
770 

Acta Cryst. (1996). A52, 770-781 

Atomic Displacement Parameter Nomenclature 
Report of a Subcommittee on Atomic Displacement Parameter Nomenclaturet 

K. N. TRUEBLOOD a* (Chairman), H.-B. B1SIRGI, b H BURZLAFF, c J. D. DUNITZ, d C. M. GRAMACCIOLI, e H. H. SCHULZ, f 

U. SHMUELI g AND S. C. ABRAHAMS h (ex officio, IUCr Commission on Crystallographic Nomenclature) 

aDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA, bLaboratorium 
far chemische und mineralogische Kristallographie, Universiti# Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, 
Clnstitut far Kristallographie, Universit~it, Bismarckstrasse 10, D-91054 Erlangen, Germany, dLaboratorium far 
organische Chemie, ETtt Zentrum, CH-8092 Ziirich, Switzerland, eDipartimento di Scienze della Terra, via Botticelli 
23, 1-20133 Milano, Italy, fInstitut far Kristallographie und Mineralogie, Universitiit, Theresienstrasse 41, D-80333 
Miinchen, Germany, gSchool of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel, and hphysics Department, 

Southern Oregon State College, Ashland, OR 97520, USA. E-mail: knt@chem.ucla.edu 

(Received 12 June 1995; accepted 2 May 1996) 

Abstract 

Modern X-ray and neutron diffraction techniques can 
give precise parameters that describe dynamic or static 
displacements of atoms in crystals. However, confusing 
and inconsistent terms and symbols for these quanti- 
ties occur in the crystallographic literature. This report 
discusses various forms of these quantities, derived 
from probability density functions and based on Bragg 
diffraction data, both when the Gaussian approxima- 
tion is appropriate and when it is not. The focus is 
especially on individual atomic anisotropic displacement 
parameters (ADPs), which may represent atomic motion 
and possible static displacive disorder. The first of the 
four sections gives background information, including 
definitions. The second concerns the kinds of parameter 
describing atomic displacements that have most often 
been used in crystal structure analysis and hence are 
most commonly found in the literature on the subject. It 
includes a discussion of graphical representations of the 
Gaussian mean-square displacement matrix. The third 
section considers the expressions used when the Gauss- 
Jan approximation is not adequate. The final section 
gives recommendations for symbols and nomenclature. 

1. Introduction 

1.1. Organization of this Report 

There are four main sections. The Introduction contin- 
ues, after the present subsection, with a discussion of the 
rationale for and genesis of the Subcommittee that wrote 
this report (§ 1.2), notation for position and displacement 
vectors (§ 1.3), a consideration of the structure factor and 
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atomic displacements (§1.4) and comments about the 
terminology to be used (§1.5). 

The second main section, Displacement parameters 
based on the Gaussian approximation, concerns the 
kinds of parameters describing atomic displacements 
that have most often been used in crystal structure 
analysis and hence are most commonly found in 
the literature on the subject. Its subsections are: 2.1, 
Anisotropic displacement parameters, which includes 
a discussion of the common symbols used; 2.2, 
Equivalent isotropic displacement parameters; and 2.3, 
Graphical representations of the Gaussian mean-square 
displacement matrix. 

The third main section, Beyond the Gaussian ap- 
proximation, considers the expressions used when the 
Gaussian approximation is not adequate. Our Recom- 
mendations for nomenclature are in the final main sec- 
tion. 

1.2. Background 
Anisotropic displacement parameters (ADPs) (see the 

discussion of terminology in §1.5 and of symbols in 
§2.1) have typically been determined and reported in 
the crystallographic literature in a variety of ways, 
symbolized sometimes as U (as in U 0 or U ), sometimes 
as B (as in B ij or Beq), and sometimes aseq/~ (as in/3iJ). 
Unfortunately, these terms have not always been used 
consistently. Dimensionless quantities, e.g. the ~ij, have 
been misidentified as/fiJ values, which are of dimension 
(length) 2. When these and related quantities were first 
determined more than four decades ago, they were 
considered at best to have qualitative significance and 
inconsistencies, when noticed, were often disregarded. 
Cruickshank's (1956) papers marked a turning point 
towards quantitative interpretation in terms of simple 
physical models. Since then, technical improvements, 
both in the measurement of diffraction data and in 
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computing, have led to increased physical significance 
in the experimentally determined ADPs. The fact that 
these quantities are now more meaningful and the lack 
of uniformity with which they have been presented have 
been discussed informally in recent years by more than 
one IUCr Commission but no consensus has previously 
been reached on an acceptable form of presentation. This 
situation was brought recently to the attention of the 
Commission on Crystallographic Nomenclature. That 
body established this Subcommittee, charging it with 
examining the merits of adopting a uniform approach 
to reporting in structural papers quantities that describe 
atomic displacement and with making such recommen- 
dations as might be deemed appropriate. Discussion 
within the Subcommittee, conducted principally through 
electronic correspondence, identified two major areast 
in which uniform definitions, terminology and nomen- 
clature would be desirable. These include anisotropic 
displacement parameters in the Gaussian approximation 
and in situations in which the Gaussian approximation 
is inadequate. In considering the uncertainties of experi- 
mentally determined ADPs, the reader is referred to the 
Report of a Working Group on the Expression of Un- 
certainty in Measurement (Schwarzenbach, Abrahams, 
Hack, Prince & Wilson, 1995), appointed by the IUCr 
Commission on Crystallographic Nomenclature, which 
discusses the general concept of uncertainty in the result 
of a crystallographic measurement and its application. 

The recommendations at the end of this Report are 
proposed for use in all future publications of the Inter- 
national Union of Crystallography. Authors of structure- 
refinement programs, particularly those in widespread 
use, are encouraged to bring their programs into full 
conformity with these recommendations. 

1.3. Notation for position and displacement vectors 

Some notation to be used in this report for basis 
vectors and their components is summarized here. The 
local instantaneous atomic position vector is denoted by 
r + u, with r the mean atomic position vector and u the 
displacement vector of an atom from its mean position. 
We use the symbols a*, b* and c*, as is common, for 
the lengths of the reciprocal axes. 

Quantities referred to the direct lattice basis a, b, c 
(or equivalently a l, a 2, a3): 

Components of r: x, y, z (or equivalently x I , x 2, x3). 
Components of u :  Zkx, Ay, Az (or equivalently 

~Xx~, , ~ ,  ~Xx3). 
Related anisotropic displacement parameter: ~ij _ 

(z:Ld,~J); dimensionless. 
Quantities referred to the basis a'a, b 'b ,  c*c (or 

equivalently a I a l, aZa2 , aaa3): 
Components of r: 4, r/, ( (or equivalently 4 ~ , 4 z, 43). 

