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The method of the joint probability distribution functions is

applied to derive a probabilistic formula which is able to phase

re¯ections in the MAD case accurately, under the condition

that the anomalous-scatterer substructure has been de®ned

previously. The mathematical approach takes into account

both measurement and model errors, which are treated as

primitive random variables, as well as the atomic positions

de®ning the unknown part of the crystal structure. The

probabilistic formula has the classical tangent expression. All

the parameters in¯uencing the phase estimation are immedi-

ately interpretable in terms of experimental quantities: i.e.

anomalous and dispersive differences, magnitude of the errors

and normalized structure-factor moduli. The formula has been

applied to several practical cases: a procedure has also been

designed which is able to re®ne the phases and lead to easily

interpretable electron-density maps.
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1. Notation

N: number of atoms in the unit cell.

a: number of anomalous scatterers in the unit cell.

na = N ÿ a: number of non-anomalous scatterers.

fj � f 0
j ��fj � if 00j � f 0j � if 00j : scattering factor of the ith atom.

f 0 is its real and f 00 its imaginary part. The thermal factor is

included.

�a, �na, �N =
P�f 02j � f 002j �, where the summation is extended

to a, na and N atoms.

F� = jF�j exp�i'�� = Fh =
PN

j�1 fj exp�2�hrj�.
F�a = jF�a j exp�i'�a � =

P
a fj exp�2�ihrj�.

Fÿ = jFÿj exp�i'ÿ� = Fÿh =
PN

j�1 fj exp�ÿ2�ihrj�.
Fÿa = jFÿa j exp�i'ÿa � =

P
a fj exp�ÿ2�ihrj�.

�ano = jF�j ÿ jFÿj.

2. Introduction

The tunability and increased power of modern synchrotron

beamlines has made MAD (multiwavelength anomalous

dispersion) techniques a very important tool in protein crys-

tallography. Some traditional approaches consider SAD

(single-wavelength anomalous dispersion) and MAD data as

special SIR (single isomorphous replacement) and MIR

(multiple isomorphous replacement) cases (Blow & Crick,

1959; Terwilliger & Eisenberg, 1987). Other approaches apply

probabilistic criteria (PaÈhler et al., 1990; Chiadmi et al., 1993)

to the algebraic analysis provided by Karle (1980), which uses

the wavelength-dependence of the atomic structure factor of

the anomalous scatterers.
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More recently, the rigorous method of the joint probability

distribution functions has found a wide range of applications

when SAD/MAD data are available.

(i) To ®nd the anomalous scatterer substructure (Burla et

al., 2002, 2003). The method is able to carefully estimate the

structure-factor moduli corresponding to the normal scat-

tering of the anomalous-scatterer substructure, to which

Patterson or direct methods may be applied in order to locate

the anomalous scatterers (for other techniques, see Blow &

Rossmann, 1961; North, 1965; Matthews, 1966; Terwilliger et

al., 1987; Miller et al., 1994; Sheldrick & Gould, 1995).

(ii) To phase re¯ections in the SAD case (Giacovazzo &

Siliqi, 2001a; referred to as paper I in the following) on the

assumption that the anomalous-scatterer substructure has

been previously found.

(iii) To phase re¯ections in the two-wavelength case

(Giacovazzo & Siliqi, 2001b; referred to as paper II in the

following). In spite of the complex mathematical apparatus

very simple conclusive formulas were derived, estimating

phases in terms of anomalous and of dispersive differences.

This paper describes a further step of the method, which is

generalized to the n-wavelength case. An approximation used

in the paper II for the two-wavelength case, particularly rough

for small structures, is avoided and a general unbiased prob-

abilistic formula is provided that is valid for any wavelength

number. The theoretical results are implemented in an auto-

matic procedure and have been successfully applied to several

practical cases.

3. The joint probability distribution P(F1
+, . . . , Fn

+, F1
ÿ,

. . . , Fn
ÿ|Fa1

+ , . . . , Fan
+ , Fa1

ÿ , . . . , Fan
ÿ )

In accordance with the premises and the results obtained in

Appendix A, the conditional joint probability distribution

P(E�1 , . . . , E�n , Eÿ1 , . . . , Eÿn |E�a1, . . . , E�an, Eÿa1, . . . , Eÿan) (in

short P) is given by

P ' �ÿ�2n�qÿ1
Qn
i�1

�RiGi�

� exp

�
ÿ 1

q

Pn
i�1

�ii�R2
i � R2

ai ÿ 2RiRai cos�'�i ÿ '�ai��

ÿ 1

q

P2n

i�n�1

�ii�G2
i �G2

ai ÿ 2GiGai cos�'ÿi ÿ 'ÿai��

ÿ 2

q

Pn
i;j�1;i<j

�ij�RiRj cos�'�i ÿ '�j � ÿ RiRaj cos�'�i ÿ '�aj�

ÿ RjRai cos�'�j ÿ '�ai� � RaiRaj cos�'�ai ÿ '�aj��
ÿ 2

q

Pn
i;j�1;i<j

�n�i;n�j�GiGj cos�'ÿi ÿ 'ÿj � ÿGiGaj cos�'ÿi ÿ 'ÿaj�

ÿ GjGai cos�'ÿj ÿ 'ÿai� �GaiGaj cos�'ÿai ÿ 'ÿaj��
ÿ 2

q

Pn
i;j�1

�i;n�j�RiGj cos�'�i � 'ÿj � ÿ RiGaj cos�'�i � 'ÿaj�

ÿ GjRai cos�'ÿj � '�ai� � RaiGaj cos�'�ai � 'ÿaj��
�
: �1�

Equation (4) in paper II is a particular case (for n = 2) of (1).

