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Abstract

Computational tools have greatly expedited the pharmaceutical drug design process
in recent years. One common task in this process is the search of a large library for
small molecules that can achieve both a low-energy conformation and a prescribed
pharmacophore. The pharmacophore expresses constraints on the 3D structure of the
molecule by specifying relative atom positions that should be maintained to increase
the likelihood that the molecule will bind with the receptor site. This paper presents a
pharmacophore-based database screening system that has been designed, implemented,
and tested on a molecular database. The primary focus of this paper is on a simple,
randomized conformational search technique that attempts to simultaneously reduce
energy and maintain pharmacophore constraints. This enables the identification of
molecules in a database that are likely to dock with a given protein, which can serve
as a powerful aid in the search for better drug candidates.

1 Introduction

The development of a pharmaceutical drug is a long, incremental process, typically re-
quiring years of research and experimentation. The goal is to find a relatively small molecule
(ligand), typically comprising a few dozen atoms, that docks with a receptor cavity in a
specific protein. Protein-ligand docking can stimulate or inhibit some biological activity,
ultimately leading to the desired pharmacological effect. The problem of finding suitable
ligands is complicated due to both energy considerations and the flexibility of the ligand.
In addition to satisfying structural considerations, factors such as synthetic accessibility,
drug pharmacology and toxicology greatly complicate and lengthen the search for the most
effective drug molecules.

In the search for a new drug, a pharmacophore often serves as a template for the desired
ligand. The pharmacophore is expressed as a set of features that an effective ligand should
possess and a set of spatial constraints among the features. The features can be specific
atoms, centers of benzene rings, positive or negative charges, hydrophobic or hydrophilic
centers, hydrogen bond donors or acceptors, and others. The spatial arrangement of the
features represents the relative 3D placements of these features in the docked conformation
of the ligand. The pharmacophore encapsulates a prevailing assumption in drug design
that ligand binding is due primarily to the interaction of some features of the ligand to

“complementary” features of the receptor. The interacting features are included in the



pharmacophore and are key for searching for new drugs. The rest of the ligand atoms

merely provide a scaffold for holding the pharmacophore features in their spatial positions.

The Problem This paper deals with the following problem. Given a pharmacophore and
a database of flexible ligands, identify those ligands that can achieve a low-energy spatial
conformation that matches some of their features to the features of the pharmacophore. We
will say that the selected ligands can ‘satisfy’ the pharmacophore.

We view the problem primarily as that of obtaining a constrained conformation of a
known kinematic structure (the ligand). The 3D positions of certain parts of the structure
are predetermined by the pharmacophore model. We compute the “folding” of the rest of
the structure in a way that it preserves all the pharmacophore matches while respecting all
structural constraints (i.e. bond lengths), all kinematic constraints (i.e. torsional degrees of
freedom and their allowed values), and all energy constraints (i.e. the energy of the ligand
should be below a threshold).

We model the kinematics of the ligand using techniques common in robotics [10, 20].
Although powerful analytical techniques exist for searching the solution spaces of similar
structures in robotics [6], such techniques are impractical for handling high degrees of free-
dom. Our ligands have many torsional degrees of freedom; thus, we focus on randomized
solutions to the conformational search problem. The need for efficiency has also motivated
randomized search techniques in robotics [25, 27]. We use our experience with these meth-
ods to develop a randomized conformational search technique, which simultaneously reduces
energy and maintains the pharmacophore constraints.

In pharmaceutical chemistry, a variety of pharmacophore models and representations
have been considered, and most of the current research addresses the development, evalua-
tion, and selection of these models and representations. For example, as opposed to the 3D
feature-matching model described so far, other possibilities include matching and agglomer-

ating molecular fragments, and also defining enrichment factors that assess the similarity of



entire known inhibitors. Instead of dealing with these issues, our work focuses primarily on
the development of computational techniques that improve our understanding of geometric
issues involved in drug design. For this reason, we chose to develop and demonstrate our
methods for a particular pharmacophore model and representation. We believe that the
techniques from this paper can be adapted to other kinds of pharmacophores; however, such
issues are beyond the scope of this paper because they generally depend on the particular

pharmaceutical application.