'f Recommendations on the nomenclature of thermal diffuse scattering 
(e.g. Willis, 1993) and disorder diffuse scattering (e.g. Jagodzinski & 
Frey, 1993) were considered as outside the scope of this report. 

Components of u: A 4, At/, A (  (or equivalently 
A41, A42,/X43). 

Related anisotropic displacement parameter: U i/ = 
(A4iA4J); (length) ~. 

Quantities referred to the Cartesian basis (e I , e 2, e3): 
Components of r: 4c, rlc,(  c (or equivalently 

Components of u: A~ c, At/c, A (  c (or equivalently 

Related anisotropic displacement parameter: ~ - 
{A4/CA4jC); (length) 2. 

1.4. The structure factor and atomic displacements 

The structure factor of reflection h is given in a fairly 
general form by the Fourier transform of the average 
density of scattering matter 

F(h) = f ( p ( r ) ) e x p ( 2 7 r i h . r ) d 3 r - ~ [ ( p ( r ) ) ] ,  (1) 

with the integration extending over the repeating struc- 
tural motif, confined to a single unit cell. The brackets 
denote a double averaging over the possible displace- 
ments of the atoms from their mean positions - a time 
average over the atomic vibrations in each cell, followed 
by a space average that consists of projecting all the 
time-averaged cells onto one and dividing by the number 
of cells, h is a diffraction vector obeying the Laue 
equations and p(r) is the static density of the motif, 
consistent with the instantaneous local configuration of 
the nuclei in a unit cell. 

To reduce the above general picture to what is used 
in conventional crystal structure analysis, we first as- 
sume that the average density of matter in (1) can be 
regarded as a superposition of averaged atomic densities. 
This so-called isolated-atom approximation is essentially 
equivalent to assuming independently displaced atoms, a 
fair initial approximation, although not generally valid. 
The average density of scattering matter at the point r 
in a unit cell can then be approximated as 

N 
(p(r)) ~ ~ n k f pk(r -- rk)pk(r k -- rko) d3rk. (2) 

k=l 

Here, N is the number of atoms in the unit cell, n k 
is the occupancy factor of the kth atom, pk(r - rk) is 
the density (electron density for X-rays or a 6 function 
weighted with the scattering length b k for neutrons) due 
to atom k at a point r when the nucleus of atom k is 
at r k and Pk(rk -- rko ) is the probability density function 
(p.d.f.) corresponding to the probability of having atom 
k displaced by the vector r k - rko from its reference 
position rko in an average unit cell, which will be the 
mean position if Pk is sufficiently symmetrical. It is 
important to remember that the approximations in (2) 
include the assumption that atoms are not deformable, 
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by bonding or otherwise, even though at this stage the 
static atomic electron density, P k ( r -  rk), has not been 
assumed to be spherically symmetric. 

If (2) is now substituted into (1) and the order of the 
summation and integration is interchanged, the structure 
factor becomes 

N 

F(h) _~ E nkFk(h) (3) 
k = l  

with 

Fk(h ) = f [f Pk(r--rk)Pk(r,-r,o)d3rk] 
x exp(27rih, r) d3r. (4) 

If the substitutions r = t + rko and r k = u + rko are 
made, the integral in (4) becomes 

Fk(h)={f[fP,(t-u)pk(u)d3u]exp(27rih't)d3t} 
x exp(27rih, rko ). (5) 

The inner integral in (5) has the form of a conventional 
convolution of the density of atom k with the p.d.f, for 
a displacement of this atom from its mean position; the 
outer integral is a Fourier transform of this convolution. 
This transform is multiplied by an exponential that 
depends on the mean position, rko, of atom k. 

By the convolution theorem, the Fourier transform 
of a convolution equals the product of Fourier trans- 
forms of the functions involved. When this theorem 
is applied to the outer integral in (5), we obtain the 
conventional approximation for the structure factor of a 
Bragg reflection 

N 

F(h) _~ E nkfk(h)Tk(h) exp(27rih, rko ). (6) 
k = l  

If we let v = ( r -  rk) and (as before) u = (r k - rko ), 
then in (6) 

fk(h) = f p~(v) exp(27rih • v) d3v (7) 

is the scattering factor or form factor of atom k (for 
neutrons this is replaced by the scattering length bk) and 

Tk(h ) = f p k ( u )  exp(27rih • u) d3u (8) 

is the Fourier transform of the p.d.f., Pk, for the dis- 
placement of the kth atom from its reference position, 
rt,,,. This term contains the dependence of the structure 
factor on atomic displacements and has been known by 
the names 'atomic Debye-Waller factor' and 'atomic 
temperature factor' (see §1.5). There are no restrictions 
on the functional form of the p.d.f, in the integrand of 
(8). 

Let us now recall that the structure-factor equation 
used in routine refinement of atomic parameters is fur- 
ther simplified in two ways: 

First, for X-rays, the static atomic electron density is 
assumed to have spherical symmetry. This reduces the 
atomic scattering factor to the form 

O ~  

fk(Ihl) = 47r f pk(u)[sin(27rlhlu)/2~lhlu]u 2 du, (9) 
0 

which has been computed and extensively tabulated for 
all the neutral elements and many ions (Maslen, Fox 
& O'Keefe, 1992). The spherical-atom approximation 
necessarily removes fine details of the (calculated) elec- 
tron density, but may be used routinely, and serve as a 
starting point for more refined determinations of atomic 
positions and studies of charge density (e.g. Coppens & 
Becker, 1992; Coppens, 1993). 

Second, the p.d.f, for atomic displacement is most fre- 
quently approximated by a univariate or trivariate Gauss- 
ian, depending on whether the atomic displacements are 
assumed to be isotropic or anisotropic, respectively. If a 
trivariate Gaussian is assumed and the atomic subscript 
k is omitted, the resulting expression for T(h) from (8) is 

T(h) = exp[-27rZ((h • u)2)]. (10) 

Equation (10) can be derived from the theory of lattice 
dynamics in the harmonic approximation, which con- 
siders only the (always present) contribution of motion 
to the atomic displacement (e.g. Willis & Pryor, 1975). 
However, this equation may also be applied to static dis- 
placive disorder. The form of the atomic Debye-Waller 
factor, T(h), represented in (10) is the most common one 
in standard structure refinements and will be discussed 
in §2. Various other approximations have been proposed 
for situations in which the Gaussian formalism is not 
adequate, e.g. when the anharmonic contribution to the 
crystal dynamics is significant; the most common are 
discussed in §3. 

