default option (primal method) for subspace
minimization, and results of LANCELOT’s SR1 and exact Hessian options, on unconstrained
problems from the CUTE collection.

obtained by LANCELOT SR1.

by LANCELOT SR1.

11

* . Termination because the number of function evaluations reached 9999.
** . Termination because the code could make no further progress in reducing f.

(In cases ** and * the value in parentheses is the norm of the projected gradient at the final iterate.)
C1: Gradient stopping test (2) was not met but the final function value was at least as good as that

F1: Gradient stopping test (2) was not met but the final function value was greater than that obtained

C2: The SR1 option of LANCELQT converged to a different solution point than the other methods.
F2: The SR1 option of LANCELOT could not satisfy the stopping test after 9999 function evaluations.

Varying m - Bound Constrained Problems

L-BFGS-B L-BFGS-B L-BFGS-B L-BFGS-B
Problem n | m=3 (Primal) | m=5 (Primal) | m=17 (Primal) | m=29 (Primal)

nfg time nfg time | nfg time nfg time
BDEXP 1000 15 1.91 15 2.31 16 3.50 16 3.61
BIGGS5 6 109 0.57 | 121 0.88 69 1.51 71 3.23
BQPGASIM 50 28 0.25 25 0.28 23 0.43 23 0.43
BQPGAUSS 2003 | "F1_(3E-2) | "FI (76-3) | *C1 _ (4BE4) | Cl _ (5E-5)
HATFLDC 25 25 0.14 23 0.19 23 0.41 23 0.36
HS110 50 2 0.01 2 0.02 2 0.02 2 0.02
HS45 5 11 0.02 11 0.03 11 0.01 11 0.01
JNLBRNGA 15625 | 389 763.79 | 332 740.33 | 296 1133.88 323 1758.70
JNLBRNGB 1024 569 65.13 424 62.73 | 426 125.17 447 228.05
LINVERSE 999 | 564 91.89 | 291 56.85 | 369 159.31 416 315.31
MAXLIKA 8 *F1 (bE-3) | 1665 88.38 | 158 10.27 118 10.67
MCCORMCK 1000 15 2.00 15 1.85 15 2.05 15 2.04
NONSCOMP 1000 46 5.38 45 6.79 60 17.24 61 20.14
OBSTCLAE 5625 | 261 182.05 | 258 207.20 | 308 455.60 282 578.10
OBSTCLAL 1024 39 4.74 40 5.84 40 10.45 39 11.71
OBSTCLBL 1024 55 7.07 50 7.83 55 16.62 53 22.27
OBSTCLBM 15625 | 161 338.97 | 146 353.04 | 138 573.84 146 828.85
OBSTCLBU 1024 46 5.62 44 6.57 41 11.48 41 15.12
PALMERIA 6 *F1 (2E-1) 799 4.95 | 262 4.50 197 8.01
PALMERIE 8 *F1 (2E-1) *F1 (TE-2) | 290 5.06 254 10.81
PALMER2A 6 | 2888 16.26 518 3.67 | 182 4.12 170 9.69
PALMER2E 8 *F1 (1E-3) *F1 (2E-3) | 291 6.98 221 13.29
PALMER3A 6 | 2460 14.12 716 5.13 | 140 3.31 134 7.45
PALMERS3E 8 *Fl (2E-3) *F1 (4E-4) | 221 3.59 182 7.50
PALMER4A 6 | 1985 11.38 483 3.30 | 128 2.82 90 4.32
PALMERAE 8 *F1 (bE-2) *F1 (3E-3) | 172 2.89 142 5.42
PROBPENL 500 3 0.11 3 0.10 3 0.11 3 0.10
S368 100 19 15.23 21 16.84 21 16.93 21 16.86
TORSION1 1024 60 7.38 43 6.35 32 8.16 33 9.51
TORSION2 1024 59 7.87 61 10.08 55 18.33 63 30.45
TORSION3 1024 27 2.86 23 2.76 22 3.61 22 3.65
TORSION4 1024 50 5.96 49 5.87 43 8.32 42 10.17
TORSIONG 14884 | 309 565.25 | 362 707.22 | 360 1157.74 422 1994.78

Table 1.3. Test results of L-BFGS-B, using the default option (primal method) for subspace
minimization and various values for m, on bound constrained problems from the CUTE collection.

