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Introduction

The analysis of X—diffraction data generally requires sophisticated computational
procedures that culminate in refinement and structure validation. The refinement
procedure can be formulated as the chemically constrained or restrained non-—
linear optimization of a target function, which usually measures the agreement
between observed diffraction data and data computed from an atomic model.
The ultimate goal of refinement is to simultaneously optimize the agreement
of an atomic model with observed diffraction data and with a priori chemical

information.

The target function used for this optimization normally depends on sev-
eral atomic parameters, and most importantly on atomic coordinates. The large
number of adjustable parameters (typically at least three times the number of
atoms in the model) give rise to a very complicated target function. This in turn
produces what is known as the multiple minima problem: the target function
contains many local minima in addition to the global minimum, and this tends
to defeat gradient—descent optimization techniques such as conjugate gradient or
least-squares methods (Press et al., 1986). These methods are unable to sample
molecular conformations thoroughly enough to find the most optimal model if

the starting one is far from the correct structure.

The challenges of crystallographic refinement arise not only from the high
dimensionality of the parameter space, but also from the phase problem. For new
crystal structures, initial electron density maps must be computed from a com-
bination of observed diffraction amplitudes and experimental phases where the
latter are typically of poorer quality and/or lower resolution than the former.
A different problem arises when structures are solved by molecular replacement

(Hoppe, 1957; Rossman & Blow, 1962) which uses a similar structure as a search



model to calculate initial phases. In this case the resulting electron density maps
can be severely “model-biased”, that is, they sometimes seem to confirm the ex-
istence of the search model without providing clear evidence of actual differences
between it and the true crystal structure. In both cases, initial atomic models

usually contain significant errors and require extensive refinement.

Simulated annealing (Kirkpatrick et al., 1983) is an optimization tech-
nique particularly well suited to overcoming the multiple minima problem. Un-
like gradient—descent methods, simulated annealing can cross barriers between
minima and thus can explore a greater volume of the parameter space to find
better models (deeper minima). Following its introduction to crystallographic
refinement (Brunger et al., 1987), there have been major improvements of the
original method in four principal areas: the measure of model quality, the search
of the parameter space, the target function, and the modelling of conformational

variability.

For crystallographic refinement, the introduction of cross—validation and
the free R value (Brunger, 1992) has significantly reduced the danger of overfit-
ting the diffraction data during refinement. Cross—validation also produces more
realistic coordinate error estimates based on the Luzzati or o 4 methods (Kleywegt
& Brunger, 1996). The complexity of the conformational space has been reduced
by the introduction of torsion-angle refinement methods (Diamond, 1971; Rice
& Brunger, 1994), which decrease the number of adjustable parameters that de-
scribe a model approximately tenfold. The target function has been improved
by using a maximum-likelihood approach which takes into account model er-
ror, model incompleteness, and errors in the experimental data (Bricogne, 1991;
Pannu & Read, 1996). Cross—validation of parameters for the maximum like-
lihood target function was essential in order to obtain better results than with

conventional target functions (Pannu & Read, 1996; Adams et al., 1997; Read,



1997). Finally, the sampling power of simulated annealing has been used for
exploring the molecule’s conformational space in cases where the molecule un-
dergoes dynamic motion or exhibits static disorder (Kuryian et al., 1991; Burling

& Brunger, 1994; Burling et al., 1996).

Cross—Validation

Cross—validation (Brunger, 1992) plays a fundamental role in the maximum like-
lihood target functions described below. A few remarks about this method are
therefore warranted here (for reviews, see Kleywegt & Brunger, 1996; Brunger,
1997). For cross-validation, the diffraction data are divided into two sets: a large
working set (usually comprising 90% of the data), and a complementary test set
(comprising the remaining 10%). The diffraction data in the working set are used
in the normal crystallographic refinement process, whereas the test data are not.
The cross-validated (or “free”) R value computed with the test set data is a more
faithful indicator of model quality. It provides a more objective guide during the
model building and refinement process than the conventional R value. It also
ensures that introduction of additional parameters (e.g., water molecules, relax-
ation of non-crystallographic symmetry restraints, or multi-conformer models)

improves the quality of the model rather than increasing overfitting.