The coef®cients �ij/q are related to the elements (�ij) of the

matrix kÿ1 (see Appendix A) by the following relationships:

�ii

q
� �ii

e�i
for i � 1; 2; . . . ; n;

�ii

q
� �ii

eÿi
for i � n� 1; . . . ; 2n;

�ij

q
� �ij

�e�i e�j �1=2
for i; j � n;

�ij

q
� �ij

�e�i eÿj �1=2
for i � n; j > n;

�ij

q
� �ij

�eÿi eÿj �1=2
for i; j > n:

We now give the explicit expressions for the elements �ij and

for the factor q. DenotingQ � Qn
p�1

���2
p �ÿ2

p �;

and

S � Pn
p�1

���2
p � �ÿ2

p �;

we have

�ij � ÿ
Q

��2
i ��2

j

for j 6� i and i; j � n;

�ij � ÿ
Q

��2
i �ÿ2

jÿn

for j 6� i and i � n; n < j � 2n;

�ij � ÿ
Q

�ÿ2
iÿn�

ÿ2
jÿn

for j 6� i and n < i; j � 2n;

�ii �
Q
��2

i

1ÿ 1

��2
i

� S

� �
if i � n;

�ii �
Q
�ÿ2

iÿn

1ÿ 1

�ÿ2
iÿn

� S

� �
if n < i � 2n;

q � Q�1� S�:
It is worthwhile noting that the coef®cients �ij, for i 6� j, are

always negative, no matter what the value of n is.

Let us now sum the elements of the ith row of the matrix k:

for a ®xed i value,P4n

j�1;j6�i

�ij � ÿ
1

��2
i

Q ÿ 1

��2
i

� S

� �
for i � n

P4n

j�1;j6�i

�ij � ÿ
1

�ÿ2
iÿn

Q ÿ 1

�ÿ2
iÿn

� S

� �
for n < i � 2n:

We can then establish the following relationship:

�ii �
1

��2
i

Qÿ P4n

j�1;j 6�i

�ij for i � n; �2a�

�ii �
1

�ÿ2
iÿn

Qÿ P4n

j�1;j6�i

�ij for n < i � 2n: �2b�

It is worthwhile noting that in paper II we introduced the

approximation �ii =ÿP4n
j�1�ij: this was justi®ed by the fact that



�2 = h|�|2i/�na is usually quite a small quantity. Here the more

rigorous equations (2) are used, which will introduce in the

conclusive probabilistic formula an additional Sim-like

contribution (Sim, 1959a,b), which was neglected in paper II.

The relation (2) allows us to rewrite P in a more appealing

way,

P � ���ÿ2nqÿ1
Qn
i�1

�RiGi�

� exp

�
ÿ 1

q

Q Pn
i�1

1

��2
i

jE�i ÿ E�aij2 �
Pn
i�1

1

�ÿ2
iÿn

jEÿi ÿ Eÿaij2
� �

� 1

q

Pn
i;j�1;i<j

�ijj�E�i ÿ E�j � ÿ �E�ai ÿ E�aj�j2

� 1

q

Pn
i;j�1;i<j

�n�i;n�jj�Eÿi ÿ Eÿj � ÿ �Eÿai ÿ Eÿaj�j2

� 1

q

Pn
i;j�1

�i;n�jj�E�i ÿ Eÿ�j � ÿ �E�ai ÿ Eÿ�aj �j2
�
; �3�

where E* represents the complex conjugate of E. The above

equation suggests that: (i) the joint probability distribution

will attain its maximum value when the squared moduli in the

exponential assume their minimum value, which complies

perfectly with expectations, (b) the coef®cients �ij/q modulate

the probability function in accordance with the error distri-

bution and (c) the moduli of the structure-factor differences

play the role of lack-of-closure criterion.

4. The conditional probability P(u1
+, . . . , un

ÿ| . . . )

The conditional probability P('�1 , . . . , 'ÿn | . . . ) is easily

derived from (1) by standard techniques. The use of the

relationships (2) leads to

P�'�1 ; . . . ; 'ÿn j . . .� �

Lÿ1 exp

�
ÿ 2

q

Pn
i;j�1;i<j

�ij�RiRj cos�'�i ÿ '�j �

ÿ RiRaj cos�'�i ÿ '�aj� ÿ RjRai cos�'�j ÿ '�ai��
ÿ 2

q

Pn
i;j�1;i<j

�n�i;n�j�GiGj cos�'ÿi ÿ 'ÿj �

ÿ GiGaj cos�'ÿi ÿ 'ÿaj� ÿGjGai cos�'ÿj ÿ 'ÿai��
ÿ 2

q

Pn
i;j�1

�i;n�j�RiGj cos�'�i � 'ÿj � ÿ RiGaj cos�'�i � 'ÿaj�

ÿ GjRai cos�'ÿj � '�ai��

ÿ 2

q

Pn
i�1

ÿ 1

��2
i

Q� P2n

j�1;j 6�i

�ij

" #
RiRai cos�'�i ÿ '�ai�

ÿ 2

q

Pn
i�1

ÿ 1

�ÿ2
iÿn

Q� P2n

j�1;j 6��n�i�
�n�i;j

" #
GiGai cos�'ÿi ÿ 'ÿai�

�
:

�4�

5. The conditional probability P(u1
+|Eai

+ , Eai
ÿ, Ri,Gi, i = 1,

. . . , n)

In paper II, we explored three different ways of obtaining

from P('�1 , . . . , 'ÿ2 | . . . ) a sensible expression for the condi-

tional distribution P('�1 |E�ai , Eÿai , Ri, Gi, i = 1, . . . , 2). The most

effective way involves the approximation

'�1 � '�2 � ÿ'ÿ1 � ÿ'ÿ2 :
In accordance with paper II, we will assume

'�1 � '�2 � . . . � '�n � ÿ'ÿ1 � . . . � ÿ'ÿn :
(3) then reduces to

P�'�1 j . . .� � �2�I0�L1��ÿ1 exp�L1 cos�'�1 ÿ ��1 ��; �5�
where

tan ��1 �

Pn
j�1

cjRaj sin '�aj �
Pn
j�1

cn�jGaj sin 'ÿ�ajPn
j�1

cjRaj cos '�aj �
Pn
j�1

cn�jGaj cos 'ÿ�aj

� T

B
; �6�

L1 � �T2 � B2�1=2; �7�

'ÿ�aj � ÿ'ÿaj;

cj � 2

Q
��2

j

Rj �
Pn

p�1;p 6�j

�jp�Rp ÿ Rj� �
Pn
p�1

�j;n�p�Gp ÿ Rj�
" #�

q

if j < n; �8a�

cj � 2

� Q
�ÿ2

jÿn

Gjÿn �
Pn
p�1

�jp�Rp ÿGjÿn�

� Pn
p�1;p6�jÿn

�j;p�n�Gp ÿGjÿn�
��

q

for n < j � 2n: �8b�
The reader can easily verify that equations (16)±(19) in paper

II are approximated forms (for n = 2) of (6)±(8).

