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Abstract

Crystallographic studies play a major role in current e�orts towards

protein structure determination. However, despite recent advances in

computational tools for molecular modeling and graphics, the task of

constructing a model of the tertiary structure of a protein from exper-

imental data remains complex and time-consuming, requiring extensive

expert intervention. This paper describes an approach to protein model

determination that incorporates crystallographic data, along with se-

quence data. A model is represented as an annotated graph that traces

the backbone and side chains for a protein.

The proposed approach incorporates numerical techniques that are

applied to construct and analyze an electron density map for a unit cell

of a crystal. The purpose of this work is to advance the ability to discern

meaningful features of protein structure through the use of topological

analysis of the relative density. Experimental results, which demonstrate

the viability of the approach, are reported.

1 Introduction

A fundamental goal of research in molecular biology is to understand protein

structure. Although, in theory, protein sequence information can be inferred

from the ever-growing volume of DNA sequence data 1, the protein folding

problem | that of predicting the three-dimensional structure of a protein from

its sequence | remains an open and important problem 2;3;4. Currently, there

are three main approaches utilized for the prediction of tertiary structure 5:

use of sequence homology; prediction of secondary units followed by assembly

of these units; and use of empirical energy functions.

Although recent attempts (such as those of Srinivasan and Rose 6 and

Dill et al. 7) show promise in addressing the computational complexity of the

protein folding problem2;3;4, it is doubtful that a solution to this problem will

be found in the immediate future. This is due, in part, to the fact that many of

the existing techniques rely heavily on our knowledge of previously determined



structures, knowledge that is limited by the relatively small (with respect to

sequence data) number of known structures.

Crystallography plays a major role in current e�orts towards protein struc-

ture determination. Building a protein model from crystallographic data, how-

ever, is a complex and time-consuming process, which is somewhat assisted by

the use of computer graphics for tracing the polypeptide chains, and for view-

ing and improving the resulting model 8. Errors in the initial and subsequent

models may be corrected using a re�nement process, which involves modifying

the model to minimize the di�erence between the experimentally observed data

and the data calculated using a hypothetical crystal containing the model. It

has been proposed that the process of protein model building could be im-

proved through the development of more sophisticated computational tools 9.

A goal of our research is to improve and accelerate the process of structure

determination through the design and development of such automated tools

for the purpose of protein model determination. This will result in an ex-

panded repository of available tertiary structures and, in turn, will impact on

the practice of structure prediction from sequence alone.

This paper reports on an approach to protein model construction that can

be incorporated in a fully automated system for structure determination from

crystallographic data. The proposed approach improves upon the previously

implemented topological analysis performed in the ORCRIT program 10. The

primary advantage of our new approach is that it uses characteristics of the

experimental data to �nd a path through the tertiary structure of the pro-

tein, thus introducing no bias into the data. In particular, it incorporates a

spline interpolation algorithm to generate a density function for the protein, an

eigenvector following method to derive critical points corresponding to amino

acid residues and side chains, and a gradient path following method to connect

critical points and trace the backbone for the protein.

The paper is organized as follows. Section 2 sets the context for our model

building technique by presenting a general framework for automated protein

structure determination from crystallographic data. In Sections 3 and 4 we

describe our novel approach to model construction and report on experimental

results. The paper concludes with a discussion of related and future research.

2 Molecular Scene Analysis

Our general approach to protein structure determination has been in
uenced

by research in machine vision. The primary task of an image understanding

system in arti�cial intelligence is to derive an underlying scene model from

given image data. The research described in this paper is being incorporated



into a computational approach to molecular scene analysis. A key process for

molecular scene analysis is the automated derivation of potential scene mod-

els for a protein structure. The input for this process is an electron density

map and a primary sequence of amino acid residues. An electron density map,

which can be considered as the \protein image", is represented as a three-

dimensional array of real values denoting electron density in the unit cell for

the crystal. This map of the repeating unit of the crystal is calculated us-

ing amplitudes measured in the di�raction experiment and phases estimated

from experimental and/or mathematical techniques. The interpretation of the

resulting protein image involves �nding the polypeptide chain, associating it

with the given amino acid sequence and con�guring the respective side-chains.

