
336 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

}
}

}

You could, in principle, rearrange any number of additional arrays along with
brr, but this becomes wasteful as the number of such arrays becomes large. The
preferred technique is to make use of an index table, as described in§8.4.

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1978, Communications of the ACM, vol. 21, pp. 847–857. [1]

8.3 Heapsort

While usually not quite as fast as Quicksort, Heapsort is one of our favorite
sorting routines. It is a true “in-place” sort, requiring no auxiliary storage. It is an
N log2 N process, not only on average, but also for the worst-case order of input data.
In fact, its worst case is only 20 percent or so worse than its average running time.

It is beyond our scope to give a complete exposition on the theory of Heapsort.
We will mention the general principles, then let you refer to the references[1,2], or
analyze the program yourself, if you want to understand the details.

A set of N numbersai, i = 1, . . . , N , is said to form a “heap” if it satisfies
the relation

aj/2 ≥ aj for 1 ≤ j/2 < j ≤ N (8.3.1)

Here the division inj/2 means “integer divide,” i.e., is an exact integer or else is
rounded down to the closest integer. Definition (8.3.1) will make sense if you think
of the numbersai as being arranged in a binary tree, with the top, “boss,” node being
a1, the two “underling” nodes beinga2 anda3, their four underling nodes beinga4

througha7, etc. (See Figure 8.3.1.) In this form, a heap has every “supervisor” greater
than or equal to its two “supervisees,” down through the levels of the hierarchy.

If you have managed to rearrange your array into an order that forms a heap,
then sorting it is very easy: You pull off the “top of the heap,” which will be the
largest element yet unsorted. Then you “promote” to the top of the heap its largest
underling. Then you promoteits largest underling, and so on. The process is like
what happens (or is supposed to happen) in a large corporation when the chairman
of the board retires. You then repeat the whole process by retiring the new chairman
of the board. Evidently the whole thing is anN log2 N process, since each retiring
chairman leads tolog2 N promotions of underlings.

Well, how do you arrange the array into a heap in the first place? The answer
is again a “sift-up” process like corporate promotion. Imagine that the corporation
starts out withN/2 employees on the production line, but with no supervisors. Now
a supervisor is hired to supervise two workers. If he is less capable than one of
his workers, that one is promoted in his place, and he joins the production line.
After supervisors are hired, then supervisors of supervisors are hired, and so on up



8.3 Heapsort 337

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

a1

a2 a3

a7a6a5 a4

a8 a9 a10 a11 a12

Figure 8.3.1. Ordering implied by a “heap,” here of 12 elements. Elements connected by an upward
path are sorted with respect to one another, but there is not necessarily any ordering among elements
related only “ laterally.”

the corporate ladder. Each employee is brought in at the top of the tree, but then
immediately sifted down, with more capable workers promoted until their proper
corporate level has been reached.

In the Heapsort implementation, the same “sift-up” code can be used for the
initial creation of the heap and for the subsequent retirement-and-promotion phase.
One execution of the Heapsort function represents the entire life-cycle of a giant
corporation: N/2 workers are hired; N/2 potential supervisors are hired; there is a
sifting up in the ranks, a sort of super Peter Principle: in due course, each of the
original employees gets promoted to chairman of the board.

void hpsort(unsigned long n, float ra[])
Sorts an array ra[1..n] into ascending numerical order using the Heapsort algorithm. n is
input; ra is replaced on output by its sorted rearrangement.
{

unsigned long i,ir,j,l;
float rra;

if (n < 2) return;
l=(n >> 1)+1;
ir=n;
The index l will be decremented from its initial value down to 1 during the “hiring” (heap
creation) phase. Once it reaches 1, the index ir will be decremented from its initial value
down to 1 during the “retirement-and-promotion” (heap selection) phase.
for (;;) {

if (l > 1) { Still in hiring phase.
rra=ra[--l];

} else { In retirement-and-promotion phase.
rra=ra[ir]; Clear a space at end of array.
ra[ir]=ra[1]; Retire the top of the heap into it.
if (--ir == 1) { Done with the last promotion.

ra[1]=rra; The least competent worker of all!
break;

}
}
i=l; Whether in the hiring phase or promotion phase, we

here set up to sift down element rra to its proper
level.

j=l+l;
while (j <= ir) {

if (j < ir && ra[j] < ra[j+1]) j++; Compare to the better underling.
if (rra < ra[j]) { Demote rra.

ra[i]=ra[j];



338 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

i=j;
j <<= 1;

} else break; Found rra’s level. Terminate the sift-down.
}
ra[i]=rra; Put rra into its slot.

}
}

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 11. [2]

8.4 Indexing and Ranking

The concept of keys plays a prominent role in the management of data files. A
data record in such a file may contain several items, or fields. For example, a record
in a file of weather observations may have fields recording time, temperature, and
wind velocity. When we sort the records, we must decide which of these fields we
want to be brought into sorted order. The other fields in a record just come along
for the ride, and will not, in general, end up in any particular order. The field on
which the sort is performed is called the key field.

For a data file with many records and many fields, the actual movement of N
records into the sorted order of their keys K i, i = 1, . . . , N , can be a daunting task.
Instead, one can construct an index table Ij , j = 1, . . . , N , such that the smallest
Ki has i = I1, the second smallest has i = I2, and so on up to the largest Ki with
i = IN . In other words, the array

KIj j = 1, 2, . . . , N (8.4.1)

is in sorted order when indexed by j. When an index table is available, one need not
move records from their original order. Further, different index tables can be made
from the same set of records, indexing them to different keys.

The algorithm for constructing an index table is straightforward: Initialize the
index array with the integers from 1 to N , then perform the Quicksort algorithm,
moving the elements around as if one were sorting the keys. The integer that initially
numbered the smallest key thus ends up in the number one position, and so on.

#include "nrutil.h"
#define SWAP(a,b) itemp=(a);(a)=(b);(b)=itemp;
#define M 7
#define NSTACK 50

void indexx(unsigned long n, float arr[], unsigned long indx[])
Indexes an array arr[1..n], i.e., outputs the array indx[1..n] such that arr[indx[j]] is
in ascending order for j = 1, 2, . . . , N . The input quantities n and arr are not changed.
{

unsigned long i,indxt,ir=n,itemp,j,k,l=1;
int jstack=0,*istack;
float a;

istack=ivector(1,NSTACK);