* . Termination because the number of function evaluations reached 9999.

** . Termination because the code could make no further progress in reducing f.
(In cases ** and * the value in parentheses is the norm of the projected gradient at the final iterate.)

C1: Gradient stopping test (2) was not met but the final function value was at least as good as that
obtained by LANCELOT SR1.

F1: Gradient stopping test (2) was not met but the final function value was greater than that obtained
by LANCELOT SR1.

12

Varying m -Unconstrained Problems

L-BFGS-B L-BFGS-B L-BFGS-B L-BFGS-B
Problem n | m=3 (Primal) | m=5 (Primal) | m=17 (Primal) | m=29 (Primal)

nfg time nfg time nfg time nfg time
ARWHEAD 1000 12 0.95 13 1.09 | **C1 (2E-5) | **C1 (2E-5)
BDQRTIC 100 124 1.34 101 1.28 47 1.29 39 1.59
BROYDN7D 1000 393 64.47 373 66.30 398 104.51 384 146.08
CRAGGLVY 1000 99 12.79 95 13.33 89 19.08 85 24.45
DIXMAANA 1500 11 1.09 12 1.34 13 1.66 13 1.61
DIXMAANB 1500 12 1.24 12 1.36 12 1.43 12 1.44
DIXMAANC 1500 14 1.47 14 1.61 14 1.85 14 1.81
DIXMAAND 1500 15 1.56 15 1.70 15 2.08 15 2.04
DIXMAANE 1500 214 23.53 188 24.28 169 41.07 166 60.31
DIXMAANF 1500 164 18.14 163 21.04 126 30.71 124 45.14
DIXMAANG 1500 191 20.93 158 20.38 127 30.94 132 47.22
DIXMAANH 1500 157 17.37 156 20.30 124 30.01 127 46.04
DIXMAANI 1500 828 97.87 | 1237 166.37 | 1066 273.08 922 364.27
DIXMAANK 1500 146 16.10 130 16.59 146 35.36 133 47.63
DIXMAANL 1500 164 17.93 134 16.93 120 28.04 125 44.08
DQDRTIC 1000 23 1.64 19 1.47 19 1.73 19 1.76
DQRTIC 500 43 1.28 43 1.46 43 2.96 43 4.06
EIGENALS 110 769 21.30 574 17.21 302 15.77 145 13.02
EIGENBLS 110 | 1445 39.91 | 1116 33.36 | 1041 55.73 870 86.35
EIGENCLS 462 | 2613 493.70 | 2900 563.81 | 2507 599.32 | 1969 593.89
ENGVAL1 1000 23 1.78 23 2.02 20 2.38 20 2.39
FLETCHBV 100 | **C1 (4E-3) | **C1 (2E-0) | **Cl1 (1E-0) | **C1 (4E-1)
FREUROTH 1000 | **C1 (4E-5) | **Cl (2E-5) | **C1 (1E-3) 38 6.40
GENROSE 500 | 1323 57.99 | 1244 60.86 | 1315 116.82 | 1306 198.67
MOREBV 1000 73 5.50 79 6.85 77 12.22 76 18.04
NONDIA 1000 21 1.48 23 1.79 23 2.56 23 2.67
NONDQUAR 100 866 6.96 | 1001 10.09 828 25.82 588 43.50
PENALTY1 1000 60 3.26 60 3.91 60 7.58 60 10.96
PENALTY3 100 | 7Cl (9E-3) | CL (3E-3) | "Cl (3E-3) | ®CIL (6E4)
QUARTC 1000 47 2.68 47 3.10 47 5.86 47 7.62
SINQUAD 1000 211 17.45 183 17.17 210 32.76 231 52.93
SROSENBR 1000 18 0.90 20 1.18 19 1.77 19 1.81
TQUARTIC 1000 23 1.34 27 1.77 27 2.80 27 2.97
TRIDIA 1000 882 44.16 763 48.90 534 78.98 474 120.90

Table 1.4. Test results of L-BFGS-B, using the default option (primal method) for subspace
minimization and various values of m, on unconstrained problems from the CUTE collection.