Significance of Our Work Our work is expected to improve the ability to screen phar-
maceutical databases for ligands that can satisfy the pharmacophore model by delivering
computational techniques that reason about the complicated geometric and kinematic con-
straints that arise from the matching problem. The techniques can be applied (in com-
bination with other filters) to 3D structural databases, such as the Cambridge Structural
Database [|, the Brookhaven Protein Databank [|, or proprietary pharmaceutical databases.
As methods improve for screening databases, great amounts of effort and expense can be
spared by exploiting the results of past experimental efforts [38]. In several cases, many
properties of the ligands have been systematically documented in the database. In other
cases, the search may reveal ligands with diverse chemical compositions that can still sat-
isfy the same pharmacophore. The comparative analysis and modification of such ligands
can lead to better drug candidates. In the area of combinatorial chemistry, our techniques
could be employed to assist the design of databases by screening enumerated structures (if
pharmacophores are known).

The identification of a pharmacophore is a challenging and speculative task and is beyond
the scope of this paper. Pharmacophore models are constructed for cases in which the 3D
structure of the receptor is known and in which it is not. Several Three-Dimensional Quan-
titative Structure-Activity Relationships, or 3D QSAR [35] theories have been developed to

capture some of the underlying chemical activity in a pharmacophore. If the 3D structure



of the docking site is known, the pharmacophore is based on the properties of atoms on or
close to the surface of the receptor and the ligands that are known to dock in that site.
Often the 3D structure of the receptor can not be obtained using techniques such as X-ray
crystallography or NMR. In that case the only information available is a set of molecules
that interact with the specific receptor and hence exhibit the pharmacophore in their docked
conformations. Each of these ligands however has many torsional degrees of freedom making
the identification of the pharmacophore an extremely difficult task. Computational tech-
niques that automatically construct a pharmacophore from a set of molecules have been
developed [14, 18, 32, 35]. Both in the case of known and unknown receptor structure,
database screening techniques, such as the one presented in this paper, are powerful tools in

the drug development process.

Related Work For over two decades, the drug degign process has been aided by database
searching techniques that perform matching based on 3D structure. A recent survey of
database searching techniques that consider flexible molecules appears in [21]. The ear-
liest systems performed static matching of single conformations to queries [19]. There
has been much interest in recent years to consider conformational flexibility in perform-
ing matches, which was first considered in [34]. There are generally two types of approaches
to database searching that consider conformational flexibility: similarity-based methods and
pharamcophore-based methods. Many similarity-based approaches use superposition, such
as the FlexS system, which computes a scoring function, and candidates are ranked and
selected on the basis of enrichment factors [29].

Pharmacophore-based methods represent the most common searching approach, and a
continuing source of many computational challenges [44]. In addition to conformational flex-
ibility, pharmacophores allow flexibility in the query through the specification of geometric
features that only partially characterize the active site [22]. A wide variety of conformational

search techniques have been developed and used with these methods [8], including system-



atic search [30], distance geometry [1, 11], randomized search [7, 37, 39, 40, 41}, and genetic
algorithms [15, 24].

Several approaches to pharmacophore-based search consider conformational flexibility
while the query is processed (as opposed to storing multiple conformations of each molecule)
[23, 33]. For example, the “Directed Tweak Method” [23, 42] method minimizes a pseudo-
energy function which combines the energy of the molecule and the sum of the squares of
the deviations of the distances found in the molecular structure to the distances expressed
in the pharmacophore query. Unfortunately the pseudo-energy function contains a large
number of local minima, and conformations having high energy are frequently returned [8].
Our work differs from previous work in the sense that it rigorously treats the kinematics of

the molecule while guiding the molecule into low energy conformations.
2 Problem Formulation