Since the conventional R value shows little correlation with the accu-
racy of a model, coordinate—error estimates derived from the Luzzati (1952) or
o4 (Read, 1986) methods are unrealistically low. Kleywegt and Brunger (1996)
showed that more reliable coordinate errors can be obtained by cross—validation
of the Luzzati or o4 coordinate error estimates. An example is shown in Fig.
1 using the crystal structure and diffraction data of penicillopepsin (Hsu et al.,

1977). At 1.8 A resolution, the model has an estimated coordinate error of ~



0.2 A as assessed by multiple independent refinements. As the resolution of the
diffraction data is artificially truncated and the model re-refined, the coordinate
error (assessed by the atomic root—-mean—square difference to the refined model
at 1.8 A resolution) increases monotonically. The conventional R-value improves
as the resolution decreases and the quality of the model worsens. Consequently,
coordinate error estimates do not display the correct behavior either: the error
estimates are approximately constant regardless of the resolution and actual co-
ordinate error of the models. However, when cross—validation is used (i.e., the
test reflections are used to compute the estimated coordinate errors), the results
are much better: the cross-validated errors are close to the actual coordinate

error, and they show the correct trend as a function of resolution (Fig. 1).

The Target Function

Crystallographic refinement is a search for the global minimum of the target
E = Echem + wxrayExray (1)

as a function of the parameters of an atomic model, in particular atomic coordi-
nates. E.hem comprises empirical information about chemical interactions; it is a
function of all atomic positions, describing covalent (bond lengths, bond angles,
torsion angles, chiral centers, and planarity of aromatic rings) and non-bonded
(intra-molecular as well as inter—molecular and symmetry-related) interactions
(Hendrickson, 1985). FElyray is related to the difference between observed and cal-
culated data, and wyray is a weight appropriately chosen to balance the gradients

(with respect to atomic parameters) arising from the two terms.



X-ray Diffraction Data vs. Model

The traditional form of Fy.,, consists of the crystallographic residual ELSQ) de-
fined as the sum over the squared differences between the observed (|F,|) and
calculated (|F.|) structure factor amplitudes for a particular atomic model:

Exray =EYSQ = Z (‘Fo‘ - k|FC|)2 (2)
hkleworking set

where hkl are the indices of the reciprocal lattice points of the crystal, and k is

a relative scale factor.

Minimization of E™Q can produce improvement in the atomic model,
but it can also accumulate systematic errors in the model by fitting noise in the
diffraction data (Silva & Rossman, 1985). The least-squares residual is a lim-
iting case of the more general maximum likelihood theory, and is only justified
if the model is nearly complete and error—free. These assumptions may be vio-
lated during the initial stages of refinement. Improved targets for macromolecular
refinement have been obtained using the more general maximum-likelihood for-
mulation (Bricogne, 1991; Pannu & Read, 1996; Adams et al., 1997; Murshudov
et al., 1997). The goal of the maximum likelihood method is to determine the
likelihood of the model given estimates of the model’s errors and those of the

measured intensities.

A starting point for the maximum likelihood formulation of crystallo-
graphic refinement is the Sim (1959) distribution, i.e., the Gaussian conditional
probability distribution of the “true” structure factors F, given a partial model
with structure factors F. and the model’s error (Fig. 2) (Srinivasan, 1966; Read,
1986; Read, 1990) (for simplicity we will only discuss the case of acentric reflec-

tions),



PuFiFe) = expl-(F - DFo/ecd)] Q)

where o is a parameter that incorporates the effect of the fraction of the asym-
metric unit that is missing from the model and errors in the partial structure.

Assuming a Wilson distribution of intensities it can be shown that (Read, 1990)
o4 = (|Fo|*) — D*(|Fc[?) (4)

where D is a factor that takes into account model error: it is unity in the limiting
case of an error—free model and it is zero if no model is available (Luzzati, 1952;
Read, 1986). For a complete and error—free model oo therefore becomes zero and

the probability distribution P,(F;F.) is infinitely sharp.