The terms

2
Q
��2

j

Rj

q
and

2
Q
�ÿ2

jÿn

Gj

q
;

components of the cj coef®cients in (8), were omitted in

equations (16)±(19) in paper II owing to the approximations

introduced there. In the tangent formula (6) they are multi-

plied by Raj and Gaj, respectively, and constitute the Sim-type

contribution.

(5) is a von Mises distribution: ��1 is the most probable value

of '�1 and L1 is its concentration parameter. The value ��1 is

de®ned as a function of the normalized structure factors of the

anomalous-scatterer substructure: the terms cj may be

considered as weights, the values of which depend on the

observed dispersive and anomalous differences and on the

errors at the various wavelengths.

To familiarize the reader with (8), in Appendix B we brie¯y

treat the case n = 3 as an example. According to this appendix,

we can rewrite (8a) and (8b) in a simpli®ed form,
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cj � 2

Q
��2

j

Rj �
Pn
p�1

��jp�Rp ÿ Rj� � �j;n�p�Gp ÿ Rj��
( )�

q

for j � n; �9a�

cj � 2

Q
�ÿ2

jÿn

Gj �
Pn
p�1

��jp�Rp ÿGjÿn� � �j;p�n�Gp ÿGjÿn��
( )�

q

for n < j � 2n: �9b�
The tangent formula (6) and its concentration parameter L1

may be rewritten in an alternative form which reveals addi-

tional probabilistic properties. Let us introduce (9a) and (9b)

directly into the numerator and denominator of (6). The

calculations, brie¯y described in Appendix C, show the

following.

(i) The Sim-like contributions to T and B may be written as

2

q

QPn
j�1

Rj

��2
j

Im�E�aj� �
Gj

�ÿ2
j

Im�Eÿ�aj �
" #

and

2

q

QPn
j�1

Rj

��2
j

Re�E�aj� �
Gj

�ÿ2
j

Re�Eÿ�aj �
" #

;

respectively. Accordingly, the Sim-like term tries to drive the

value of ��1 towards the phase of the vectorPn
j�1

�w�j E�aj � wÿj Eÿ�aj �; �10�

where

w�j �
2

q

Q Rj

��2
j

� 2

1� S

Rj

��2
j

;

wÿj �
2

q

Q Gj

�ÿ2
j

� 2

1� S

Gj

�ÿ2
j

:

(ii) The contribution to T arising from anomalous and

dispersive differences may be written as

2

q

� Pn
j;p�1;p>j

� ÿ �jp�Rj ÿ Rp�Im�E�aj ÿ E�ap�

ÿ �n�j;n�p�Gj ÿGp�Im�Eÿ�aj ÿ Eÿ�ap ��

ÿ Pn
j;p�1

�j;n�p�Rj ÿGp�Im�E�aj ÿ Eÿ�ap �
�
:

The corresponding contribution to B may be written as

2

q

� Pn
j;p�1;p>j

� ÿ �jp�Rj ÿ Rp�Re�E�aj ÿ E�ap�

ÿ �n�j;n�p�Gj ÿGp�Re�Eÿ�aj ÿ Eÿ�ap ��

ÿ Pn
j;p�1

�j;n�p�Rj ÿGp�Re�E�aj ÿ Eÿ�ap �
�
:

Accordingly, the contribution arising from anomalous and

dispersive differences drives the value of ��1 to the phase of the

vector

Pn
j;p�1;p>j

�wjp�E�aj ÿ E�ap� � wn�j;n�p�Eÿ�aj ÿ Eÿ�ap ��

� Pn
j;p�1

wj;n�p�E�aj ÿ Eÿ�ap �; �11�

where

wjp � ÿ
2

q
�jp�Rj ÿ Rp� � �

2

�1� S���2
j ��2

p

�Rj ÿ Rp�;

wn�j;n�p � ÿ
2

q
�n�j;n�p�Gj ÿGp� � �

2

�1� S��ÿ2
j �ÿ2

p

�Gj ÿGp�;

wj;n�p � ÿ
2

q
�j;n�p�Rj ÿGp� � �

2

�1� S���2
j �ÿ2

p

�Rj ÿGp�:

Combining (10) and (11) allows us to state the following rule:

the most probable phase of '�1 , say ��1 , is the phase of the

vectorPn
j�1

�w�j E�aj � wÿj Eÿ�aj �

� Pn
j;p�1;p>j

�wjp�E�aj ÿ E�ap� � wn�j;n�p�Eÿ�aj ÿ Eÿ�ap ��

� Pn
j;p�1

wj;n�p�E�aj ÿ Eÿ�ap � �12�

and the reliability parameter L1 of the phase estimate is

nothing else but its modulus. It may be noted that the larger

the number of wavelengths, the larger the number of terms in

(10) and (11) and therefore the larger (on the average) the

reliability of the phase estimate.

6. The least-squares procedure

Let us now return to analyse (12). While (6)±(9) seem to

indicate that the contribution arising from anomalous and

dispersive differences depends on the E�aj and on the Eÿaj values

(and therefore on the values of �fj and f 00j at the various

wavelengths), the algebraic form of (11) reveals that the most

probable value of '�1 , say ��1 , actually depends on the differ-

ences (E�aj ÿ E�ap), (E�aj ÿ Eÿ�ap ) and (Eÿ�aj ÿ Eÿ�ap ). This result

justi®es the practice (see, for example, Otwinowski, 1991)

adopted in our procedure of re®ning the anomalous-scatterer

substructure and the anomalous components of the scattering

factors of the anomalously scattering atoms by minimizing the

quantities P
H

P
j

�j�anojj ÿ Kj�jF�aj ÿ Fÿ�aj j��2 �13�

and P
H

P
j;p

�j�dispj;pj ÿ Kj;p�jFaj ÿ Fapj��2; �14�

where j and p denote the wavelengths, Km and Kj,p are suitable

scale factors and

�dispj;p � Fj ÿ Fp; Fj �
jF�j j � jFÿj j

2
; Faj �

F�aj � Fÿ�aj

2
:



A simple computer program has been written to implement

the approach described above. The program performs least-

squares cycles minimizing the quantities (13) and (14) and

applies the formula (12) to evaluate the phases. It operates as

follows.