The Molecule Model A molecule is characterized by a pair (A4, B), in which A represents
a collection of atoms, and B represents a collection of bonds between pairs of atoms. An
underlying graph can be considered for the molecule, in which atoms represent vertices and
edges represent bonds. Thus, usual graph-theoretic concepts such as connectedness, paths,
trees, and cycles can be applied to molecules. It will be convenient to choose one atom,
Ganch € A, as the anchor for the molecule (or the root of the corresponding graph). Figure 1
shows an example. We assume that the underlying graph structure is a tree (i.e., no flexible
rings). We represent rigid rings by considering the entire ring as a special “atom” that is
attached by a “bond” to the rest of the molecule. Our assumption about rings remains valid
for a large set of molecules that are of interest in drug design. Our general approach could
be extended to cyclic molecules by exploiting computational algebra techniques that obtain
kinematic solutions to cyclic chains [12], by using techniques for large cyclic chains in [43],
or by breaking bonds and adding dummy constraints.

Information used for kinematic and energy computations is associated with each of the

atoms and bonds. Each atom carries standard information, such as its van der Waals radius.



Anchor Atom

Rotatable Bonds are
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Figure 1: The molecule is considered as a tree that is rooted at the anchor atom. Some of
the bonds are considered rotatable. For each rotatable bond, the structure below the black
dot rotates about the bond’s main axis.

Three pieces of information are associated with each bond, b; € B: (i) the bond length, l;;
(ii) the bond angle, «;, is the angle between b; and the previous bond, in the direction toward
Ganch; (iil) the set of possible torsion angles, 6; C [0, 2m), which represents the ability of the
bond to rotate about its own axis. The part of the molecule that is attached to b in the
direction away from the anchor will also undergo rotation about this axis. If §; must remain
constant, the bond is fized; otherwise, it is considered rotatable. In most molecular studies
[1, 44], bond lengths and bond angles are considered fixed, while torsions are allowed to
vary. We follow this assumption in our work. From now on we represent the conformation
of the ligand as m-dimensional vector of torsion angles @, in which each component of @

corresponds to a rotatable bond.

The Pharmacophore Model A pharmacophore is defined in terms of a finite set of
features. Typically, there are between three and six features. In our system, a feature
corresponds to an atom in A; however, it is straightforward to extend our implementation

to incorporate other features, such as the center of a rigid ring. In general, the kinematic



models, given in (1)-(4), can be extended to include“dummy atoms” by defining artificial
bonds and atoms. These extensions are needed for some common pharmacophore models
(e.g., for modeling hydrogen bond donors and acceptors). The result is an extended molecule,
which can be handled using the same techniques as for the original molecule. The kinematic
equations can be applied to the extended molecule, and our search methods will work on
the extended feature set. Conformations for the extended molecule will lead directly to
conformations of the original molecule. The conformation of the original molecule would be
used for energy computations, and the conformation of the extended molecule would be used
for kinematics computations. In the remainder of this paper, we forego the consideration of
an extended molecule, and assume that every feature corresponds to an atom in the original
molecule; however, our general approach can be extended to consider additional types of
features by replacing the original molecule with an extended molecule.

The pharmacophore model also includes constraints on the relative positions between
features. Suppose for convenience that one of the features is designated as aqpen, Which lies
at the origin of a global xyz coordinate system. For each remaining feature, the corresponding
atom is constrained to lie near a specified position in this new coordinate system. Any set
of torsion angles that is chosen for the molecule must place each of the feature atoms within
a small neighborhood of its prescribed position. Another coordinate frame is attached to
the molecule at agnen. The molecule coordinate frame and the feature coordinate frame can
become misaligned by rotations; this will be handled shortly. For the purpose of assigning
bond angles for bonds that are attached to aqpcn, assume that agq,.p, is attached to a fictitious

“bond” that connects (0,0,—1) and (0,0,0).