We present now a short discussion of common vari- 
ants of (10), which can be rewritten as 

T(h) = exp[-27r2((u • h/Ihl)Z)lhl2]. (11) 

This shows that the exponent is proportional to minus 
the mean-square projection of the atomic displacement 
u on the direction of the diffraction vector h times the 
squared magnitude of h. If we denote the projection of u 
on the direction of h by u h and make use of the relation 
Ihl = 2(sin0)/A, (11) becomes 

T(h) = exp[-87rZ(uZ)(sin 2 o)1 2]. (12) 

As long as the atomic displacements are anisotropic, the 
value of the average in (12) depends on the direction of 
h. This is then the anisotropic Gaussian Debye-Waller 
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factor, T(h), which is discussed in detail in §2. If, 
however, the atomic displacements are isotropic, the 
average in (12) is a constant determined by the structure 
alone, but possibly different for non-equivalent atoms, 
and the left-hand side of this equation no longer depends 
on the direction of h but only on its magnitude. This is 
then the atomic isotropic Gaussian Debye-Waller factor, 

T(Ihl) = exp[-87r2(u2)(sin e 0)/Ae]. (13) 

The lowest-order approximation to T(h) is the overall 
isotropic Debye-Waller factor. It has the same form as 
(13) and presumes that all the atoms have the same 
isotropic mean-square displacement, (u2). The whole 
crystal structure is assigned, in this approximation, a 
single displacement parameter. This approximation is 
used in initial stages of crystal structure determination 
by direct methods. 

We conclude this section with some remarks on the 
structure factor for electron diffraction by a crystal. The 
density of scattering matter, p, is here interpreted as the 
distribution of electrostatic potential within the unit cell. 
This potential is then approximated by a superposition of 
electrostatic potentials contributed by individual atoms, 
and the effects of motion are taken into account, as 
for X-rays and neutrons, by the convolution of the 
potential of an atom at rest with the probability density 
function describing the atomic motion (e.g. Vainshtein & 
Zvyagin, 1993). The atomic (spherical) scattering factor 
for electron diffraction, fel, k(Ihl), for an atom at rest 
and diffraction vector h, is related to that for X-rays 
by the Mott formula (e.g. Vainshtein, 1964), which has 
the form fel, k(lhl) cx [Z k -fk(Ihl)]/Ihl 2, where Z k is 
the atomic number andA(lhl) is the X-ray form factor 
of atom k [see (9)]. This formula, with the correct 
proportionality constants, has been used along with other 
techniques in extensive tabulations of spherical form 
factors for electron diffraction (see e.g. Cowley, 1992). 
The Debye-Waller factor, here expressing the 'smearing 
out' of the electrostatic potential, is given by the same 
expression as that quoted above for X-rays and neutrons 
(e.g. Vainshtein, 1964; Vainshtein & Zvyagin, 1993). 
The structure factor for electron diffraction is therefore 
analogous to that appearing in (6) but is often given in 
a different notation. 

1.5. Comments about terminology 

The quantity T that occurs in (6) has been commonly 
referred to either as the Debye-Waller factor or the 
temperature factor because Debye (1913) and Waller 
(1923) first understood and formulated the effect that 
thermal vibrations would have on the intensity of X-ray 
scattering. It has, however, long been recognized, as 
discussed in § 1.4 above, that static displacements would 
have a similar effect. We therefore avoid the term 
'temperature factor' and recommend that others do so 

also, in part because of this ambiguity about the origin 
of the atomic displacements that cause the diminution 
in scattering. Another reason for avoiding the phrase 
'temperature factor' is the confusion caused by the fact 
that it has not infrequently in the past been used for 
terms in the exponent in expressions like that on the 
right sides of (12) and (13), rather than for the entire 
exponential multiplicative factor. 

A detailed treatment of the physical background of 
possible atomic displacements is quite beyond the scope 
of this report. However, we shall try to summarize 
and describe briefly the most important components of 
the displacement. The best known is the displacement 
arising from atomic vibrations. When these result from 
the motion of molecules or molecular fragments (e.g. 
Willis & Pryor, 1975), they are usually characterized 
by relatively large amplitudes. In crystals containing 
relatively strongly bonded atoms (e.g. molecular and 
ionic crystals), much smaller displacement amplitudes 
result from the ever-present internal vibrations, such 
as bond stretching and bending (e.g. Wilson, Decius 
& Cross, 1954). All of these motions are temperature 
dependent, unless the temperature is very low. Other 
effective displacements from the mean position may 
arise as a result of a variety of possible types of disorder. 
These include small deviations from ideal periodicity, 
present in all real crystals; orientational disorder, present 
in many molecular crystals; density and displacement 
modulations; and short- and long-range displacive cor- 
relations. Many types of disorder give rise to diffuse 
scattering, which can often be analyzed (e.g. Jagodzinski 
& Frey, 1993). There are, in addition, numerous other 
possible contributions to apparent displacements, one of 
the most important of which is use of an inadequate 
model, e.g. inadequate absorption correction, or use 
of a Gaussian probability density function when it is 
inappropriate. 

In view of the large number of possible causes of an 
apparent atomic displacement, we recommend expand- 
ing the definition of 'Debye-Waller factor' to include 
displacements arising from any source. We will use the 
term 'Debye-Waller factor' when we mean the entire 
factor that multiplies the scattering factor of an atom at 
rest, and recommend that this term be used when words 
are wanted to refer to the quantity T(h), or T, that occurs 
in equations such as (6), (8) and (10) through (13). 

There was considerable discussion in our Subcommit- 
tee concerning the proper words to use when referring 
to the terms in the exponent that are variables during 
a typical least-squares refinement to fit a structural 
model to intensity data. These terms are formulated 
and symbolized in various ways, discussed in detail 
in §2.1 below. We recommend unanimously the term 
'displacement parameters' (often 'anisotropic displace- 
ment parameters' or ADPs) to describe these quantities. 
Two of us initially favored 'displacement coefficients', 
believing that once refinement is completed, this term is 
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more appropriate, but were persuaded that current usage 
strongly favors the recommended term, 'displacement 
parameters'. 

2. Displacement parameters based 
on the Gaussian approximation 

2.1. Anisotropic displacement parameters 

As discussed in § 1.4 above, diffraction studies yield 
information not only about mean atomic positions but 
also about the probability density functions (p.d.f.s) of 
atomic displacements from these mean positions. If the 
atomic p.d.f, is assumed to be a trivariate Gaussian, the 
characteristic function corresponding to this p.d.f. - by 
definition, its Fourier transform - can be described by the 
second moments of the p.d.f., which in the present con- 
text are called anisotropic mean-square displacements. 
If not, higher cumulants of a non-Gaussian p.d.f, can, in 
principle, also be determined; these are simple functions 
of moments (e.g. Kendall & Stuart, 1977), but there are 
difficulties. For example, these higher terms are only 
likely to be important when the second moments of 
the p.d.f.s are relatively large. However, as can be seen 
from the basic expression for the isotropic Debye-Waller 
factor, T = exp[-87rE(u2)(sin 2 0)/ /~2] ,  t he  larger the 
second moment, the more rapidly the scattering from 
the atomic center in question falls off with increase in 
the scattering angle. Thus, just when the higher terms 
become important, they become difficult to measure for 
lack of contribution by the scattering center to the Bragg 
intensities. 