(i) The experimental values jF�j j, �(jF�j j), jFÿj j, �(jFÿj j) are

read together with the expected �f 0j , f 00j values for each jth

wavelength. If the re¯ection is centric, we set

jF�j j � jFÿj j � �jF�j j � jFÿj j�=2;

��jF�j j� � ��jFÿj j� � ��2�jF�j j� � �2�jFÿj j��1=2:

(ii) All the diffraction intensities are normalized with

respect to �na.

(iii) A full-matrix least-squares program is applied: the

atomic positional parameters of the anomalous scatterers,

their occupancies and thermal factors are considered to be

global parameters (a unique structural model is re®ned via all

the measured intensities); the f 00 and the �f 0 values are treated

as local parameters (re®ned via the intensities collected at

speci®c wavelengths).

(iv) The global parameters and the f 00 values are re®ned by

minimizing the quantity (13). The summation over H includes

70% of the measured re¯ections (those with the largest values

of h|�ano|i, where the average is taken over all the wave-

lengths).

(v) The model obtained at step (iv), the occupancies

excluded, is kept ®xed when the quantity (14) is minimized for

de®ning the differences �f 0j ÿ�f 0p. In this case, the summation

over H uses only centric re¯ections, if their number is suf®-

ciently large.

(vi) The re®nement is controlled by suitable weights. For

step (iv), the weight associated with the intensity of the

re¯ection h measured at the wavelength j is the product of two

factors: the ®rst is re¯ection-dependent and the second

wavelength-dependent,

Wlsq�h; j� � ��2jF�hj j � �2jFÿhj j�ÿ1 � RSDÿ1
j :

RSDj is the crystallographic residual obtained in the preceding

least-squares cycle for the jth wavelength. It is introduced in

the procedure after some cycles of unweighted least squares.

For step (v), the least-squares weight for the re¯ection h

corresponding to the intensities measured at the wavelength

pair (j, p) is

Wlsq�h; j; p� � ��2jF�hj j � �2jFÿhj j � �2jF�hpj � �2jFÿhpj�ÿ1=2 � RSDÿ1
jp ;

where RSDjp is the crystallographic residual corresponding to

pair of wavelengths (j, p).

(vii) After least-squares convergence the formula (12) is

calculated. Each term in the tangent expression is additionally

weighted by the least-squares residual factors RSD.

The procedure has been written to allow an automatic

re®nement of the initial model: however, the user can modify

the default if necessary.
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Table 1
Set of test structures.

PDB is the Protein Data Bank code, SG the space group, NRES is the number of residues, solv is the percentage solvent content, nwl is the number of wavelengths
used in the experiment, An. scatt. is the atomic species of the anomalous scatterers (the number of the anomalous scatterers per asymmetric unit is given in
pranetheses) and Res is the limiting resolution to which the data are measured. When native data are available, the resolution is quoted in parentheses.

Structure code PDB SG NRES Solv. (%) nwl An. scatt. Res (AÊ ) Reference

TTG 1srv C2221 145 53 4 Se (3) 2.27 (1.7) Walsh et al. (1999)
JIA 1c8u C2221 570 68 4 Se (8) 1.90 Li et al. (2000)
PSCP 1ga1 P62 372 59 3 Br (13) 1.40 Dauter et al. (2001)
CYANASE 1dw9 P1 1560 44 4 Se (40) 2.40 (1.65) Walsh et al. (2000)
TGEV 1lvo P21 1812 53 4 Se (60) 2.70 (1.95) Anand et al. (2002)
KPR 1ks9 P42212 291 43 3 Se (8) 1.70 Silinski et al. (2001)
AEPT 1m32 P21 2196 59 3 Se (66) 2.60 (2.2) Chen et al. (2002)
TM0665 1j6n P21 1212 52 3 Se (45) 2.60 (1.8) Joint Centre for Structural

Genomics (to be published)
MDD 1®4 P22212 832 55 3 Se (9) 2.28 Bonanno et al. (2001)
IDI 1i9a P41212 364 64 2 Se (8) 2.40 Bonanno et al. (2001)
CAUFD 2fdn P43212 55 10 1 Fe (8) 0.94 Dauter et al. (1997)
GILU 8xia I222 388 55 1 Mn (1); Mg (1) 1.50 Carrell et al. (1989)
HAPTBR 1fj2 P21 464 51 1 Br (22) 1.80 Betzel et al. (1988)
SAV3 1svn P212121 269 40 1 Ca (4); S (3); Cl (2) 1.74 Betzel et al. (1988)
LYSO2 1l78 P43212 258 40 1 S (10); Cl (8) 1.53 Dauter et al. (1999)
DOROTA 1ick P212121 12 29 1 P (10) 0.95 Dauter & Adamiak (2001)

Table 2
KPR calculated data: errors (h�'i) of the phase estimates provided by
(12).

Values in parentheses are the weighted phase error (h�'iw). For the case No.
sites = 8, two additional phase errors are given: the ®rst corresponds to a
random error in the calculated data up to 10%|F | and the second to a random
error up to 50%|F |.