Taking into account measurement errors requires multiplication of Eq. 3
with an appropriate probability distribution (usually a conditional Gaussian dis-
tribution with standard deviation o,) of the observed structure factor amplitudes

(|F5|) around the “true” structure factor amplitudes (|F|)

Pmeas(|Fo|§|F|)- (5)

Prior knowledge of the phases of the structure factors can be incorporated

by multiplication of Eq. 3 with a phase probability distribution

Pphase(qs) . (6)

and re-writing Eq. 3 in terms of the structure factor moduli and amplitudes of

F = [F|exp(ig).

The unknown variables |F| and ¢ in Egs. 3, 4, and 5 have to be elimi-
nated by integration in order to obtain the conditional probability distribution of
the observed structure factor amplitudes, given a partial model with errors, the

amplitude measurement errors, and prior phase information:
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P,(|Fo|; Fe) = / d$ d|F||F| Preas(|Fol; |F|) Pphase (#) exp[—(|F| exp(i¢) —DF¢)? /o )]-

(7)

The likelihood L of the model is defined as the joint probability distri-
bution of the structure factors of all reflections in the working set. Assuming
independent and uncorrelated structure factors, L is simply the product of the
distributions in Eq. 7 for all reflections. Instead of maximizing the likelihood it
is more common to minimize the negative logarithm of the likelihood,

Eyray = L= — Z log[Py(|Fol; Fe)]- (8)
hkleworking set

Empirical estimates of oa (and D through Eq. 4) can be obtained by
minimizing £ for a particular atomic model. It is generally assumed that oa
and D show relatively little variation among neighboring reflections. Accepting
this assumption, oo and D can be estimated by considering narrow resolution
shells of reflections and assuming that the two parameters are constant in these
shells. Minimization of £ can then be performed as a function of these constant
shell parameters while keeping the atomic model fixed (Read, 1986; Read, 1997).
Alternatively, one can assume a two—term Gaussian model for oo (Murshudov
et al., 1997) and minimize £ as a function of the Gaussian parameters. Note,
that individual atomic B—factors are taken into account by the calculated model

structure factors (F¢).

This empirical approach to estimate oA and D requires occasional re-
computation of these values as the model improves. Refinement methods that
improve the model structure factors F. will therefore have a beneficial effect on
oA and D. Better estimates of these values will then enhance the next refinement

cycle. Thus, powerful optimization methods and maximum likelihood targets are



expected to interact in a synergistic fashion (c.f. Fig. 4). Structure factor averag-
ing of multi-start refinement models can provide another layer of improvement
by producing a better description of F. if the model shows significant variability

due to errors or intrinsic flexibility (see below).

In order to achieve an improvement over the least—squares residual (Eq.
2), cross—validation was found to be essential (Pannu & Read, 1996; Adams et
al., 1997) for the estimation of model incompleteness and errors (oA and D).
Since the test set typically contains only 10% of the diffraction data, these cross—
validated quantities can show significant statistical fluctuations as a function of
resolution. In order to reduce these fluctuations, Read (1997) devised a smoothing
method by applying restraints to o 4 values between neighboring resolution shells
where

oa=,/1- 7“;32). (9)

Read and Pannu (1996) have developed an efficient Gaussian approxi-
mation of Eq. 7 for the case of no prior phase information, termed the “MLF”
target function. In the limit of a perfect model (i.e., oA = 0 and D = 1), MLF
reduces to the traditional least-squares residual (Eq. 2) with 1/02 weighting. In
the case of prior phase information, the integration over the phase angles has
been carried out numerically in Eq. 7, termed the “MLHL” target (Pannu et al.,
1998). A maximum likelihood function which expresses Eq. 7 in terms of observed

intensities has also been developed, termed “MLI” (Pannu & Read, 1996).