The mean-square displacements, which define the 
p.d.f, in the various Gaussian approximations, used to 
be known as atomic vibration parameters or thermal 
parameters but have recently been designated as atomic 
displacement parameters, isotropic or anisotropic, to 
allow for the effects of static displacive disorder as well 
as for those of the always-present atomic motion. There 
exists an extensive literature on the interpretation of 
these parameters (e.g. Dunitz, Schomaker & Trueblood, 
1988, and references cited therein). 

The purpose of this section is to relate alternative 
forms of anisotropic displacement parameters (ADPs) to 
the expression for the Debye-Waller factor that is valid 
within the framework of the assumptions underlying the 
harmonic approximation (e.g. Willis & Pryor, 1975). 
We also discuss anisotropic displacement parameters in 
relation to different coordinate systems, outline the trans- 
formation properties of the resulting quantities, present 
several forms of equivalent isotropic displacement pa- 
rameters, and describe briefly graphical representations 
of the Gaussian mean-square displacement matrix. 

The usual expression for T(h) is [(10) restated] 

T(h) = exp[-27r2((h • u)2)] (14) 

= exp[-27r2((h . u ) (u .  h))]. (15) 

These fundamental equations take on different forms 
according to the basis vectors to which we refer the 
diffraction and displacement vectors. In carrying out 
coordinate transformations in the formalism of ten- 
sor algebra, quantities that transform like direct basis 
vectors are called covariant and are indicated by sub- 
scripts, while quantities transforming like reciprocal 
basis vectors are called contravariant and are indicated 
by superscripts. The direct and reciprocal bases are not 
necessarily those of the corresponding lattices; they may 
be any pair of dual bases. Let us first assume that the 
diffraction vector is referred to the basis of the reciprocal 
lattice and the atomic displacement vector to the basis 
of the direct lattice, as follows: 

h = ha* + kb* + lc* 

= hi al + h2 a2 + h3 a3 
3 

= Y~ hi ai (16) 
i=l  

and 

u = z3,xa + Ayb + Azc 

-- Aa)a 1 + z3a~a2 + z3~3a3 
3 

= y~ zLrJaj. (17) 
j= l  

Note that the components of h and u are dimensionless. 
The first scalar product appearing on the right-hand side 
of (15) can now be evaluated as 

and, similarly, 

h . u =  (i=~lhiai) . Ij=~ 1 z~Jaj) 
3 3 

= E E hiz~c, Ji~j 
i = l j = l  

3 
= ~ hjz]od (18) 

j= l  

3 
u - h  = ~ zAxthr (19) 

/=1 

We used here the definition of the dual (direct and 
reciprocal) bases: 

1 i f i = j  (20) 
a i ' a j = ~ J  = 0 i f i s ~ j  " 

If we insert (18) and (19) into (15), we obtain for T(h) 

T(h) = exp -27r 2 2 Y~ hj(ZLr, Jz~t)hl 
j=l t=l 

- exp - y~ ~ hj3Jlht (21) 
j = l / = 1  



K. N. TRUEBLOOD et al. 775 

with 
/3jl = 271.2 (zLrjz~I).  (22) 

The quantity /3jr defined by (21) and (22) is one of 
the frequently employed forms of the anisotropic dis- 
placement parameter; note the use of superscripts for the 
indices, since the components of 13 are contravariant. For 
an atom, each component/3jr is 2re 2 times an average of 
a product of two components of an atomic displacement 
vector, when the latter is referred to the basis of the 
direct lattice. 

We shall now retain h as defined by (16) but redefine 
u as follows: 

u = A(a*a + A~Tb*b + Afc*c 
A ~ l a l a l  + A~2a2a2  -k- A~3a3a3  

3 
= ~ A{JaJa/. (23) 

j= l  

The components of u in this representation, A{J, have di- 
mension length and the basis vectors (a 'a ,  b 'b ,  c 'c)  are 
dimensionless (see e.g. Hirshfeld & Rabinovich, 1966). 
Only in orthorhombic, tetragonal and cubic crystal sys- 
tems must these basis vectors be mutually orthogonal 
unit vectors, i.e. orthonormal, since it is only in these 
systems that the equalities a* = 1/a, b* = 1/b and 
c* = 1/c are necessarily true. The departures of these 
basis vectors from orthonormality in other systems are 
associated with the departures of the angles c~,/3 and "3, 
from 90 ° . If we now repeat the evaluation of the scalar 
products in (15) with h given by (16) and u given by 
(23), we obtain for T 

( 3, ) 
T =  exp -27r 2 E E hjaJ(A{JA{t)atht 

j= l  l=l 

- exp -2rr  2 ~ Y~ hjaJUYtalht , 
j= l  l=l 

(24) 

with 
uJt = ( A~iA~ t) =/3Jt/(27rZaJat) (25) 

another well known form of the ADP. This form is often 
preferred because the elements of the tensor~f U have 
dimension (length) 2 and can be directly associated with 
the mean-square displacements of the atom considered 
in the corresponding directions. Note in particular that 
the mean-square displacement in an arbitrary direction 
denoted by the unit vector n, when n is referred to unit 

t To be precise, the symbols U and/3 (for a given atom) do not repre- 
sent different tensors, just different sets of components of the atomic 
quadratic mean-square displacement tensor. They can be interrelated 
by transformations converting sets of components of a tensor into 
each other (e.g. Spain, 1956). Frequently, however, the phrase 'set 
of components of a tensor' is abbreviated as 'tensor'. This practice is 
followed here and U,/3 and B are sometimes referred to as tensors. 

vectors parallel to the reciprocal basis vectors so that its 
components are covariant, is given by nrUn (see §2.3.2). 
In any event, the dimensionless elements of/3 are also 
correctly associated with the general expression for T(h), 
given by (15). 

Another form of the anisotropic displacement param- 
eter, which is used in some conventional refinement 
calculations, especially in biomolecular crystallography, 
is 

B jt = 87r2U jt (26) 

and the corresponding expression for T becomes 

3 3 aJBJtatht) 1 T = e x p  - a E E h j  
j= l  1---1 

(27) 

Since B and U are equivalent, apart from a constant 
factor, and U has a more direct physical significance than 
B, we recommend that the use of B be discouraged. 