No. sites h�'i (h�'iw) (�)

8 12 (12) 28 (19) 64 (58)
7 24 (21) Ð Ð
6 33 (28) Ð Ð
5 40 (34) Ð Ð
4 47 (41) Ð Ð
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7. Experimental tests

To check the correctness of our theoretical results and to

evaluate the ef®ciency of the proposed least-squares

approach, we have used experimental data from 16 test

structures: they are listed, together with their main crystallo-

chemical data, in Table 1. In this table we specify for each test

structure the Protein Data Bank code, the space group, the

number of residues, the number of wavelengths used for data

collection, the type and the number of anomalous scatterers in

the asymmetric unit and the data resolution. For ten structures

the data were collected by MAD techniques; the six SAD

cases are grouped in the last rows of the Table. In addition, to

validate the approximations introduced in our mathematical

approach, we have used for the three-wavelength case the

calculated data of the structure KPR

(32 249 re¯ections): we simulated cases

in which a subset of or all the Se atoms

were located (No. sites from 4 to 8). In

order to verify the effect of the

measurement errors on the ef®ciency of

(12), we have introduced into the

calculated data, for the case in which all

the eight Se atoms are correctly located,

random errors up to 10% |F | and up to

50% |F |. The corresponding phase

errors are in Table 2: the ®gures show

the robustness of our conclusive

formula (12).

Returning back to the observed data,

for each test structure an initial

substructure model has been provided

in accordance with the method recently

described by Burla et al. (2002, 2003).

The least-squares approach described in

the x6 of this paper was then applied

and the protein phases were estimated

via the formula (12). The results

obtained by complete automation

(without any user intervention) are

described in Table 3, where under

the heading SAD/MAD we quote

the number of symmetry-independent

re¯ections phased at the end of the

least-squares procedure, the corre-

sponding phase error (in degrees), the

correlation factor between our last

electron-density map and the published

map, the CPU time necessary to

perform the phasing procedure (in s for

a Dell Precision 830 Pentium V

1.8 MHz). This step involves all the

re¯ections up to the SAD/MAD data

resolution (see the last column of

Table 1).

The phases thus obtained were

automatically submitted to the solvent-

¯attening procedure FLEX (Giaco-

vazzo & Siliqi, 1997). In Table 3 we show for each test

structure the number of re¯ections phased via FLEX, the

corresponding phase error and the correlation factor between

our ®nal electron-density map and the published map. This

step involves all re¯ections to the native data resolution, when

available; otherwise, all re¯ections to the SAD/MAD data

resolution are used (see the last column of Table 1).

We observe the following.

(i) In all cases, the combined use of the least-squares

procedure and of formula (12) is able to provide phases that

are suf®ciently accurate to constitute a useful basis for the

phase-extension procedure FLEX.

(ii) Good electron-density maps are obtained for SAD as

well as for MAD data.

Table 3
Test structures.

For each test structure, under the heading SAD/MAD we show the number (NREF) of symmetry-
independent re¯ections phased at the end of the re®nement approach described in x6, the corresponding
phase error h�'i (the weighted phase error is given in parentheses), the correlation factor (CC) between
our last electron-density map and the published map and the CPU time necessary to re®ne the
substructure model (CPU). Under the heading FLEX we give the number of re¯ections phased after the
application of the solvent-¯attening procedure FLEX, the corresponding phase error (h�'i) (the
weighted phase error is given in parentheses) and the correlation factor (CC) between our ®nal electron-
density map and the published map.

SAD/MAD FLEX

Structure code NREF h�'i (�) CC CPU NREF h�'i (�) CC

TTG 7139 62 (52) 0.62 18 15718 57 (51) 0.73
JIA 32830 57 (46) 0.54 361 74732 40 (30) 0.88
PSCP 40163 69 (59) 0.45 221 87701 44 (38) 0.83
CYANASE 63166 59 (58) 0.48 5677 187107 68 (61) 0.61
TGEV 43043 57 (49) 0.58 5200 146248 67 (63) 0.72
KPR 11536 57 (46) 0.62 45 32249 60 (55) 0.75
AEPT 82026 56 (44) 0.56 7311 82203 50 (41) 0.73
TM0665 73990 47 (35) 0.74 5508 97094 44 (37) 0.82
MDD 21425 64 (56) 0.53 65 22195 60 (57) 0.69
IDI 19391 63 (52) 0.55 50 21332 50 (42) 0.82
CAUFD 19266 42 (30) 0.60 50 29095 44 (34) 0.80
GILU 69780 65 (57) 0.35 31 74882 32 (26) 0.90
HAPTBR 33996 65 (58) 0.49 167 35247 54 (49) 0.68
SAV3 19838 62 (53) 0.42 18 25556 51 (46) 0.68
LYSO2 15132 56 (46) 0.57 54 17923 46 (38) 0.78
DOROTA 3360 48 (42) 0.53 6 16102 44 (34) 0.82

Table 4
Results obtained when (14) is omitted from the re®nement procedure.

For de®ninitions of the headings of the various columns see Table 3.

SAD/MAD FLEX

Structure code NREF h�'i (�) CC CPU NREF h�'i (�) CC

TTG 5987 64 (57) 0.57 15 15718 64 (52) 0.66
JIA 32830 58 (48) 0.56 163 74732 42 (36) 0.88
PSCP 40163 70 (62) 0.40 93 87701 44 (38) 0.83
CYANASE 63166 59 (58) 0.48 5677 187107 68 (61) 0.61
TGEV 43043 57 (43) 0.64 3993 146248 65 (61) 0.72
KPR 11536 57 (41) 0.66 35 32249 57 (52) 0.78
AEPT 82026 50 (41) 0.63 6518 82203 48 (40) 0.76
TMO665 73815 47 (36) 0.74 4136 97044 43 (37) 0.84
MDD 21425 63 (53) 0.56 37 22195 56 (49) 0.77
IDI 19391 67 (53) 0.50 35 21332 54 (49) 0.77



(iii) The presence of different anomalously scattering

species does not hinder the success of the procedure.

(iv) The CPU time strongly depends on the number of

measured symmetry-independent re¯ections, as well as on the

structural and on the substructural complexity. For most of the

test structures the phasing process requires CPU times of the

order of tens or of hundreds of seconds. CYANASE, TGEV,

AEPT and TMO are the most CPU time-consuming cases (up

to 2 h of CPU time): indeed, their native data have relatively

high resolution, their structural complexity is high and their

substructures are constituted of more than 40 Se atoms.