This interpretation process is complicated, partly due to errors in the map

resulting from noisy data and from the lack of accurate phase information.a

The quality of the protein image also depends on the resolution of the di�rac-

tion data, which is in
uenced by how well-ordered the crystal is. From the

analysis of a map at low resolution (> 5 �A), one can possibly identify regions

of secondary structure. At medium resolution (� 3�A), it is generally possible

to trace the backbone of the protein and derive topological properties of the

residues along the backbone. Only at high resolution (� 1 �A) are the indi-

vidual atoms in the protein observable. For the purpose of this paper we are

primarily concerned with protein images at medium resolution from which we

can model the polypeptide chain of amino acids.

An approach to molecular scene analysis has previously been proposed
11;12;13 where a scene model is generated using a topological analysis of the

protein image data. The research described in this paper extends and improves

upon this previous analysis in a number of ways:

� A cubic spline interpolation is performed to approximate the underlying

electron density function from the crystallographic data;

� An eigenvector following algorithm is applied to detect the location of

individual amino acid residues and side chains for the protein; and

� A Cash-Karp-Runge-Kutta gradient path tracing algorithm is incorpo-

rated to connect residues and construct a graph from which potential

models of the backbone of the protein can be derived.

Details concerning these techniques and their advantages will be presented in

the following sections.

aThis is referred to as the classic phase problem of crystallography.



3 Protein model construction

At medium resolution, we de�ne a protein model as a trace (or subpath)

through a graph consisting of critical point nodes (corresponding to amino acid

residues), and edges (corresponding to potential polypeptide bonds). A model

may also contain branches in the trace, related to observable side chains for the

residues. From the crystallographic data we can derive additional environment

information for the individual residues (e.g., size, density, distance from solu-

tions, etc.). This information can be used to \thread" a model, i.e., associate

individual nodes on the graph with amino acid residues in the given sequence
14. Thus, a model corresponds to an annotated trace of a protein backbone

(or portion of the backbone) along with attribute information (from analysis

of the critical point graph and the electron density map) for the residues along

the backbone.

The input image data for a molecular scene analysis is represented as an

electron density map. This uninterpreted, three-dimensional array of real val-

ues can be compared to Marr's primal sketch representation for machine vision
15. As illustrated in Figure 1, our topological analysis of a protein structure

consists of four stages. The �rst stage involves the generation of the electron

density image from the experimental data. Once we have approximated the

protein's electron density function, we then derive critical points (peaks and

passes) in the topological map of the protein. In the next stage we construct

a graph that connects the critical points. The �nal stage involves deriving

models of the structure by tracing paths through the critical point graph. In

the remainder of this section we describe each of these stages in more detail.

Image generation

Constructing the electron density image for a protein from X-ray di�raction

data is an important step in the analysis of crystallographic data. Using stan-

dard crystallographic software, density values are provided in a discrete, three-

dimensional array for the unit cell. There exists important information (density

values o� the grid, derivative information, etc.) that is not directly available

from these image arrays. By applying an interpolation method with appropri-

ate characteristics, we can approximate the underlying electron density func-

tion and regain some of this lost information. The principal characteristics

we were concerned with in the development of our interpolation method were

robustness and smoothness. The need for robustness is clear; the smoothness

of the interpolant is necessary since an accurate topological analysis requires

that the �rst and second derivatives of the density function be continuous.

In our approach to image generation, the crystallographic relative elec-

tron density grid is modeled using tri-cubic splines. This provides a smooth
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Figure 1: Architecture for model construction module.

function with continuous second derivatives over which values of the relative

density, gradient and Laplacians can be calculated. The parameters de�ning

the interpolating splines are determined algebraically from the image array.

Critical point determination

The �rst step in the analysis of an electron density image of a protein involves

�nding the critical points (points in the electron density map where the gra-

dients vanish). At such points, local maxima, minima and saddle points are

de�ned by computing �rst and second derivatives. The �rst derivatives of the

density function characterize the zero-crossings, and the second derivatives are

used to identify the type of critical points. In particular, we are interested in

peak (local maxima) and pass (saddle point) critical points. Experiments at

medium resolution have suggested that peaks and passes above a particular

density cuto� generally correspond to the location of amino acid residues and

peptide bonds respectively 13.

In order to calculate the critical points, a grid of initial starting points is

chosen and a search for peaks is initiated using the eigenvector following method

implemented by Popelier16. Next, a check for additional peaks is performed by

initiating the search algorithm beginning mid-way between previously derived

peaks. This is followed by a search for passes in the region between peaks.

The possible complexity of the topology in unknown densities makes it

di�cult to assess where a good starting point for other methods, such as

the Newton-Raphson, would be. However, utilizing the eigenvector follow-



ing method and a good grid for search initialization, one can have a degree of

con�dence that the features of interest, in this case peaks and passes, can be

located.