A brief discussion of the transformation properties of 
/3 and U may be helpful. The corresponding representa- 
tions of the atomic displacement vector are 

3 
u -- ~ A ~ a  i (28) 

i=1 

and 
3 

U = ~ A~iaiai , (29)  
i=1 

respectively (Hirshfeld & Rabinovich, 1966). If the basis 
of the direct lattice is changed in some manner, the new 
components of the displacement vector u are related to 
the old ones by linear transformations, say 

3 
z~cti-- E R~ z~dcj (30)  

j= l  

and 
3 

A~ ti -- ~ Q~A~ j. (31)  

j= l  

The elements of the transformation matrices depend on 
the old and new bases. It follows from (22) and (25) 
that/3 and U transform as products of the correspond- 
ing components of the displacement vector. Hence, the 
transformation rules for/3 and U become 

3 3 
~3 t in  E E l~ig?n f4jk "' j"k~ (32) 

j=l k=l 

and 3 3 
u ' i"= E ~_, Q~Q'kk Ujk (33) 

j= l  k=l 

and thus conform to those valid for tensors of the second 
order (e.g. Spain, 1956). The transformation matrices R 
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and Q are obviously different, since the basis vectors to 
which u, in its two representations, is referred depend 
in a different manner on the basis of the direct lattice. 
This transformation property will be illustrated in detail 
in §2.1.2 by the orthogonalization of/~ and U. 

We comment finally on the form of the Debye-Waller 
factor when both the diffraction vector and the atomic 
displacement vector are referred to the same Cartesian 
basis, say e L , e 2, e 3. It is understood that the use of this 
representation is usually, in crystallographic practice, 
preceded by appropriate transformations (see below for 
a detailed example). 

The h and u vectors, in the Cartesian representation, 
are given by 

h = htCe, + h2Ce2 + hCe3 
3 

= E hCiei (34) 
i=1 

and 

u : A,~Ce, + A,~Ce2 + A~CCe 3 
3 

: E A(Cej • (35) 
j = l  

All the indices are given here as subscripts, since in the 
Cartesian representation the position of the indices is 
irrelevant. Note that the components of h in (34) have di- 
mension (length) - l  . The scalar products in (15) are now 
readily evaluated and we obtain for the Debye-Waller 
factor 

T = e x p  -27r 2 E E  A A(/C)h 
j= !  /=1 

- exp -27r ~- Y~ ~ h 
j = i  /=1 

(36) 

with 
= (A~CA(/c) (37) 

an element of an atomic mean-square displacement 
tensor, with dimension (length) 2, referred to a Cartesian 
basis. This representation avoids the hazards associated 
with calculations in oblique coordinate systems and is 
used almost always in lattice-dynamical studies and 
thermal motion analysis, and very often in constrained 
refinement of atomic parameters. 

2.1.1. Relationships between the anisotropic displace- 
ment parameters. The displacement parameters flij, U 0 
and B/j, given by (22), (25) and (26), are so closely 
related that the use of all of them in the crystallographic 
literature is not only unnecessary but conducive to 
confusion. The relationships needed are shown in a 

single equation, obtained by comparison of (21), (24) 
and (27): 

U jt : flJl/27r2aJal = BJl/87r 2. (38) 

It is true that fewer arithmetic operations are needed to 
compute T from r jr than from U jr, but with the advent 
of computers this advantage has become negligible. 

2.1.2. Construction of  Cartesian mean-square dis- 
placement tensors. Referring an ADP tensor to a 
Cartesian basis is somewhat less simple. We proceed to 
show how this is done, both in order to illustrate the 
above-outlined transformation of tensors and to provide 
some background for the following section. 

Construct a Cartesian system by taking, for example, 
e I along a, e 3 along c*, and e 2 along the vector product 
e 3 × e I . T h e  r e s u l t i n g  v e c t o r s  

e l = a / a ,  e 2 = e  3 x e  I , e 3 = c * / c *  (39) 

comprise an appropriate and common orthonormal set 
of basis vectors. 

Equations (35) and (17) are both expressions for u. 
Hence, 

u ---- A~lCe I + z3~Ce2 + z3C3Ce3 = z3xa+ A y b +  Azc. (40) 

If we take the scalar products of the left-hand and right- 
hand sides of (40) with e 1, e 2 and e 3, we obtain three 
linear equations or a matrix equation of the form 

A , ~  = e 2 a e 2 • b e 2 . (41) 
A ~  e 3 a e 3 . b  e 3 

This is a transformation of the components of u, referred 
to the basis of the direct lattice, to its Cartesian compo- 
nents. The transformation matrix can be evaluated once 
the Cartesian basis vectors are defined (e.g. as above). If 
we adopt the index notation in the second line of (17), 
(41) can be written as 

3 
A~ c = ~ AijZ3JcJ, i = 1, 2, 3, (42) 

j = l  

with 
Aij = e i . aj. 

We can similarly transform a product of components of 
u between the lattice and Cartesian bases, and finally an 
average of such a product: 

3 3 
(A~CA~ C) -- E E AjmAln(z~mz~xn) • (43) 

m=l n=l  

If we now make use of (22) and (37), we obtain 

3 3 
: (27r2) - I  E E ajmalnfl nm, (44) 

m=l n=l  
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which is the expression for the transformation of/3 to 
Cartesian coordinates. 

The orthogonalization of U proceeds along similar 
lines. The required version of (40) is now [cf (23)] 

u = z3~lCel + z3~e 2 + z3~Ce3 
= A~a*a + A~/b*b + A~c*c (45) 

and, following the same procedure by which (41) is 
obtained, we arrive at the transformation 

e I • a e I • b e I • c ' ~  

= e 2 a e 2 • b e 2 c ) e 3 a % - b  e 3 c (oO o) 
x b* 0 At/ , 

0 c* ale 
(46) 

which relates the components of u, referred to t h e  aiai 
basis, to its Cartesian components. Equation (46) can be 
written concisely as 

3 
A~iC = ~ DijA~J, i = 1, 2, 3, (47) 

j=l  

with 
Dij = (e i • aj)a j (48) 

an element of the matrix product appearing in (46). The 
desired transformation is obtained analogously to (44) as 

3 3 
U~jt= E E DjmDt, Urn" (49) 

m=l n=l 

with . ~  = (A~CA~C)and Urn"= 
The explicit form of the transformation matrix ap- 

pearing in (41), for the specific Cartesian basis defined 
in (39), is 

( i  bcos7  ccos/3 ) 
A =  bsin7 - c  sin /3 cos a* . (50) 

0 1/c* 

Of course, a Cartesian basis associated with the direct 
and/or reciprocal bases can be chosen in an unlimited 
number of ways. A more general discussion of the 
construction of such Cartesian bases is given elsewhere 
(Shmueli, 1993). 