The Kinematic Model Molecular kinematics give the positions of all of the atoms of the
ligands in terms of the torsion angles. The bond lengths, bond angles, and torsion angles
can be conveniently used as parameters in the Denavit-Hartenburg representation for spatial

kinematic chains [10, 20]. This representation is useful for determining the appropriate rigid-



Figure 2: The assignment of «, [, and # parameters along the kinematic chain.

body transformation to apply to any link in a series of attached links. For the molecule,
suppose that a local coordinate frame is attached at the beginning of each link (or atom
center). If a bond b; follows a bond b;_; in the chain, then the coordinate frame of b; is

related to that of b;_; by the homogeneous (both rotation and translation are performed)

transformation
cb; —s0; 0 0
T = sbica;_1 cbicoi1 —so—1 —lisoiq (1)
sO;s0;,_1 cbisai—1  cai_1 licaj_1q ’
0 0 0 1

in which 6; represents the torsion angle, cf; is cosf; and sf; is sinf;. Figure 2 depicts the
quantities that appear in (1). The fictitious bond is used to define ay. If b; is not rotatable,
then 6; is a constant; otherwise, #; is a conformation parameter, included in .

The position of any atom in the molecule can be determined by chaining matrices of the
form (1). For example, suppose b;, b;_1, ... ,b; represents the sequence of bonds in the path

from a particular atom, a € A, to aunen. The zyz position of a is given by

T 0
vlomn.m| 0. (2)
z 10
1 1

Before the expression of the kinematics is complete, there is one additional transformation

that must be defined because we assume, without loss of generality, that au,., is a feature.



The definition of the features requires that the position of a,,., is at the origin, but it does
not impose any constraints on the orientation of a4,.,. Thus, it is possible that a coordinate
frame attached to the molecule could be rotated with respect to the global coordinate frame
for the pharmacophore feature positions. It is therefore necessary to allow the frame attached
to the molecule at a4, to achieve any orientation with respect to the global frame. See
Figure 3.

The space of 3D rotations can be parameterized using Euler angles, v, ¢, 1, for which
0<y<mm0<¢<2r and 0 < ¢ < 27 [10]. The parameterized rotation matrix can be

placed into homogeneous form by extending one row and column to obtain

TR(’Yﬂ ¢a ¢) =

cohsycy —cpeysh — spcp  chsy
speyey + cpsyp  —speys + chpep  spsy
—sycp sYsY ey
0 0 0

-0 O O

Taking into account the anchor orientation, the position of a particular atom, a € A, at

the end of a path, b;,b; _1,...,b1, t0 Ganen is given by

=Tr(y, 6, )1 T2 - -+ T;

=N Q8
- o o o

The Kinematic Error Function Using the kinematic expressions, an error function
can be specified to express how closely the pharmacophore constraints are satisfied. The
transformation (4) is expressed in terms of several constants and variables. The constants
are the bond angles, «;, bond lengths, [;, and torsion angles for non-rotatable bonds. The
variables are 7, ¢, ¥, and the torsion angles for rotatable bonds which are given in 6.
Suppose that there are N features in the pharmacophore model. Let G* denote the
prescribed position for the k" feature, for each k € {0,1,...,N —1}. Let Gy = (0,0,0)

represent the feature that corresponds to aanen. Let g%(0, 7, ¢, 1) represent the zyz position
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Figure 3: Four features are shown for a hypothetical molecule. The coordinate frame is
attached to one of the features, which is designated as au,cn. The anchor atom, ag,qn, must
be allowed to rotate to preserve the original freedom of the molecule.

of the atom that corresponds to the k' feature. This position is expressed only in terms of
the variables in the kinematic formulation (4).

Given 0, v, ¢, and v, the total amount of error between the prescribed feature positions

and the actual feature positions can be measured as

N-1
i=1

in which || - || denotes the Euclidean norm.

The Energy Function In a sense, the energy function measures the likelihood that the
molecule will achieve a conformation in nature (lower energy states are more likely to occur).
It is common in molecular modeling [4] to use an empirical energy function; we use the

SYBYL system (Tripos Inc [42]) energy function:
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e(0)= Yionds 3Ko(R = R')? + Tong 5 Kala — o)+

> torsions Kdll + cos(nf —6")] + (6)
o\ 12 01\ 6 .
2 {4%’ [(r_f) - (%) ] + %}

In the above, the first sum is taken over all bonds, the second over all bond angles, the
third over all rotatable bonds, and the last sum of is taken over all pairs of atoms. K, K,
and K, are force constants, € is the dielectric constant, and n is a periodicity constant. R,
«, and 6 are the measured values of the bond lengths, bond angles, and torsional angles
in conformation @, while R', o/, and #' are equilibrium (or preferred) values for these bond
lengths, bond angles, and torsional angles. r;; measures the distance of atom centers in 6.
The parameters o;;, €;; and ¢; are the Lennard-Jones radii, well depth, and partial charge for
each atom in the system.