A Priori Chemical Information

The parameters for the covalent terms in Eghem (Eq. 1) can be derived from
average geometry and (r.m.s.) deviations observed in a small-molecule data

base. Extensive statistical analyses were undertaken for the chemical moieties of



proteins (Engh & Huber, 1991) and of polynucleotides (Parkinson et al., 1996)
using the Cambridge crystallographic database (Allen et al., 1983). Analysis of
the ever increasing number of atomic resolution macromolecular crystal structures

will no doubt cause some modifications of these parameters in the future.

It is common to use a purely repulsive quartic function (Erepyisive) for the

nonbonded interactions which are included in E¢en, (Hendrickson, 1985),
Ereputsive = »_((cRI™)™ — RIG)™ (10)

ij

where R;; is the distance between two atoms 1, 7, R%‘in is the van der Waals radius
for a particular atom pair ij, ¢ < 1 is a constant that is sometimes used to reduce
the radii, and n = 2, m = 2 or n = 1, m = 4. Van der Waals attraction and
electrostatic interactions are usually not included in crystallographic refinement.
These simplifications are valid since the diffraction data contains information
that is able to produce atomic conformations consistent with actual nonbonded
interactions. In fact, atomic resolution crystal structures can be used to derive

parameters for electrostatic charge distributions (Pearlman & Kim, 1990).

Searching Conformational Space

Annealing denotes a physical process wherein a solid is heated until all particles
randomly arrange themselves in a liquid phase, and then is cooled slowly so that
all particles arrange themselves in the lowest energy state. By formally defining
the target E (Eq. 1) to be the equivalent of the potential energy of the system,
one can simulate such an annealing process (Kirkpatrick et al., 1983). There is
no guarantee that simulated annealing will find the global minimum (Laarhoven
& Aarts, 1987). However, compared to conjugate—gradient minimization where

search directions must follow the gradient, simulated annealing achieves more



optimal solutions by allowing motion against the gradient (Kirkpatrick et al.,
1983). The likelihood of uphill motion is determined by a control parameter
referred to as temperature. The higher the temperature, the more likely it is that
simulated annealing will overcome barriers (Fig. 3). It should be noted that the
simulated annealing temperature normally has no physical meaning and merely

determines the likelihood of overcoming barriers of the target function Eq. 1.

The simulated annealing algorithm requires a mechanism to create a
Boltzmann distribution at a given temperature 7" and an annealing schedule,
that is, a sequence of temperatures 77 > Ty > --- > 1; at which the Boltzmann
distribution is computed. Implementations differ in the way they generate a tran-
sition, or move, from one set of parameters to another which is consistent with the
Boltzmann distribution at given temperature. The two most widely used methods
are Metropolis Monte Carlo (Metropolis et al. , 1953) and molecular dynamics
(Verlet, 1967) simulations. For X-ray crystallographic refinement, molecular dy-
namics has proven extremely successful (Brunger et al. , 1987) because it limits

the search to physically reasonable “moves”.

Molecular Dynamics

A suitably chosen set of atomic parameters can be viewed as generalized coordi-
nates that are propagated in time by the classical equations of motion (Goldstein,
1980). If the generalized coordinates represent the x,y, z positions of the atoms
of a molecule, the classical equations of motion reduce to the familiar Newton’s

second law:
0%7;
ot?

The quantities m; and 7; are respectively the mass and coordinates of atom

m; = —Vz‘E. (11)

i, and F is given by Eq. 1. The solution of the partial differential equations

10



(Eq. 11) can be achieved numerically using finite-difference methods (Verlet,
1967; Abramowitz & Stegun, 1968). This approach is referred to as molecular

dynamics.

Initial velocities for the integration of Eq. 11 are usually assigned ran-
domly from a Maxwell distribution at the appropriate temperature. Assignment
of different initial velocities will generally produce a somewhat different struc-
ture after simulated annealing. By performing several refinements with different
initial velocities one can therefore improve the chances of success of simulated—
annealing refinement. Furthermore, this improved sampling can be used to study
discrete disorder and conformational variability, especially when using torsion—

angle molecular dynamics (see below).