Graph construction

The next step in our model generation process is to connect peak critical

points in order to trace the backbone of the protein structure. This is achieved

by applying the Cash-Karp-Runge-Kutta gradient path tracing algorithm 17 to

connect a pass with its associated peaks (representing residues and side chains).

The resulting trace determines the lines of interaction (lines of maximum den-

sity) between two peaks. The methodology is implemented in a program based

on Poplier's MORPHY algorithm 18. Unlike MORPHY, our version of the pro-

gram utilizes cubic splines, rather than a Gaussian basis set and a quantum

mechanical wave function. As well, MORPHY requires sets of nuclear coordi-

nates which are assumed to be peaks; our program utilizes a thorough search

of the image space to locate peaks.

Following the peak-pass-peak gradient path, at some points the trace may

branch. We do know that there are disulphide bridges and we also know that

these bridges have peaks that are of the highest density, perhaps only matched

or exceeded by those of other sulphur peaks or heteroatoms peaks. Figure 2

illustrates a disulphide bridge that was formed between two continuous chains

in the protein. The disulphide bridges are identi�ed in our analysis because of

the role they play in determining the protein structure. These bridges serve as

anchors in our analysis with their characteristic binding of distinct segments

of the trace.

Model generation

The result of the graph construction program is a connected graph that may

contain cycles. The �nal stage of our analysis involves �nding traces through

this graph that correspond to potential models for the protein structure. The

original implementation of ORCRIT was used to construct a single model de-

rived by constructing the minimal spanning tree for the graph. Rather than

considering a single model, at this stage we will use the critical point graph

to predict multiple models - one for each possible trace of a backbone through

the critical point graph.

4 Experimental results

The protein bovine pancreatic phospholipase A2 (henceforth referred to as

BP2) was chosen to test our techniques since its structure has been resolved

and used in previous studies. It contains 123 residues and its crystalline form
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Figure 2: Illustration of disulphide bridge between main chains.

is a member of the P212121 space group. Our analysis was performed on

a portion of the electron density map that contains the connected protein

molecule. In order to discern the e�ects of topological features outside the

area being considered, the analysis was extended by 5 �A outside each side in

this region.

The results of our experiment were evaluated in three stages:

1. Proximity of peaks to backbone atoms and backbone connectivity:

The location of the peaks with respect to the protein backbone atoms

was considered. A peak was considered as a correct assignment if it had a

relative density greater than 0.8 and was located within 2 �A of a backbone

atom. Of the 123 residues, only 8 did not have an associated peak. Next,

the results of the gradient path tracing were considered. In total there

were 3 missing edges (bonds). One is due to an intervening peak that was

further than 2 �A from the backbone, another is due to the insertion of



a side chain peak in the chain resulting from the distance criterion, and

a third is due possibly to oscillation during the path tracing procedure.

Thus, there is only one break in a continuous chain from start to end.

Eight residues do not have a peak within 2�A of a backbone atom at this

resolution. This is not a concern as in those areas we have a continuous

backbone trace. That is, the peaks forming our topological backbone

are connected through the gradient path tracing in these areas. Thus,

the peaks corresponding to these \missing" residues have been absorbed

into other peaks. Note that in some cases a residue may have two peaks

associated with its backbone atoms, usually towards each end.

2. Correctness of assignment of peaks to residues:

The position of the peaks with a relative density value greater than 0.8

were compared with the positions of all the non-hydrogen atoms in the

protein. Peaks within 2 �A of such an atom were assigned to the respec-

tive residue. Only one residue, number 32 (GLY), was not assigned a

peak. As well, a peak was assigned to the Ca2+ ion associated with the

protein in the asymmetric unit. Of note is the high number of side chains

represented by peaks at this resolution (3 �A).

3. Correctness of connectivity in trace of backbone:

Using the peak identi�ed as residue 1 (ALA), the best trace is created

by incorporating the highest density passes and discounting side chains

where the trace stops. Points at which there appear to be a fork are

explored. From previous work in this area13, we are aware that the high-

est peaks usually represent disulphide bridges and heteroatoms, such as

Ca2+, at this resolution. We follow the peak-pass-peak path until the

trace leads to the break point. Picking up the trail and continuing on

after tracing through the entire chain, we �nd seven disulphide bonds

and also two locations where relatively large passes (greater than 0.6 rel-

ative density) bridge sidechains from one portion of the chain to another.