To understand the role of the dispersive differences in the

least-squares approach described in x6, we omitted (14) from

the re®nement procedure. The results, shown in Table 4,

indicate that such an omission does not necessarily decrease

the quality of the ®nal electron-density maps (in four cases the

map improves), while reducing the overall computing time.

This effect may be caused by the minor experimental accuracy

of the dispersive differences with respect to the anomalous

differences. This conclusion is supported by the following

experimental feature: for all the test structures the residuals

RSDjp are rarely smaller than and are usually much larger

than the residuals RSDj. When the difference is large, the

omission of (14) is bene®cial to the quality of the phase esti-

mates. Vice versa, when the RSDjp are comparable with or

smaller than the the RSDj, they provide additional informa-

tion for the phasing process. Our practice of using a weighting

scheme depending on the values of RSDjp and RSDj is a way

to take the above considerations into account.

It may be worthwhile to compare our results with the

corresponding outcomes obtained by other research groups

via well documented programs such as SHARP (de La Fortelle

& Bricogne, 1997), SOLVE/RESOLVE (Terwilliger &

Berenzen, 1999) and DM (Cowtan, 1994). We give in Table 5

(for those structures for which the data are available in the

literature; see Dauter et al., 2002) the following data.

(i) In column 2, the phase errors obtained by SHARP and

by our procedure [i.e. in a default mode, by the application of

(12) followed by the least-squares procedure described in x6].

(ii) In column 3, the results obtained by DM (after the

application of SHARP) and by our FLEX program.

Only one data set is available in the literature for a compar-

ison with the SOLVE/RESOLVE program and concerns

TM0665 (GonzaÂ lez, 2003). The correlation coef®cient to the

re®ned model is 0.45 for the experimental map and 0.62 after

density modi®cation by DM. Our corresponding results are

0.62 and 0.82, respectively.

8. Conclusions

In this paper we have described the following.

(i) A new probabilistic approach able to phase protein

re¯ections when the anomalous-scattering substructure is

known. The ®nal formula includes contributions arising from

anomalous and dispersive differences and combines them with

Sim-like terms. When necessary, such a combination allows us

to overcome the phase ambiguity in the SAD case.

(ii) A simple least-squares procedure particularly designed

for the automatic re®nement of the anomalously scattering

substructure model.

(iii) The applications of the above phasing process to 16 test

structures, including both SAD and MAD cases. The tests

have been made with complete automation and suggest that

protein phasing can succeed fully even in the absence of user

expertise.

The comparison between our results and corresponding

results obtained via other well documented programs suggests

that the method of the joint probability distribution functions

is able to provide powerful phasing formulas, competitive with

those derived by different mathematical approaches. Some

steps of our procedure are rather weak: e.g. the scaling of the

experimental data is obtained via simple Wilson plots (for

more sophisticated approaches, see Blessing & Smith, 1999),

the correction for absorption anisotropy (Blessing, 1995) is not

applied, the resolution is not taken into account in the

weighting scheme adopted for the least-squares step etc. It is

likely that more robust least-squares procedures (Otwinowski,

1991; de La Fortelle & Bricogne, 1997; Pannu & Read, 1996)

would improve the phase estimates further. It is, therefore,

very encouraging that our mathematical approach provides, in

spite of the weak steps, highly competitive results.

APPENDIX A
As in paper II, the positions of the non-anomalous scatterers

will be the primitive random variables. The following

assumptions are made.

(i) F� = F�a + F�na + �+, where F�na is the structure factor

corresponding to the non-anomalous scatterers, all supposed

non-located. Furthermore, �+ = |�|+ exp(i�+) represents the

cumulative error arising from errors in measurements and in

the substructure model of the anomalous scatterers.

(ii) Equivalently, Fÿ = Fÿa + Fÿna + �ÿ.

(iii) Fa, Fna and �+ are uncorrelated with each other.

(iv) h�+i = h�ÿi = 0.

(v) h��i ��j i = h�ÿi �ÿj i = h��i �ÿj i = 0 for any pair of wave-

lengths i, j. This implies that errors in F� and Fÿ are uncor-

related (this is not perfectly true, mostly because � also

contains errors in the model substructure, but the assumption
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Table 5
A comparison between the results obtained by our procedure and
corresponding results obtained by other groups using SHARP and DM.

Structure code h�'i (�), SHARP/
our procedure

h�'i (�), DM/
our procedure

CC, DM/
our procedure

PSCP Ð/69 Ð/44 0.76²/0.83
CAUFD 67/42 49/44 0.70/0.80
GILU 66/65 42/32 0.78/0.90
HAPTBR 65/65 49/54 0.76/0.68
SAV3 66/62 55/51 0.70/0.68
LYSO2 58/56 42/46 0.79/0.78
DOROTA 48/48 38/44 0.84/0.82

² Only the correlation is available in the literature; its value is obtained after the
application of SHARP.
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proved not to be critical and allows us to simplify the calcu-

lations).

Accordingly,

hjF�j2i � jF�a j2 ��na � hj��j2i;
hjFÿj2i � jFÿa j2 ��na � hj�ÿj2i:

As in paper II, we will normalize the structure factors with

respect to the unknown part of the structure. Accordingly,

R exp�i'�� � �A� � iB�� � E� � F�=�1=2
na ;

G exp�i'ÿ� � �Aÿ � iBÿ� � Eÿ � Fÿ=�1=2
na ;

Ra exp�i'�a � � �A�a � iB�a � � E�a � F�a =�
1=2
na ;

Ga exp�i'ÿa � � �Aÿa � iBÿa � � Eÿa � Fÿa =�
1=2;
na

where R, G, Ra and Ga are the pseudo-normalized moduli

(with respect to the non-anomalous scatterer substructure) of

F�, Fÿ, F�a and Fÿa , respectively.