Although Cartesian (i.e., flexible bond lengths and bond angles) molecu-
lar dynamics places restraints on bond lengths and bond angles (through Echem,
Eqg. 1), one might want to implement these restrictions as constraints, i.e., fixed
bond lengths and bond angles (Diamond, 1971). This is supported by the ob-
servation that the deviations from ideal bond lengths and bond angles are usu-
ally small in macromolecular X-ray crystal structures. Indeed, fixed—length con-
straints have been applied to crystallographic refinement by least-squares mini-
mization (Diamond, 1971). It is only recently, however, that efficient and robust
algorithms have become available for molecular dynamics in torsion—angle space
(Bae & Haug, 1987; Bae & Haug, 1988; Jain et al., 1993; Rice & Brunger, 1994).
We chose an approach that retains the Cartesian—coordinate formulation of the
target function and its derivatives with respect to atomic coordinates so that the
calculation remains relatively straightforward and can be applied to any macro-
molecule or their complexes (Rice & Brunger, 1994). In this formulation, the
expression for the acceleration becomes a function of positions and velocities. It-

erative equations of motion for constrained dynamics in this formulation can be

11



derived and solved by finite difference methods (Abramowitz & Stegun, 1968).
This method is numerically very robust and has a significantly increased radius

of convergence in crystallographic refinement compared to Cartesian molecular

dynamics (Rice & Brunger, 1994).

Temperature Control

Simulated annealing requires the control of the temperature during molecular
dynamics. The current temperature of the simulation (T¢yrr) is computed from

the kinetic energy
Exin = ; 5"%‘(@)2 (12)
of the molecular dynamics simulation,

2F
Tcurr = 37L1;€l: . (13)

Here 7 is the number of atoms, m; is the mass of the atom, and k; is Boltzmann’s
constant. One commonly used approach to control the temperature of the sim-
ulation consists of coupling the equations of motion to a heat bath through a
“friction” term (Berendsen et al., 1984). Another approach is to periodically

rescale the velocities in order to match Ty, with the target temperature.

Annealing Schedules

The simulated annealing temperature needs to be high enough to allow confor-
mational transitions but not so high that the model moves too far away from the
correct structure. The optimal temperature for a given starting structure is a
matter of trial and error. Starting temperatures were determined for a variety of

simulated annealing protocols (Brunger, 1988; Adams et al., 1997) which work

12



for the average case. However, it might be worth trying a different tempera-
ture if a particularly difficult refinement problem is encountered. In particular,
significantly higher temperatures are attainable using torsion—angle molecular
dynamics. Note, that each simulated annealing refinement is subject to “chance”
by using a random number generator to generate the initial velocities. Thus, mul-
tiple simulated annealing runs can be carried out in order to increase the success
rate of the refinement. The best structure(s) (as determined by the free R value)
among a set of refinements using different initial velocities and/or temperatures

can be taken for further refinement or structure factor averaging (see below).

The annealing schedule can in principle be any function of the simulation
step (or “time” domain). The two most commonly used protocols are linear slow—
cooling or constant-temperature followed by quenching. A slight advantage is
obtained with slow—cooling (Brunger et al., 1990). The duration of the annealing
schedule is another parameter. Too short a protocol does not allow sufficient
sampling of conformational space. Too long a protocol may waste computer time
since it is more efficient to run multiple trials as opposed to one long refinement

protocol (unpublished results).

An Intuitive Explanation of Simulated Annealing

The goal of any optimization problem is to find the global minimum of a target
function. In the case of crystallographic refinement, one searches for the confor-
mation or conformations of the molecule that best fit the diffraction data and
that simultaneously maintain reasonable covalent and non—covalent interactions.
Simulated annealing refinement has a much larger radius of convergence than
conjugate—gradient minimization (see below). It must therefore be able to find a
lower minimum of the target F (Eq. 1) than the local minimum found by simply

moving along the negative gradient of F.
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It is most easy to visualize this property of simulated annealing in the case
of a one-dimensional problem where the goal is to find the global minimum of
function with multiple minima (Fig. 3). An intuitive way to understand a molec-
ular dynamics simulation is to envision a ball rolling on this one-dimensional
surface. When the ball is far from the global minimum it gains a certain inertia
which allows it to cross barriers of the target function (Eq. 13). Slow—cooling
temperature control ensures that the ball will eventually reach the global mini-
mum rather than just bouncing across the surface. The initial temperature must
be large enough to overcome smaller barriers but low enough to ensure that the

system will not escape the global minimum if it manages to arrive there.