(In cases **

obtained by LANCELOT SR1.

13

* . Termination because the number of function evaluations reached 9999.
** . Termination because the code could make no further progress in reducing f.

and * the value in parentheses is the norm of the projected gradient at the final iterate.)
C1: Gradient stopping test (2) was not met but the final function value was at least as good as that

Comparing Dual and CG Options on Bound Constrained Problems

L-BFGS-B L-BFGS-B L-BFGS-B L-BFGS-B
Problem n | m=5 (Dual) | m=17 (Dual) m=5 (CQ) m=17 (CQ)

nfg time | nfg time nfg time | nfg time
BDEXP 1000 15 1.44 16 1.91 15 2.38 16 3.48
BIGGS5H 6| 118 0.83 69 1.57 | 110 0.80 61 0.97
BQPGASIM 50 25 0.23 23 0.40 26 0.32 23 0.51
BQPGAUSS 2003 | *F1 (3E-3) | *C1 (1E-4) | *F1 (7E-2) | *C1 (3E-4)
HATFLDC 25 23 0.15 23 0.26 24 0.23 24 0.45
HS110 50 2 0.02 2 0.03 2 0.02 2 0.01
HS45 5 11 0.01 11 0.02 11 0.02 11 0.03
JNLBRNGA 15625 | 325 770.36 | 334 1396.17 | 557 1419.78 | 400 2192.56
JNLBRNGB 1024 | 440 63.60 | 432 121.42 | 532 89.31 | 410 219.70
LINVERSE 999 | 303 52.11 | 373 126.39 | 539 104.97 | 124 37.68
MAXLIKA 8 12199 121.00 | 155 10.13 | 601 33.20 | 133 8.19
MCCORMCK 1000 15 1.55 15 1.66 16 2.35 16 2.76
NONSCOMP 1000 45 3.81 60 8.77 41 4.27 36 6.83
OBSTCLAE 5625 | 258 210.71 | 299 439.11 | 315 258.82 | 295 438.76
OBSTCLAL 1024 40 5.57 40 9.60 39 5.75 42 12.90
OBSTCLBL 1024 50 8.44 55 18.23 53 9.00 54 19.16
OBSTCLBM 15625 | 150 349.89 | 136 539.99 | 264 646.57 | 256 1046.88
OBSTCLBU 1024 44 7.08 41 9.92 49 7.18 48 12.99
PALMERIA 6 | 1342 7.44 | 263 4.04 | 7367 44.73 | 390 5.17
PALMERIE 8| *F1 (2E-3)| 309 523 | *F1 (1E-2) | 412 6.91
PALMER2A 6| 484 3.08 | 174 3.51 | 2197 12.72 | 159 2.07
PALMERZ2E 8| *F1 (2E-3) | 289 6.00 | *F1 (1E-2) | 505 8.48
PALMER3A 6 | 600 3.83 | 143 2.93 | 5046 38.02 | 220 3.97
PALMER3E 8| *F1 (2E-3) | 224 345 | "F1 (TE-2) | 313 4.14
PALMER4A 6| 584 3.72 | 128 2.58 | 909 5.43 | 155 1.95
PALMERAE 8| *F1 (2E-3) | 198 3.16 | *F1 (6E-3) | 279 4.57
PROBPENL 500 3 0.13 3 0.13 3 0.11 3 0.12
S368 100 21 16.83 21 16.89 27 21.66 28 22.50
TORSION1 1024 43 6.72 32 8.45 63 9.47 44 13.20
TORSION?2 1024 61 9.83 55 16.74 73 11.69 58 16.04
TORSION3 1024 23 3.98 22 6.12 24 3.02 22 4.28
TORSION4 1024 49 7.32 43 12.03 50 5.96 42 8.13
TORSIONG6 14884 | 331 812.97 | 394 1848.57 | 357 651.52 | 354 1005.46

Table 1.5. Test results of L-BFGS-B method, using dual and CG methods for subspace minimization,
on bound constrained problems from the CUTE collection.