Under the assumptions speci®ed above, we ®rst calculate

the characteristic function

C�u�1 ; . . . ; u�n ; uÿ1 ; . . . ; uÿn ; v�1 ; . . . ; v�n ; vÿ1 ; . . . ; vÿn � �15�
of the distribution

P�A�1 ; . . . ;A�n ;Aÿ1 ; . . . ;Aÿn ;B�1 ; . . . ;B�n ;Bÿ1 ; . . . ;

Bÿn jA�a1; . . . ;Bÿan�;
�16�

where u�1 , . . . , u�n , uÿ1 , . . . , uÿn , v�1 , . . . , v�n , vÿ1 , . . . , vÿn are

carrying variables associated with A�1 , . . . , A�n , Aÿ1 , . . . , Aÿn ,

B�1 , . . . , B�n , Bÿ1 , . . . , Bÿn , respectively. For brevity, we do not

specify the expression of (15).

The probability distribution (16) is obtained by Fourier

inversion of (15). We have

P�A�1 ; . . . ;A�n ;Aÿ1 ; . . . ;Aÿn ;B�1 ; . . . ;B�n ;Bÿ1 ; . . . ;

Bÿn jA�a1; . . . ;Bÿan�

� �ÿ�2n� Qn
j�1

�e�j eÿj �
" #ÿ1

�det k�ÿ1=2 exp ÿ 1

2
Tkÿ1T

� �
;

�17�

where

T � ��A�1 ÿ A�a1��2=e�1 �1=2; . . . ; �A�n ÿ A�an�=�2=e�n �1=2;

�Aÿ1 ÿ Aÿa1�=�2=eÿ1 �1=2; . . . ;

�Aÿn ÿ Aÿan�=�2=eÿn �1=2; �B�1 ÿ B�a1��2=e�1 �1=2; . . . ;

�B�n ÿ B�an�=�2=e�n �1=2; �Bÿ1 ÿ Bÿa1�=�2=eÿ1 �1=2; . . . ;

�Bÿn ÿ Bÿan�=�2=eÿn �1=2�;

k � Q1 0
0 Q2

���� ����;

Q1 �

1 . . . �e�1 e�n �1=2 �e�1 eÿ1 �ÿ1=2 . . . �e�1 eÿn �ÿ1=2

. . . . . . . . . . . . . . . . . .
�e�n e�1 �ÿ1=2 . . . 1 �e�n eÿ1 �ÿ1=2 . . . �e�n eÿn �ÿ1=2

�eÿ1 e�1 �ÿ1=2 . . . �eÿ1 e�n �ÿ1=2 1 . . . �eÿ1 eÿn �ÿ1=2

. . . . . . . . . . . . . . . . . .
�eÿn e�1 �ÿ1=2 . . . �eÿn e�n �ÿ1=2 �eÿn eÿ1 �ÿ1=2 . . . 1

������������

������������
;

Q2 �

1 . . . �e�1 e�n �ÿ1=2 ÿ�e�1 eÿ1 �ÿ1=2 . . . ÿ�e�1 eÿn �ÿ1=2

. . . . . . . . . . . . . . . . . .
�e�n e�1 �ÿ1=2 . . . 1 ÿ�e�n eÿ1 �ÿ1=2 . . . ÿ�e�n eÿn �ÿ1=2

ÿ�eÿ1 e�1 �ÿ1=2 . . . ÿ�eÿ1 e�n �ÿ1=2 1 . . . �eÿ1 eÿn �ÿ1=2

. . . . . . . . . . . . . . . . . .
ÿ�eÿn e�1 �ÿ1=2 . . . ÿ�eÿn e�n �ÿ1=2 �eÿn eÿ1 �ÿ1=2 . . . 1

������������

������������
;

e�j � 1� ��2
j ; eÿj � 1� �ÿ2

j ;

where

��2
j � hj��j j2i=

P
na; �ÿ2

j � hj�ÿj j2i=
P

na :

Q1 and Q2 are (2n) � (2n) matrices. In accordance with paper

II,

�det k� � Qn
i�1

���2
i �ÿ2

i �
e�i eÿi

� �2

1�Pn
j�1

1

��2
j

� 1

�ÿ2
j

 !" #2

:

The element �ij of the matrix kÿ1 may be obtained by

observing that

kÿ1 � Qÿ1
1 0

0 Qÿ1
2

���� ����:
The change of variables

A�i � Ri cos '�i ; Aÿi � Gi cos 'ÿi ;

A�ai � Rai cos '�ai; Aÿai � Gai cos 'ÿai

leads to expression (1) of the main text.

APPENDIX B
As an example, let us specify the expressions of the coef®cient

cj de®ned by the equations (8) for n = 3. The extension to cases

n = 4, 5, . . . is trivial. We do not consider the Sim-type

contributions. We have

c1 � 2��12�R2 ÿ R1� � �13�R3 ÿ R1� � �14�G1 ÿ R1�
� �15�G2 ÿ R1� � �16�G3 ÿ R1��=q;

c2 � 2��21�R1 ÿ R2� � �23�R3 ÿ R2� � �24�G1 ÿ R2�
� �25�G2 ÿ R2� � �26�G3 ÿ R2��=q;

c3 � 2��31�R1 ÿ R3� � �32�R2 ÿ R3� � �34�G1 ÿ R3�
� �35�G2 ÿ R3� � �36�G3 ÿ R3��=q;

c4 � 2��41�R1 ÿG1� � �42�R2 ÿG1� � �43�R3 ÿG1�
� �45�G2 ÿG1� � �46�G3 ÿG1��=q;

c5 � 2��51�R1 ÿG2� � �52�R2 ÿG2� � �53�R3 ÿG2�
� �54�G1 ÿG2� � �56�G3 ÿG2��=q;

c6 � 2��61�R1 ÿG3� � �62�R2 ÿG3� � �63�R3 ÿG3�
� �64�G1 ÿG3� � �65�G2 ÿG3�=q:

Each cj coef®cient is therefore the sum of the elements of the

jth line of the skew-symmetric matrix



0 �12�R2 ÿ R1� . . . �1n�Rn ÿ R1� �1;n�1�G1 ÿ R1� . . . �1;2n�Gn ÿ R1�
�21�R1 ÿ R2� 0 . . . �2n�Rn ÿ R2� �2;n�1�G1 ÿ R2� . . . �2;2n�Gn ÿ R2�

. . . . . . . . . . . . . . . . . . . . .
�n1�R1 ÿ Rn� �n2�R2 ÿ Rn� . . . 0 �n;n�1�G1 ÿ Rn� . . . �n;2n�Gn ÿ Rn�
�n�1;1�R1 ÿG1� . . . �n�1;n�Rn ÿG1� 0 �n�1;2n�Gn ÿG1�

. . . . . . . . . . . . . . . . . . . . .
�2n;1�R1 ÿGn� . . . �2n;n�Rn ÿGn� �2n;n�1�G1 ÿGn� 0

��������������

��������������
:

Since the diagonal elements of the matrix vanish, we can

rewrite (8a) and (8b) as the more simple formula

cj �
Pn
j�1

��jp�Rp ÿ Rj� � �j;n�p�Gp ÿ Rj��=q; j � n;

cj �
Pn
j�1

��jp�Rp ÿGjÿn� � �j;p�n�Gp ÿGjÿn��=q; n < j � 2n:

APPENDIX C
We introduce into (6) the cj expressions given by (9). We

examine two cases (the others can be obtained by simple

generalization).

C1. One-wavelength case

The T term in (6) may be rewritten as

T � 2

q

� Q
��2

1

R1 � �12�G1 ÿ R1�
� �

Ra1 sin '�a1

ÿ
Q
�ÿ2

1

G1 � �12�R1 ÿG1�
� �

Ga1 sin 'ÿa1

�
� 2

q

�Q 1

��2
1

R1Ra1 sin '�a1 �
1

�ÿ2
1

G1Ga1 sin 'ÿ�a1

� �
� �12�G1 ÿ R1� Ra1 sin '�a1 ÿGa1 sin 'ÿ�a1

� ��
� 2

q

�Q R1

��2
1

Im�E�a1� �
G1

�ÿ2
1

Im�Eÿ�a1 �
� �

� �12�G1 ÿ R1�Im�E�a1 ÿ Eÿ�a1 �
�
; �18�

where Im(x) stands for `imaginary part of x'.

The B term in (6) may be rewritten as

B � 2

q

� Q
��2

1

R1 � �12�G1 ÿ R1�
� �

Ra1 cos'�a1

�
Q
�ÿ2

1

G1 � �12�R1 ÿG1�
� �

Ga1 cos 'ÿa1

�
� 2

q

�Q 1

��2
1

R1Ra1 cos'�a1 �
1

�ÿ2
1

G1Ga1 cos 'ÿ�a1

� �
� �12�G1 ÿ R1� Ra1 cos '�a1 ÿGa1 cos 'ÿ�a1

� ��
� 2

q

�Q R1

��2
1

Re�E�a1� �
G1

�ÿ2
1

Re�Eÿ�a1 �
� �

� �12�G1 ÿ R1�Re�E�a1 ÿ Eÿ�a1 �
�
; �19�

where Re(x) stands for `real part of x'.

Combining (18) and (19) into (6) gives the formula recently

proposed by Giacovazzo et al. (2003) for the SAD case [see

equation (4) in that paper].

C2. Two-wavelength case

The T term in (6) may be rewritten as

2

q

�� Q
��2

1

R1 � �12�R2 ÿ R1�

� �1;3�G1 ÿ R1� � �14�G2 ÿ R1�
�

Ra1 sin '�a1

�
� Q
��2

2

R2 � �21�R1 ÿ R2�

� �23�G1 ÿG2� � �24�G2 ÿ R2�
�

Ra2 sin '�a2

ÿ
� Q
�ÿ2

1

G1 � �31�R1 ÿG1�

� �32�R2 ÿG1� � �34�G2 ÿG1�
�

Ga1 sin 'ÿa1

ÿ
� Q
�ÿ2

2

G2 � �41�R1 ÿG2�

� �42�R2 ÿG2� � �43�G1 ÿG2�
�

Ga2 sin 'ÿa2

�
� 2

q

�Q� 1

��2
1

R1Im�E�a1� �
1

��2
2

R2Im�E�a2�

� 1

�ÿ2
1

G1Im�Eÿ�a1 � �
1

�ÿ2
2

G2Im�Eÿ�a2 �
�

ÿ �12�R1 ÿ R2�Im�E�a1 ÿ E�a2� ÿ �13�R1 ÿG1�Im�E�a1 ÿ Eÿ�a1 �
ÿ �14�R1 ÿG2�Im�E�a1 ÿ Eÿ�a2 � ÿ �23�R2 ÿG1�Im�E�a2 ÿ Eÿ�a1 �

ÿ �24�R2 ÿG2�Im�E�a2 ÿ Eÿ�a2 � ÿ �34�G1 ÿG2�Im�Eÿ�a1 ÿ Eÿ�a2 �
�

�20�:
Accordingly, the B term in (6) may be rewritten as

2

q

�Q� 1

��2
1

R1Re�E�a1� �
1

��2
2

R2Re�E�a2�

� 1

�ÿ2
1

G1Re�Eÿ�a1 � �
1

�ÿ2
2

G2Re�Eÿ�a2 �
�

ÿ �12�R1 ÿ R2�Re�E�a1 ÿ E�a2� ÿ �13�R1 ÿG1�Re�E�a1 ÿ Eÿ�a1 �
ÿ �14�R1 ÿG2�Re�E�a1 ÿ Eÿ�a2 � ÿ �23�R2 ÿG1�Re�E�a2 ÿ Eÿ�a1 �

ÿ �24�R2 ÿG2�Re�E�a2 ÿ Eÿ�a2 � ÿ �34�G1 ÿG2�Re�Eÿ�a1 ÿ Eÿ�a2 �
�
:

�21�
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The expressions (20) and (21) reveal the role of the Sim-like

terms and the form of the contribution arising from anomalous

and dispersive differences.

The above algebraic expressions may be easily generalized

to the n-wavelength case for any value of n.

We are indebted to S. K. Burley, Z. Dauter, K. Djinovic,

R. Hilgenfeld, A. GonzaÂ lez, D. Matak, M. Walsh and C. Weeks

who kindly provided us with experimental data.
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