While temperature itself is a global parameter of the system, temper-
ature fluctuations arise principally from local conformational transitions - for
example from an amino acid sidechain falling into the correct orientation. These
local changes tend to lower the value of the target E, thus increasing the ki-
netic energy, and hence the temperature, of the system. Once the temperature
control has removed this excess kinetic energy through “heat dissipation”, the
reverse transition is very unlikely, since it would require a localized increase in
kinetic energy where the conformational change occurred in the first place (Fig.
3). Temperature control maintains a sufficient amount of kinetic energy to allow
local conformational corrections, but does not supply enough to allow escape from
the global minimum. This explains the observation that on average the agree-
ment with the diffraction data will improve rather than worsen with simulated

annealing.
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Examples

Many examples have shown that simulated annealing refinement starting from
initial models (obtained by standard crystallographic techniques) produces sig-
nificantly better final models compared to those produced by least—squares or
conjugate—gradient minimization (Brunger et al., 1987; Brunger, 1988; Kuriyan
et al., 1989; Fujinaga & Gros, 1989; Rice & Brunger, 1994; Adams et al., 1997).
In another realistic test case (Adams & Brunger, in preparation), a series of
models for the aspartic proteinase penicillopepsin was generated from homolo-
gous structures present in the Protein Data Bank. The sequence identity among
these structures ranged from 100% to 25%, thus providing a set of models with
increasing coordinate error compared to the refined structure of penicillopepsin.
These models, after truncation of all residues to alanine, were all used as search
models in molecular replacement against the native penicillopepsin diffraction
data. In all cases the correct placement of the model in the penicillopepsin unit

cell was found.

Both conjugate gradient minimization and simulated annealing were car-
ried out in order to compare the performance of the E¥SQ least-squares residual
(Eq. 2), MLF (the maximum-likelihood target using amplitudes), and MLHL
(the maximum-likelihood target using amplitudes and experimental phase infor-
mation). In the latter case, phases from single-isomorphous replacement were
used. A very large number of conjugate gradient cycles were carried out in order
to make the computational requirements equivalent for both minimization and
simulated annealing. The conjugate gradient minimizations were converged, i.e.,

there was no change when further cycles were carried out.

For a given target function, simulated annealing always outperformed

minimization (Fig. 4). For a given starting model, the maximum-likelihood tar-
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gets outperformed the least—squares residual target for both minimization and
simulated annealing, producing models with lower phase errors and higher map
correlation coefficients when compared to the published penicillopepsin crystal
structure (Fig. 4). This improvement is illustrated in o 4—weighted electron den-
sity maps obtained from the resulting models (Fig. 5). The incorporation of
experimental phase information further improved the refinement significantly de-
spite the ambiguity in the SIR phase probability distributions. Thus, the most
efficient refinement will make use of simulated annealing, and phase information

in the MLHL maximum likelihood target function.

Cross—validation is essential in the calculation of the maximum likelihood
target (Kleywegt & Brunger, 1996; Pannu & Read, 1996; Adams et al., 1997).
Maximum-likelihood refinement without cross—validation gives much poorer re-
sults, as indicated by higher free R-values, higher R, — R differences, and phase
errors (Adams et al., 1997). It should be noted that the final normal R value is
in general increased compared to refinements with the least—squares target when
using the cross—validated maximum likelihood formulation. This is a consequence

of the reduction of overfitting by this method.