* . Termination because the number of function evaluations reached 9999.

** . Termination because the code could make no further progress in reducing f.
and * the value in parentheses is the norm of the projected gradient at the final iterate.)
C1: Gradient stopping test (2) was not met but the final function value was at least as good as that

(In cases **

obtained by LANCELOT SR1.

F1: Gradient stopping test (2) was not met but the final function value was greater than that obtained

by LANCELOT SR1.

14

Comparing Dual and CG Options on Unconstrained Problems

L-BFGS-B L-BFGS-B L-BFGS-B L-BFGS-B
Problem n | m=b (Dual) m=17 (Dual) m=5 (CQ) m=17 (CQ)

nfg time nfg time nfg time nfg time
ARWHEAD 1000 13 1.06 | **C1 (2E-b) 13 1.10 12 1.13
BDQRTIC 100 101 1.24 47 1.27 90 1.59 44 1.80
BROYDN7D 1000 373 64.39 388 95.45 378 92.53 388 189.17
CRAGGLVY 1000 95 13.27 89 17.84 86 17.47 79 35.40
DIXMAANA 1500 12 1.27 13 1.53 12 1.34 13 1.61
DIXMAANB 1500 12 1.27 12 1.38 12 1.28 12 1.34
DIXMAANC 1500 14 1.58 14 1.77 14 1.58 14 1.75
DIXMAAND 1500 15 1.68 15 1.97 16 1.83 16 2.09
DIXMAANE 1500 187 23.10 170 38.32 213 54.04 172 166.98
DIXMAANF 1500 163 19.97 126 27.75 165 41.75 129 124.67
DIXMAANG 1500 153 19.06 127 28.69 147 36.02 127 114.97
DIXMAANH 1500 156 19.42 124 27.79 152 38.43 131 120.53
DIXMAANI 1500 | 1017 131.59 994 238.46 | 1075 298.41 | 1206 1679.64
DIXMAANK 1500 130 16.01 146 32.64 163 41.04 127 121.68
DIXMAANL 1500 134 16.29 120 25.91 213 56.73 122 120.51
DQDRTIC 1000 19 1.45 19 1.63 23 2.30 18 1.95
DQRTIC 500 43 1.43 43 2.80 44 1.58 44 3.02
EIGENALS 110 548 16.08 373 19.05 575 20.08 294 24.23
EIGENBLS 110 | 1156 33.00 | 1113 50.62 | 2221 79.27 | 1071 102.08
EIGENCLS 462 | 2777 536.89 | 2572 600.46 | 3329 736.95 | 2469 1239.65
ENGVALI 1000 23 1.96 20 2.24 23 2.38 22 3.31
FLETCHBV 100 | **C1 (2E-2) | **C1 (2E-0) | **C1 (2E-1) | **C1 (3E-0)
FREUROTH 1000 | **C1 (2E-5) | **C1 (1E-3) 71 7.03 | **C1 (6E-bH)
GENROSE 500 | 1269 59.93 | 1321 11545 | 1426 106.84 | 1400 315.76
MOREBV 1000 79 6.55 77 11.46 74 13.67 86 62.30
NONDIA 1000 23 1.77 23 2.42 18 1.12 18 1.13
NONDQUAR 100 | 1162 11.15 811 24.85 992 16.10 834 86.53
PENALTY1 1000 60 3.72 60 6.97 72 4.42 67 6.56
PENALTY3 100 | **C1 (4E-3) | **C1 (1E-3) | **C1 (5E-3) | **C1 (2E-3)
QUARTC 1000 47 3.01 47 5.35 47 3.35 48 6.16
SINQUAD 1000 196 17.62 209 30.62 148 14.37 174 26.46
SROSENBR 1000 20 1.14 19 1.64 19 1.22 19 1.60
TQUARTIC 1000 27 1.73 27 2.62 30 2.02 30 2.83
TRIDIA 1000 767 45.36 594 80.30 | 1299 182.94 610 399.62

(In cases **

on unconstrained problems from the CUTE collection.