The size of the peaks, however, allow us to discount them as disulphide

bridges. In addition, we �nd a large peak that acts as a bridge with

3 large passes as well as one that is close to the cuto�. This peak is

identi�ed as the Ca2+ ion.

The derived critical point graph for BP2 is illustrated in Figure 3. The

trace (in grey) has been superimposed on the protein backbone (in black)

to illustrate the correlation between the critical point graph and the known

structure. Also note the presence of disulphide bridges that connect portions

of the main chain.



Figure 3: Critical point graph for protein BP2.

5 Discussion

The original ORCRIT program utilizes a relative density cuto� to prune the list

of peaks and passes that would be candidates for the protein chain. Then a

distance criterion is applied to cut down on the number of candidates to be

used to generate the connectivity of the peaks and passes. So, for example,

using a density cuto� of 0.8 and 0.6, respectively, for peaks and passes and

a distance cuto� of 4 �A would result in 4824 edges and an average number

of associations per vertex of 5.05. Increasing the distance cuto� to 4.5 �A

raises the number of edges to 7249 and the average number of associations

to 7.6 (associations/vertex). The weighting function is then applied which

gives rise to a minimal spanning tree. Thus, should a side chain peak satisfy

a distance criteria, it may be included in the spanning tree despite the lack

of interactions of an appropriate nature. The application of the eigenvector

following method and subsequent path tracing from the passes to the peaks



eliminates any uncertainty as to the assignment of peaks and passes. Side

chain peaks will almost always have only one strong interaction, that to the

backbone peak representing the residue along the chain. A disulphide bridge

peak will, however, display two strong connections. In this manner the decision

making formerly handled by the weighting function is reduced tremendously.

The eigenvector following method reduces the possible number of edges to 1828

and the average number of possible associations per vertex to 1.9. Thus, the

complexity of �nding the correct model of the protein structure is drastically

reduced.

Hydrogen bonding and van der Waals interactions can also be character-

ized through analysis of the density and the use of the gradient path tracing

method. These interactions are not as strong as normal 'bonding' interactions

but play a vital role in the understanding of protein structure. The strength of

these interactions is re
ected in the magnitude of the relative density observed

at the pass on the interaction line.

An evaluation of the derived models is the next step in our research in

molecular scene analysis. Assessing the quality of a protein model involves

determining whether or not it makes sense (in terms of our knowledge of the

chemistry, biology and physics of the molecule) and whether it is consistent

with the primary sequence information. Research in model evaluation for ex-

perimentally derived structures has previously focussed on verifying that the

�nal protein model is correct 19.b Recently, Kleywegt and Jones 20 have pro-

posed some quality control criteria for the assessment of intermediate protein

models. The tools they suggest assume a single model, which is evaluated to

determine what parts of the structure need to be revised or rebuilt.

We propose to extend previous work in protein model evaluation in a num-

ber of ways. First, we are considering a comprehensive set of general criteria

that will be considered in the evaluation process. Although implementations

exist for some of these criteria, many of them are still applied through expert

visual inspection of a graphics display for a model. In our approach, individ-

ual criteria are implemented as expert agents, whose potentially con
icting

advice is combined using a learning and problem solving architecture that was

developed for the purpose of integrating multiple sources of expertise 21. Our

research is novel in the sense that it provides for the prediction and compara-

tive assessment of multiple, computationally derived models, and can be used

to guide a heuristic search towards a fully-interpreted protein structure.

The methodology for protein model construction described in this paper

is aimed at assisting structure determination at low to medium resolution,

bEven with techniques for evaluating the �nal protein model, incorrect models have been

published and entered into the protein database.



enabling faster interpretation of crystallographic data than present methods

allow. This, in turn, allows the crystallographer to improve the phase esti-

mates and consequently the protein image. Note that as the resolution of the

experimental data is increased from low to medium to high, individual peaks

in the electron density map evolve into multiple peaks representing backbone

and sidechain portions of each residue and �nally into peaks representing the

atoms themselves. The point at which these events occur is dependent on such

factors as temperature, quality of the crystal and the quality of data derived

from the di�raction experiment.

In conclusion, numerical techniques have been implemented and tested for

the derivation of protein models from protein image data. These represent

a signi�cant advancement in our ability to automatically analyze molecular

scenes. In particular, they allow us to construct a critical point graph from

which we can derive and evaluate potential tertiary structures for the protein.

These techniques can be used to accelerate the process of structure deter-

mination, resulting in the expansion of the the repository of known protein

structures.
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