Multi—start Refinement and Structure Factor Averag-

ing

Multiple simulated annealing refinements starting from the same model, termed
“multi-start” refinement, will generally produce somewhat different structures.
Even well-refined structures will show some variation consistent with the esti-
mated coordinate error of the model (c.f., results for 1.8 A resolution in Fig. 1).
More importantly, the poorer the model, the more variation is observed (Brunger,

1988). Some of the models resulting from multi-start refinement may be better

16



than others, for example as judged by the free R value. Thus, if computer time is
available, multi-start refinement has several advantages. A more optimal single
model than that produced by a single simulated annealing calculation can usu-
ally be obtained. Furthermore, each separate model coming from a multi-start
refinement fits the data slightly differently. This could be the result of intrinsic
flexibility in the molecule (see below), or the result of model building error. Re-
gions in the starting model that contain significant errors often show increased
variability after multi—start refinement, and a visual inspection of the ensemble of

models produced can be helpful in identifying these incorrectly modelled regions.

To better identify the correct conformation, structure factors from each
of the models can be averaged (Rice, Shamoo, & Brunger, in preparation). This
averaging tends to reduce the effect of local errors (noise) that are presumably
different in each member of the family. The average structure factor can produce
phases that contain less model bias than phases computed from a single model.
It should also produce better estimates of oao and D for maximum likelihood
targets and o4 weighted electron density maps because F. is used in the com-
putation of these parameters (Eq. 7). Because it is inherently a noise-reducing
technique, multi-start refinement followed by structure factor averaging should
be most useful in situations where there is significant noise, namely when the
data to parameter ratio is low (e.g., if only moderate resolution diffraction data

are available).

Ensemble Models

In cases of conformational variability or discrete disorder, there is not a single
correct solution to the global minimization of Eq. 1. Rather, the X-ray diffrac-

tion data represent a spatial and temporal average over all conformations that
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are assumed by the molecule. Ensembles of structures, which are simultaneously
refined against the observed data, may thus be a more appropriate description of
the diffraction data. This has been used for some time when alternate conforma-
tions are modelled locally. Alternate conformations can be generalized to global
conformations (Gros et al., 1990; Kuriyan et al., 1991; Burling & Brunger, 1994),
i.e., the model is duplicated n—fold, the calculated structure factors correspond-
ing to each copy of the model are summed and this composite structure factor is
refined against the observed X-ray diffraction data. Each member of the family
is chemically “invisible” to all other members. The optimal number n can be

determined by cross—validation (Burling & Brunger, 1994; Burling et al., 1996).

An advantage of a multi—conformer model is that it directly incorporates
many possible types of disorder and motion (global disorder, local sidechain dis-
order, local wagging and rocking motions). Furthermore, it can be used to au-
tomatically detect the most variable regions of the molecule by inspecting the
atomic r.m.s. difference around the mean as a function of residue number. Ther-
mal factors of single conformer models may sometimes be misleading because
they underestimate the degree of motion or disorder (Kuriyan et al., 1986) and,
thus, the multiple-conformer model can be a more faithful representation of the
diffraction data. A disadvantage of the multi-conformer model is that it intro-

duces many more parameters in the refinement.

Although there are some similarities between averaging structure factors
of individually refined structures and performing multi-conformer refinement,
there are also fundamental differences. For example, multi-start averaging seeks
to improve the calculated electron density map by averaging out the noise present
in the individual models, each of which is still a good representation of the diffrac-
tion data. This method is most useful at the early stages of refinement when the

model still contains errors. In contrast, multi-conformer refinement seeks to
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create an ensemble of structures at the final stages of refinement which, taken
together, best represent the data. It should be noted that each individual con-
former of the ensemble does not necessarily remain a good description of the
diffraction data since the whole ensemble is refined against the data. Clearly,

multi—conformer refinement requires a high observable-to—parameter ratio.