15

* . Termination because the number of function evaluations reached 9999.
** . Termination because the code could make no further progress in reducing f.

and * the value in parentheses is the norm of the projected gradient at the final iterate.)
C1: Gradient stopping test (2) was not met but the final function value was at least as good as that

obtained by LANCELOT SR1.

Table 1.6. Test results of L-BFGS-B method, using dual and CG methods for subspace minimization,

Acknowledgements. The authors would like to thank Brett Averick and Jorge Moré for their
help and suggestions. This code follows many of the ideas and the style of their MINPACK-2
codes [2].

* References

[1] B. M. Averick and J. J. Moré, (1992). Private communication.
[2] B. M. Averick and J. J. Moré, “The MINPACK-2 package”, in preparation.

[3] D.P. Bertsekas, “Projected Newton methods for optimization problems with simple con-
straints”, SIAM J. Control and Optimization 20 (1982), pp. 221-246.

[4] I. Bongartz, A.R. Conn, N.ILM. Gould, Ph.L. Toint (1993). “CUTE: constrained and
unconstrained testing environment”, Research Report, IBM T.J. Watson Research Center,

Yorktown, USA.

[6] Buckley, A. and LeNir, A, “BBVSCG —A variable storage algorithm for function mini-
mization”, ACM Transactions on Mathematical Software 11/2 (1985), pp. 103-119.

[6] Buckley, A. “Remark on algorithm 6307, ACM Transactions on Mathematical Software
15,3 (1989), pp. 262-274.

[7] R. H. Byrd, J. Nocedal and R. B. Schnabel, “Representation of quasi-Newton matrices
and their use in limited memory methods”, Mathematical Programming 63, 4, 1994, pp.
129-156.

[8] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu. “A limited memory algorithm for bound con-
strained optimization” Tech. Report, EECS Department, Northwestern University, 1993,
to appear in STAM Journal on Scientific Computing.

[9] A. R. Conn, N. I. M. Gould, and PH. L. Toint, “Testing a class of methods for solving min-
imization problems with simple bounds on the variables”, Mathematics of Computation.
Vol. 50, No 182 (1988), pp. 399-430.

[10] A.R. Conn, N.ILM. Gould, Ph.L. Toint (1992). “LANCELOT: a FORTRAN package for
large-scale nonlinear optimization (Release A)”, Number 17 in Springer Series in Compu-
tational Mathematics, Springer-Verlag, New York.

[11] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Fquations, Englewood Cliffs, N.J., Prentice-Hall, 1983.

[12] Harwell Subroutine Library, Release 10 (1990). Advanced Computing Department, AEA
Industrial Technology, Harwell Laboratory, Oxfordshire, United Kingdom.

[13] J.C. Gilbert and C. Lemaréchal, “Some numerical experiments with variable storage quasi-
Newton algorithms,” Mathematical Programming 45 (1989), pp. 407-436.

[14] P. E. Gill, W Murray and M. H. Wright, Practical Optimization, London, Academic Press,
1981.

[15] E. S. Levitin and B. T. Polyak, “Constrained minimization problems”, USSR Comput.
Math. and Math. Phys. 6 (1966), pp. 1-50.

16

[16] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale opti-
mization methods”, Mathematical Programming 45 (1989), pp. 503-528.

[17] J. J. Moré and D.J. Thuente (1990), “On line search algorithms with guaranteed suffi-
cient decrease”, Mathematics and Computer Science Division Preprint MCS-P153-0590,
Argonne National Laboratory (Argonne, IL).

[18] J. J. Moré and G. Toraldo, “Algorithms for bound constrained quadratic programming
problems”, Numer. Math. 55 (1989), pp. 377-400.

[19] J. Nocedal, “Updating quasi-Newton matrices with limited storage”, Mathematics of Com-
putation 35 (1980), pp. 773-782.

17