2.2. Equivalent isotropic displacement parameters 
It was pointed out by Hamilton (1959) and by Willis 

& Pryor (1975) that for minor departures from isotropic 
motion, or for anisotropic displacement parameters 
deemed to be physically insignificant, it may be 
worthwhile to replace the six-parameter description 

of anisotropic motion by a single quantity, which 
should describe an isotropic equivalent to the weakly or 
dubiously anisotropic case. 

The IUCr Commission on Journals (1986) recom- 
mended that 'equivalent isotropic displacement param- 
eters' be computed from the expressions proposed by 
Hamilton (1959) and by Willis & Pryor (1975). How- 
ever, a number of different incorrect expressions have 
also been used (Fischer & Tillmanns, 1988) and this has 
led to considerable confusion. We first review the proper 
definitions and demonstrate their equivalence. 

The first definition of the equivalent isotropic dis- 
placement parameter, as given by Hamilton (1959) and 
Willis & Pryor (1975), is 

1 
Ueq = ~(U~I 1 + U~22 + U~33), (51)  

with ~ an element of a mean-square displacement 
tensor, referred to a Cartesian basis [see (34)-(37)]. 
The trace of U c, as given on the right-hand side of 
(51), is equivalent to the sum of the eigenvalues of this 
matrix. These eigenvalues are often computed, since an 
eigenvalue of the matrix U c represents the mean-square 
displacement along the corresponding eigenvector. The 
right-hand side of (51) can then be interpreted as a 
mean-square displacement averaged over all directions. 

Equation (51) can thus be applied to the computation 
of Ueq either by taking the trace of U c, which is obtained 
from (44) or (49), or by using the sum of the eigenvalues 
of U c. However, it is essential to note that (51) holds 
only for the Cartesian displacement tensor U c. It will 
give incorrect values of U if U is referred to oblioue eq 
basis vectors and its trace taken instead of that of U ~7. 

Since the basis vectors of the Cartesian system have 
the property e i . e  j = 60, a consideration of (35), (37) 
and (51) readily leads to 

Ueq = ½<IuI=)- ~(U.U). (52) 

This equation is a convenient starting point for testing 
the equivalence of various definitions of Ueq. The second 
definition by Willis & Pryor (1975) is the first line of 
the next equation: 

1(271-2)-1 U e q - -  ~ tr(/3g) (53) 
3 3 

= ½(27r2) - '  Y~. 6/Z/3Jkgk, 
j , l=  1 k=  1 

3 3 
= ½(27r2) - l  ~ ~] flJk(aj, at, ) (54) 

j=lk=l 
3 3 

_ 1 

- .~ E 2 <~J~k>(aj"  a,) 
j= l  k=l 

- ±<u. u) 
- -  3 

with g the real-space metric tensor. This shows that (51) 
and (53), the two recommended definitions of Ueq, are 
equivalent. 
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If we make use of (54) and (38), two additional 
expressions f o r  Ueq can be obtained: 

3 3 
Ue q = 1 E E UJtaJalaj'at (55) 

j = l / = 1  

and 
3 3 

= l (87r2)-1 ~ ~ BJtaJataj.at. (56) Ueq 
j= l  l=l 

Thus, (51), (54), (55) and (56) are equivalent repre- 
sentations of the equivalent isotropic mean-square dis- 
placement parameter U.~, obtainable from the commonly 
employed anisotropic displacement parameters. 

We can also arrive at (54) by directly combining (44) 
and (51) and making use of a known property of the 
matrix A. We have 

Ueq i U c - 5tr 
3 3 

: 

j = l  1=1 

3 3 3 3 

= 5 E E 6jr E EAjmatn< '~mz~xn) 
j= l  1=1 rn=l n=l 

3 3 3 
: .~(27r2) - i  )--~ ~ E AjmAjn~ mn 

j= l  m=l n=l 

3 3 3 
= g ( 2 7 r 2 ) - I  ~--~ ~ E amjAjn f i T  mn 

j= l  m=l n : l  

3 3 
= 3(27r2) -1 E E gmn/~mn 

m=l n=l  
3 3 

= .~(2'a'2) -1 E E /3mnam "an 
m=l n : l  

(57) 

since 
3 

E T AmkAkn = gmn = am " an 
k=l 

(e.g. Prince, 1982). This derivation shows that the value 
of Ueq does not depend on the particular form of the 
matrix A, which transforms the components of u from 
the lattice to the Cartesian basis. 

Acta Crystallographica requires that published values 
of U_ be accompanied by an evaluation of the standard 
deviation (now standard uncertainty) in these quantities. 
The calculation of this estimate is described in detail 
by Schomaker & Marsh (1983). A useful measure of 
the anisotropy of the mean-square displacement tensor 
is the ratio of its minimum and maximum eigenvalues. 
We recommend that published or deposited values of Ueq 
be accompanied by both the standard uncertainties and 
the ratio of the minimum to the maximum eigenvalues 
of the corresponding anisotropic displacement tensors. 
Both the uncertainty of U~ and the ratio may be helpful 
in judging the extent to which the use of Ueq is justified. 

2.3. Graphical representations of the Gaussian 
mean-square displacement matrix 

Just as interatomic distances in crystals are most con- 
veniently discussed in terms of atomic coordinates such 
as xJaj with dimension length rather than in terms of the 
dimensionless components x j, the physical interpretation 
of atomic displacement parameters is most convenient in 
terms of the mean-square displacement matrices U with 
elements having dimension (length) 2. 

2.3.1. Ellipsoids of constant probability. In the ab- 
sence of anharmonicity, the anisotropic mean-square 
displacement matrix U can be regarded as the vari- 
ance-covariance matrix of a trivariate Gaussian prob- 
ability distribution with probability density function 

p(x) = [det(U-l) / (27r)3]l /2exp(-xrU-lx/2) .  (58) 

Here, x is the vector of displacement of the atom from 
its mean position and U-1 is the inverse of the quantity 
defined by (25). If the eigenvalues of U are all positive, 
then the surfaces of constant probability defined by the 
quadratic forms 

xrU - Ix  = constant (59) 

are ellipsoids enclosing some definite probability for 
atomic displacement. This is the basis for the ORTEP 
'vibration ellipsoids' (Johnson, 1965) that are used in 
so many illustrations of crystal structures. The lengths 
of the principal axes of the ellipsoids are proportional 
to the eigenvalues of the matrix U c expressed in the 
appropriate Cartesian system and the directions of the 
principal axes correspond to the eigenvectors of this 
matrix. This representation cannot be used when U has 
one or more negative eigenvalues, because the resulting 
non-closed surfaces are no longer interpretable in terms 
of the underlying physical model. 