Conclusions

Simulated annealing has dramatically improved the efficiency of crystallographic
refinement. A case in point is the combination of torsion angle molecular dynam-
ics with cross—validated maximum-likelihood targets. These two independent
developments interact synergistically to produce less model bias than any other
method to date. The combined method dramatically increases the radius of con-
vergence, allowing the productive refinement of poor initial models, e.g., those
obtained by weak molecular replacement solutions (Rice & Brunger, 1994; Adams

et al., 1997; Adams & Brunger, in preparation).

Simulated annealing can also be used to provide new physical insights
into molecular function which may depend on conformational variability. The
sampling characteristics of simulated annealing allow the generation of multi-
conformer models which can represent molecular motion and discrete disorder,
especially when combined with the acquisition of high—quality data (Burling et
al., 1996). Simulated annealing is thus also a stepping stone towards development

of improved models of macromolecules in solution and in the crystalline state.
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Figure Captions

Figure 1: Effect of resolution on coordinate—error estimates: accuracy as a func-
tion of resolution. Refinements were begun with the crystal structure of peni-
cillopepsin (Hsu et al., 1977) with water molecules omitted and with uniform
temperature factors. The low-resolution limit was set to 6 A. Inclusion of all low
resolution diffraction data does not change the conclusions (Adams et al., 1997).
The penicillopepsin diffraction data were artificially truncated to the specified
high-resolution limit. FEach refinement consisted of simulated annealing using a
Cartesian—space slow—cooling protocol starting at 2000 K, overall B—factor refine-
ment, and individual restrained B—factor refinement. All refinements were carried
out with 10% of the diffraction data randomly omitted for cross—validation. (a)
Coordinate-error estimates of the refined structures using the methods of Luz-
zati (1952) and Read (1986). All observed diffraction data were used, i.e., no
cross—validation was performed. The actual coordinate errors (rms. differences
to the original crystal structure) are shown for comparison. (b) Cross-validated
coordinate—error estimates. The test set was used to compute the coordinate—

error estimates (Kleywegt & Brunger, 1996).

Figure 2: The Gaussian probability distribution forms the basis of maximum
likelihood targets in crystallographic refinement. The conditional probability of
the true structure factor F given model structure factors is a Gaussian in the
complex plane (Eq. 3). The expected value of the probability distribution is DF,
with variance oa, where D and oa account for missing or incorrectly placed

atoms in the model.
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Figure 3: Illustration of simulated annealing for minimization of a one-
dimensional function. The kinetic energy of the system (a “ball” rolling on the
one—dimensional surface) allows local conformational transitions with barriers
smaller than the kinetic energy. If a larger drop in energy is encountered the
excess kinetic energy is dissipated. It is thus unlikely that the system can climb

out of the global minimum once it has reached it.

Figure 4: Simulated annealing produces better models than extensive conjugate
gradient minimization. Map correlation coefficients were computed before and
after refinement against the native penicillopepsin diffraction data (Hsu et al.,
1977) for the poly—alanine model derived from Rhizopuspepsin (Suguna et al.,
1987, PDB code 2APR). Correlation coefficients are between o4 weighted maps
calculated from each model and from the published penicillopepsin structure.
The observed penicillopepsin diffraction data was in spacegroup C2 with cell
dimensions a=97.37A, b=46.64A, c=65.47A, and f=115.4°. All refinements were
carried out using diffraction data from the lowest resolution limit of 22.0 A up to
2.0 A. The MLHL refinements used single isomorphous phases from a K3UO,F5
derivative of the penicillopepsin crystal structure, which covered a resolution
range of 22.0 A to 2.8 A. Simulated annealing refinements were repeated 5 times
with different initial velocities. The numerical averages of the map correlation
coefficients for the 5 refinements are shown as the hashed bars. The best map

correlation coeflicients from simulated annealing are shown as the white bars.

Figure 5: Maximum likelihood targets significantly decrease model bias in simu-
lated annealing refinement. o 4-weighted electron density maps contoured at 1.25
o for models from simulated annealing refinement with different targets. Residues
233 to 237 are shown with the published penicillopepsin crystal structure (Hsu
et al., 1977) in solid lines, and the model with the lowest free R value from 5

independent refinements in dashed lines.
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