The expression for the energy of a molecule may appear quite complicated, especially
due to interactions between each pair of atoms; however, the energy depends only on the
conformation, @, because the anchor orientation parameters are only used for pharmacophore
purposes. Notice also that the first and the second term of the energy function are constant
with our assumptions.

Our algorithms require no assumptions on the particular form of the energy function.

Thus, a variety of other energy models could be successfully substituted.

The General Task The general task is to find conformations that satisfy both phar-
macophore and energy considerations. For a given molecule in the database and a given

pharmacophore, two important questions are asked

e Question 1: Can this molecule achieve a low-energy conformation that satisfies the

given pharmacophore?
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e Question 2: What are the distinct low-energy conformations that satisfy the phar-

macophore?

Question 1 decides whether the molecule is worth considering as a candidate in the drug
design process. Using the concepts defined in this section, this question can be formulated
as determining whether there exist values for 0, v, ¢, and 1, such that d(0,, ¢,v) and e(0)
are below some fixed thresholds.

The answer to Question 2 provides additional information for pharmaceutical chemists.
This is generally referred to as the conformational coverage problem. Techniques for analyz-
ing the amount of coverage obtained from a small set of representative conformations appear
in [39, 40, 41]. There might be several low-energy conformations that satisfy the pharma-
cophore, but each could place the other non-feature atoms in very different locations. In
general, having alternative low-energy conformations is useful because in many cases it is
not the lowest-energy conformation that results in docking, but another low-energy confor-
mation.

These distinct conformations may also be used to refine a pharmacophore model. A new,
hypothesized feature might only be satisfied in some of these conformations. By looking at
multiple conformations for several molecules, it might be possible to select a single conforma-
tion from each molecule that also satisfies the new feature. One difficulty in providing a set
of distinct conformations is that the notion of “distinct” is not well-defined. The difference
between two conformations can be compared by defining a metric, such as the RMS distance
of the atomic displacements between the two conformations. In Section 4, a clustering tech-
nique is described that ensures that the reported clusters sufficiently differ according to this

metric.
3 Randomized Conformational Search with Constraints

The Approach In this section we focus our attention on Question 1 above. In Section 4 we

show how to integrate the approach with a database screening system that can answer both
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Samplé
Conformation and
Anchor Orientation

Decrease Kinematic
Error

Success Failure

Decrease Energy
While Keeping
Constraints

Success Failure

Report Success

Figure 4: An overview of constrained conformational search.

Questions 1 and 2. Figure 4 indicates the three main steps involved in the computation. The
first step generates a random conformation, 8, and anchor orientation, given by v, ¢, and
. The second step attempts to reduce the kinematic error (5) by performing a randomized
gradient descent. If the second step is successful, the third step is reached; otherwise, the
first step is repeated. The third step attempts to reduce the energy while keeping the
kinematic error within an acceptable range. If the energy falls below a prescribed threshold,
then the method reports success. Otherwise, the first step is repeated. In practice, a limit
is set of the maximum number of allowable failures before the algorithm terminates. It is
important to note that if the algorithm terminates after any number of failures, it cannot be
concluded with certainty that the molecule does not admit a low-energy conformation that
satisfies a given pharmacophore. This is the tradeoff that is typically made for an efficient,
randomized algorithm, as opposed to a costly, systematic approach that carefully considers
all possibilities. Randomized techniques are popular for conformational search problems that

do not involve pharmacophore constraints; see for example [5, 7, 13, 17, 36].
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DECREASE_KINEMATIC_ERROR(6, v, ¢, ¥))

k< 0; f+0; dyun+ o0;
while k£ < k., and f < [ and d,;, > diy do
@', ¢',¢") «RANDOM_NEIGH(8, v, ¢, 1);
if d(0',7',¢',7') < dppin, then
f — Oa dmm — d(ola 717 QSI: W),
(0,7, 0,¢) < (0,7, ¢, 4");
else
f<r+1
k< k+1;
if d,,;, < dy then

Return (8,7, ¢,v)

CO IO Ot i W N+

[ o S Vo)
N = O

else

—_
w

Return FAILURE

Figure 5: This algorithm iteratively attempts to reduce the kinematic error.