2.3.2. Mean-square displacement surface. The 
mean-square displacement amplitude (m.s.d.a.) in a 
direction defined by a unit vector n is 

(U2)n = nrUn (60) 

with n referred to the unit vectors aJ/a j, j = 1, 2, 3, par- 
allel to the reciprocal vec tors  a j,  j = 1, 2, 3, respectively. 
The bases (al/al,a2/a2, a3/a3) and (alal,a2a2, a3a3) 
are mutually reciprocal (Hirshfeld & Rabinovich, 1966). 
Note that, whereas x r u - l x  in (59) is dimensionless, 
nrUn has dimension (length) 2. As n varies, the surface 
generated by nrUn is not an ellipsoid; it is usually peanut 
shaped. 

Such surfaces can be constructed even for non- 
positive-definite tensors and they are therefore par- 
ticularly useful for inspecting difference tensors AU 
between experimental U tensors and those obtained from 
kinematic or dynamic models of atomic and molecular 
motion (Hummel, Raselli & Biirgi, 1990). 
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The distinction between the surfaces defined by (59) 
and (60) has often proved puzzling. Note that the right- 
hand side of (59) is a constant, the (arbitrarily chosen) 
equi-probability level for defining the ORTEP ellipsoids. 
When the matrix of the mean-square displacement tensor 
is non-positive definite, the quadratic surface defined by 
(59) is no longer closed, and no ellipsoid can be plotted. 
In contrast, the right-hand side of (60) is the mean- 
square displacement amplitude (m.s.d.a.) in a given 
direction and varies as n varies. Only positive values 
of the quantity defined in (60) are meaningful for an 
individual atom, but negative values can be meaningful 
when differences in m.s.d.a, values are calculated. The 
m.s.d.a, surfaces can be plotted with the aid of the 
program PEANUT of Hummel et al. (1990); negative 
values are plotted as dashed contours. 

3. Beyond the Gaussian approximation 
The situation is less straightforward if the distribution 
function is not Gaussian. A large variety of different 
approximation formalisms, as well as different nomen- 
clature for similar formulations, is found in the literature. 
Summaries have been given by Johnson & Levy (1974), 
Zucker & Schulz (1982), Coppens (1993) and Kuhs 
(1992). By virtue of (8), one may express either p.d.f.(u) 
or T(h) as a series expansion and obtain the other 
quantity by Fourier transformation. 

The most widespread approaches are based on for- 
malisms developed in statistics to describe non-Gaussian 
distributions (Johnson, 1969)• They use a differential 
expansion of the Gausssian p.d.f. Two formulations 
are found in frequently used refinement programs, the 
cumulant or Edgeworth expansion* 

Taw(h ) = Th(h ) exp[(27rt)3"YJE~hjhkhJ3! 
• 4 jklm h h . .  + (27r,) ~EW hjhk t m/a! + "] (61) 

and the quasi-moment or Gram-Charlier expansion 

• 3 jkl h h Tcc(h ) = Th(h)[1 + (27r,) "/cc :/ kht/3! 
• 4 jklm ! 

+ (27r,) ~GC h j h k h t h m / 4 "  - t - . . . ] ,  (62) 

with T h (h) the Gaussian Debye-Waller factor (see ~ 1.4 
and 2.1) and 7jkt, ~jk lm,  . . .  the third-, fourth-, . . .  
order (anharmonic) tensorial coefficients. There are in 
general 10 cubic, 15 quartic . . . .  terms that enter into 
the treatment. In statistics, they are called cumulants 
and quasi-moments, respectively. They constitute the 
parameters of the refinement. Various symbols for these 
coefficients are scattered through the literature. Greek 

* In (61), (62), and many of the remaining equations in this section, 
the s u m m a t i o n  convent ion  has been used. It is assumed that summation 
occurs over indices that are repeated, such as j,  k, I and m in the terms 
on the right-hand side of (61) and (62). 

letters are chosen here to comply with the /~Jks of the 
Gaussian case, which may thus be considered as second- 
order coefficients. For the same reason, the factors 
(27r)N/~, with N the order of the tensor, are included, 
also to follow standard physical notation, which uses 
q = 27rh as the scattering vector. The factors (27r) N 
and/or the factors l/N!. (e.g. Kuhs, 1992) are sometimes 
omitted in the literature. For comparability of future 
results, it is therefore proposed that only coefficients de- 
fined as in (61) and (62) be published and that subscripts 
be used to indicate the type of expansion employed. 

The ,,/jkt, ¢~jklm . . . .  are dimensionless quantities. As 
proposed by Kuhs (1992), they may be transformed to 
quantities of dimension (length) N by 

U j k l ' ' ' :  ( N ] . ) Y k l ' " / [ ( 2 7 r ) N a J a k a l . . . ]  (63) 

with /3 to be replaced by % 6 . . . . .  Note that this is 
a generalization of (38). It must be stressed, however, 
that the ~ j k l ,  ~jklm . . . .  are simple expansion coefficients 
and (in general) have no direct physical meaning. The 
transformation (63) thus has no such merits as in the 
Gaussian case and some real-space illustrations should 
always be given to permit the results to be appreciated. 
The best way is certainly to plot the corresponding p.d.f., 
obtained by inversion of (62) or (8). Only programs that 
produce sections of the p.d.f.s seem to be currently avail- 
able, although a three-dimensional visualization similar 
to ORTEP would be highly desirable. Another way of 
presenting the results is by tensor contraction (Kuhs, 
1992). For even-order terms, full contraction yields an 
invariant scalar, 

NIO - -  g j k g l m  " " " gpq~jk lm. . .pq .  ( 6 4 )  

For the Gram-Charlier series, this quantity indicates 
flatness (for negative values) or peakedness (positive 
values) of the p.d.f. The gjk  a r e  the components of the 
real-space metric tensor• Note that 210 = Ue~, i.e. (64) is 
an extension of (53). Similarly, vector invanants may be 
calculated for odd-order terms, 

N~ = gkl  " " " gpq~jkl...pq, (65) 

giving the direction of maximal skewness. Partial con- 
traction of even-order terms, 

= g l m ' ' "  gpqpjklm...pq,,'~ (66) 

reveals the directions of flatness and peakedness. 
Various discussions in the literature (see e.g. 

Kuhs, 1992, and references therein) indicate that the 
Gram-Charlier formalism is the best choice in routine 
crystallographic work. In particular, it has the advantage 
that the reverse Fourier transformation (8) can be carried 
out analytically, 

jkl I 
p.d.f.(u) -- p.d-f.harm(n)[1 + "~GcHjkl(U)/3. 

,gjklm l--I . . , 
+ ~'GC " ' j k l m ( U ) / 4 !  -~- "] (67 )  
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with Hjkt... (u) Hermite polynomials, and P'd'f'harm (U) the 
harmonic part of the p.d.f. These polynomials are tabu- 
lated by Johnson & Levy (1974) up to the fourth order 
and by Zucker & Schulz (1982) up to the sixth order [see 
also Coppens (1993)]. The use of the Gram--Charlier ex- 
pansion (62) is therefore recommended, although other 
formalisms may sometimes be advantageous for special 
problems. In any case, the results should always be 
carefully checked, especially if higher-order terms are 
used merely to improve the agreement of the fit. Strong 
and extended negative regions in the p.d.f, indicate 
inadequacy of the results. One also has to remember 
that, with anharmonic refinements, the positions and/~jk 
obtained are not necessarily faithful representations of 
the mean and variance of the p.d.f., respectively. This 
must be borne in mind if bond distances and Gaussian 
displacement ellipsoids are to be derived from the refined 
parameters. In some situations, it may be better to 
use only the Gaussian approximation, even though the 
resulting R factors may be higher. 

Another possibility is the expansion of the so-called 
one-particle potential (OPP) V(u), which in the classical 
limit [kT >> V(u)] is related to the p.d.f, by Boltzmann 
statistics 

p.d.f.(u) = e x p [ - V ( u ) / k T ] / Z  

= p.d.f.(0)exp[-V(u)/kT] (68) 

with Z the partition function. The second equality is 
obtained by setting V(0) = 0. 

The latter approach was formulated by Dawson & 
Willis (1967) and Willis (1969) for cubic point groups 
and later generalized for any symmetry by Tanaka & 
Marumo (1983). The OPP is written as 

V OPP ( u )  oPP , v O P P , , j , , k , , I  ,~OPP, , j ,ak , , l ,am 
= V~arm(U) + 'jk~ " " " + vjktm . . . .  + ' ' ' '  

(69) 

with Vha ~ the harmonic (quadratic) OPP and ,.yOPP 
OPP--~ • " ~ r and 6.-. the third- and fourth-order coefficients, e- jx tm 

spectively, which are defined in a Cartesian system. 
Since application of (68) and (8) does not lead to 
an analytical expression for T(h), the anharmonic part 
Van h = V -  Vha~m is approximated in (68) by 

exp[-  ova oaP Van h (u) /kT]  ~ 1 - Va, h (u) /kT.  (70) 

The final expressions for T°PP(h) are rather lengthy 
and may be found in Tanaka & Marumo (1983). Refin- 

OPP OPP able parameters are the 7-- and 6.. Other formula- 
j m  Jrt " n~)pp 

tions with simpler expressions for T (h) have been 
introduced by Coppens (1978), Kurki-Suonio, Merisalo 
& Peltonen (1979) and Scheringer (1985). None of these 
approaches seems to have been used much in crystallo- 
graphic studies and final recommendations must await 
further developments in this field. It should also be noted 

that the OPP approach treats each atom as an individual 
(Einstein) oscillator, which is a poor approximation for 
tightly bound atoms in molecules. 

The OPP approach is physically meaningful only for 
purely dynamic displacive disorder (giving, for example, 
the directions of weak and strong bonds) and is limited to 
rather small anharmonicities through the approximation 
(70). Occasionally, special expansions (e.g. symmetry- 
adapted spherical harmonics) of p.d.f.(u) or T(h) have 
been used for special problems (e.g. curvilinear mo- 
tion, molecular disorder); see Johnson & Levy (1974), 
Press & Hiiller (1973) and Prandl (1981). Again, these 
expansions do not seem yet to have entered routine 
crystallographic work. It should be remembered that the 
classical limit kT >> V(u), which is assumed in (68), may 
be far from the actual situation even at room temperature. 

4. Recommendations 

1. The term anisotropic displacement parameters (ab- 
breviated ADPs) should be used in referring to the 
individual atomic coefficients in the exponent of the 
factor that describes the effects of atomic motion and 
static displacement. 

2. The elements of the tensors U and/5 should always 
be superscripted when the refinement is referred to a 
crystal system rather than to a Cartesian system. This 
definition follows from the definition of the elements 
of U and /5 as contravariant tensor components (see 
§2.1). The frequent use of subscripts for the ADPs, and 
specifically for those not referred to Cartesian systems, 
is inconsistent with their tensorial properties. 

3. With the common Gaussian approximation, use 
either the quantities U ij, which have dimension (length) 2, 
defined in (25), or the dimensionless/3/j, defined in (22). 

4. When the Gaussian approximation to the proba- 
bility density function is not deemed valid, the use of 
the Gram-Charlier expansion of (62) is recommended, 
although other formalisms may sometimes be advanta- 
geous for special problems. 

5. Standard uncertainties of ADPs obtained from a 
full-matrix refinement are valid within the system in 
which the refinement is made. If ADPs are transformed 
to any other axial system, Cartesian or not, then the 
uncertainties may also be calculated by transforming 
the original variance-covariance matrix to this new 
axial system and taking the square roots of its 
diagonal elements, i.e. the variances. The required 
variance-covariance matrix is usually not available 
for ADPs taken from the literature. Hence, although 
ADPs can still be transformed, their uncertainties cannot 
be. Calculations involving published ADPs and their 
(published) uncertainties should therefore be referred to 
the same system of coordinates as the original refinement 
in order to retain the significance of the published 
uncertainties. 
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6. Avoid using the term 'temperature factor', both 
because the phenomenon represented may not be due 
entirely to thermal motion and because that phrase has 
in the past been used in several quite distinct senses 
(see §1.5). 

7. Avoid using the Gaussian anisotropic parameters 
that are now usually symbolized as B ij and are defined 
in (26). These quantities are directly proportional to the 
recommended U ij, the ratio being 87r 2. 

8. Avoid using ADPs that do not represent matrix ele- 
ments. In some early references and computer programs, 
cross terms were sometimes doubled in magnitude, being 
represented, for example, as hk~ 12 instead of 2hk~ 12 for 
programming convenience. This was possible because 
the matrix representing the ADP is symmetric, with only 
six independent terms. This practice is not found in 
modern crystallographic software. 

9. Published values of Ueq should always be ac- 
companied by their standard uncertainties. The ratio 
of the minimum to the maximum eigenvalues of the 
corresponding anisotropic displacement tensors should 
also be published, either in the primary publication itself 
or in the secondary (deposition) publication. 

Authors of crystallographic software and crystallogra- 
phers who maintain their own software are encouraged 
to introduce the minor modifications that are required 
for the implementation of these Recommendations. 

We are especially indebted to Verner Schomaker for 
his critical reading and counsel on many drafts of this 
report, to Hans Boysen for his special help with §3, and 
to Richard Marsh, Emily Maverick and Tullio Pilati for 
their advice. 
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