An alternative way to approach the constrained search problem would be to obtain an
explicit characterization of the set of conformations that satisfy the pharmacophore. This
generally involves characterizing the solutions to the inverse kinematics problem. The equa-
tions of the form (4) that express the pharmacophore can be converted to a polynomial
system. Each trigonometric function can be replaced by a ratio of polynomials by using
stereographic projection, and the problem conformations that satisfy the equations lie in an
algebraic variety [9]. Efficient elimination techniques from computational algebraic geometry
have been developed for numerating the solution set for problem in which there are a finite
number of solutions [12, 31]. For the problem discussed in this paper, the system of equations
is generally underconstrained, which leads to a complicated, multidimensional solution set.
Although it is straightforward to obtain a parametric representation of some algebraic vari-
eties (such as a sphere or a torus), it not generally possible to employ elimination techniques
to find a parameterization of any algebraic variety [9]. This consideration, and the need for
efficiency, led to the choice of a numerical, randomized technique, as opposed to performing

symbolic computations with polynomial systems.
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Distance Minimization The algorithms for reducing the kinematic error and for de-
creasing the energy are shown in Figures 5 and 6, respectively. The first algorithm, DE-
CREASE_KINEMATIC_ERROR, resembles the minimization technique used in the UNITY-
3D package (which is included in SYBYL, from Tripos Inc. [42]). The algorithm accepts an
initial conformation and anchor orientation parameters, and iteratively adjusts these until
the total kinematic error falls below some acceptable limit, d;,;. Our discussion in Section
2 shows how to compute the kinematic error d. In each iteration, the RANDOM_NEIGH
function slightly perturbs each of the conformation and orientation parameters. The size of
this neighborhood was determined experimentally in advance. There are two ways in which
this algorithm can fail: (i) the counter & reaches its maximum value, k4., which means that
too many iterations have been executed, or (ii) the counter f reaches its maximum value
fmaz, Wwhich means that too many failures to reduce the error have occurred. This second
failure essentially detects that the minimization is trapped in a local minimum. Rather than

try to escape this minimum, a new conformation is sampled.

Energy Minimization If the kinematic error is successfully reduced, the resulting confor-
mation and base orientation are passed to DECREASE_ENERGY. This algorithm proceeds
in the same manner as the previous one, except that two different criteria must be monitored.
It attempts to reduce the energy, while ensuring that the kinematic error distance, d, does
not increase beyond d;y. For this algorithm there are three counters, each of which can halt
the algorithm if its limit is reached. The counter & records the total number of iterations, f
records the number of consecutive failures to maintain the pharmacophore without reducing
energy, and g records the number of consecutive failures to reduce the energy. e, is the
desired energy threshold.

This algorithm exploits that fact that some tolerance is allowed for matching the pharma-
cophore. Figure 7(a) illustrates that a perturbation of the conformation and anchor orienta-

tion parameters only slightly moves the feature atoms. If each of the feature atoms remains
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DECREASE_ENERGY (0,7, ¢, %)

1 k«0; f+0; g<0; dpim < 00; €min < OC;
2 while (k < kpae and f < fraz
and g < gmar and e, > ey,) do
3 @', ¢',¢") «RANDOM_NEIGH(8, v, ¢, 1);
4 if d(0',7,¢',7') < dyp; then
6 if e(0',7',¢',9') < emin then
7 g 0; emin < e(0',7,9',0);
8 (Oa v ¢a ¢) — (01’ ’7/: ¢,a 1/1'),
9 else
10 g—g+1;
11 else
12 fe f+1;

13 k< k+1;
14 if e, < ey then

15 Return (0,7, ¢, )
16 else
17 Return FAILURE

Figure 6: This algorithm iteratively attempts to reduce the energy while keeping the kine-
matic error within tolerance limits.

within acceptable tolerance, then the new parameters are evaluated based on energy. The
speed of the algorithm is directly related to the feature tolerance. If the tolerance is larger,
then larger variations can be considered in RANDOM_NEIGH. This causes the molecule to
move more quickly toward an energy minimum. As shown in Figure 7(b), the “thickness”
of the set of acceptable parameters greatly facilitates a randomized traversal. In the cur-
rent implementation the neighborhood size in RANDOM_NEIGH is an empirically-chosen
constant.

Note that the choice of anchor atom prohibits the specification of a tolerance for the
feature at the origin. This can be overcome by defining three positional offset variables for
the anchor (in addition to the rotation parameters); however, this would cause some loss of

computational performance.
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Tolerance Region
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Figure 7: a) After perturbing the molecule, it must be determined whether the feature atoms
remain within acceptable tolerance from their prescribed positions; b) the search technique
can be considered as a randomized traversal inside of a thick surface.

4 An Integrated Database Screening System

A prototype database screening system has been implemented and tested on a small
molecular database. The principle module in our system is the constrained conformational
search technique described in Section 3. We have not performed extensive experimentation
and evaluation on large databases because we are not evaluating pharmacophore models
and representations, as is usually done in this area. Instead, our experiments are designed
to illustrate the capabilities of our computational techniques on pharmacophore matching
problems that are sufficiently complicated and diverse.

We assume that our techniques will be applied to a small set of molecules that were
initially filtered from a database using 2D information. This could lead to small set of
several hundred or fewer molecules that contains both successful candidates and many false
positives. Standard indexing techniques are used to isolate these candidates from the full
database. Our system is designed to further reduce the set of candidates by performing

kinematics-based conformational search.

Iterative Sweeping Across the Set of Candidates Suppose that one would like to
use the approach described in Figure 4 to search a database for molecules that have a low-

energy conformation that satisfies a given pharmacophore. Initially, 2D constraints can be
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used to quickly discard any molecules that do not contain all of the feature atoms. Our work
pertains to the remaining set of molecules. The primary question to answer is how many
iterations of our approach should be applied to each molecule? For a single molecule, each
time a new sample conformation and anchor orientation is chosen and fails to lead to success,
the likelihood that the molecule will ever succeed is decreased. However, after any number
of iterations, it is impossible to conclude that the molecule will never succeed (assuming
that other constraints have already filtered out molecules that do not satisfy non-geometric
constraints).

One sensible way to use this method is to sweep across the database, using only one
iteration of the approach in Figure 4 for each molecule. Once the last molecule has been
processed, a second sweep can be made across the database. The sweeps across the database
can be repeated until some predetermined criteria are met (for example, a certain number
of successes have been found or the maximum number of sweeps has been reached). Each
iteration of this method is completely independent; therefore, there is no difficulty in switch-
ing frequently between molecules. Furthermore, the whole process can be easily parallelized.
Because the likelihood that a molecule will succeed decreases with each iteration, it makes
sense to avoid focusing multiple iterations on a single molecule before continuing.

The result is an “any-time” algorithm in the sense that the solutions gradually improve
over time, and there is no natural termination point. Typically, the first sweep might turn up
a small number of successful molecules. These results could be analyzed while the program
continues to identify other successful molecules over time. If the goal is only to identify
successful molecules, then a successful molecule is removed from the search set before the
next sweep. The computation will gradually focus in this case on the more difficult molecules.
One tradeoff is that saving search information after each iteration could yield costly storage

requirements, if a very large set of candidates is considered.
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Conformation Clustering The goal might alternatively be to characterize the set of
possible solutions for each of the successful molecules. (This is Question 2 from Section 2.)
In this case, clustering can be performed incrementally for each solution that is generated [28].
A metric m(6,03) can be defined that quantifies the difference between two conformations.
In the database screening system, m(6;,65) is defined as the RMS of the displacements
of the atoms between the two conformations. A threshold, my,, is set as the maximum
distance allow for two different conformations to be considered as part of the same cluster.
An alternative metric, which measures distance in the conformation space (by comparing
torsion angles), also yields reasonable performance.

The incremental clustering approach proceeds are follows. The “Report Success” step in
Figure 4 is replaced by an operation that updates the cluster record using the new confor-
mation (the anchor rotation is also retained). Each cluster is represented by a single con-
formation that has the lowest energy compared with any other known conformation within
distance My,q,. If the cluster record is empty, then the first update generates a single cluster
for the given conformation. Suppose the cluster record contains several conformations when
an update is requested for a new conformation. If there are any other conformations that
are within a distance m,,,, that have lower energy, then the new conformation is discarded
(a better, similar conformation already exists). Otherwise, the new conformation is added
to the cluster record. Any existing clusters that are within a distance m,,q, and have higher
energy are deleted. This has the effect of making the “representative” of each cluster the

conformation that has the least energy.

Experiments The database screening system was implemented in Gnu C on an SGI Indy
and on a Pentium Pro 200Mhz PC running Linux. A database of molecules was provided
from Pfizer Limited. This database includes 6 different inhibitors of thermolysin [3, 26] and
6 different inhibitors of ACE [2, 16]. The table in Figure 8 reports the number of atoms and

the number of rotatable bonds for each of these molecules. All molecules are very flexible as
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Themolysin Inhibitors Ace Inhibitors
Molecule | Atoms | Rot. Bonds | Atoms | Rot. Bonds
moll 69 10 48 8
mol2 66 11 50 8
mol3 22 3 31 7
mol4 42 8 47 8
mol5 64 13 45 6
mol6 63 12 30 3

Figure 8: The thermolysin and ACE inhibitors used in our experiments.

they contain 3 to 13 torsional degrees of freedom. Some of the inhibitors of thermolysin are
shown in Figures 9 and Figures 10, and some of ACE are shown in Figures 11 and 12. Each
molecule appears in a random conformation in our database. For both sets of molecules, the
docked conformations are known by previous pharmacophore identification studies. We use
subsets of the true pharmacophore as queries in our database for testing purposes.

For the thermolysin inhibitors we tried a query with 4 features of the known pharma-
cophore and for the ACE inhibitors we run a query with 3 features of the pharmacophore.
In both cases we let our program complete 20 iterations and set the cluster distance M4z
to 1.5 A. The maximum feature tolerance was set to 0.5 A. It was generally found that a
single iteration of the method in Figure 4 could be performed in about 5-10 seconds. A
sufficient clustering record for a single molecule required about 5-20 minutes. Our results
are shown in Table 13 for the thermolysin inhibitors and in Table 14 for the ACE inhibitors.
Column 1 of these tables shows our molecules. We report in columns 2 and 3 the number
of clusters found and the minimum energy conformation in all of these clusters as a proof
of the fact that the conformations that we find are indeed of low energy. In general, the
energies of the conformations found are within 2-7 Kcals/Mol of the energy of the known
docked conformation.

Our clustering scheme ensures that we record conformations that are significantly dif-

ferent from each other. In Figure 15 we show the representatives of the clusters that are
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Figure 9: The inhibitors of theormolysin used in our experiments.

generated for mol5 of the thermolysin inhibitors. The pharmacophore features are circled
in white. Notice how well these are matched in contrast with the rest of the atoms in
the molecule. Clusters for mol5 of the ACE inhibitors are shown in Figure 16. A similar
observation holds here.

Our implementation allows us to answer the two questions posed at the end of Section
2. Question 1 is answered by our randomized constrained minimization technique. Question
2 is answered by iterating our constrained minimization and by clustering the results. In
each iteration of the algorithm a new random conformation of the molecule is generated and
subsequently minimized. As discussed at the end of Section 2, the position of non-feature
atoms may help the pharmaceutical chemist select among possible ligands or modify existing
ligands in search for a better drug.

Our previous work with randomized techniques has shown [14, 25] that if we continue
iterating our algorithm we increase our chances of covering the conformational space of the
molecule and hence our chances of providing exhaustive information about the constrained

conformations of the molecule. As a proof of concept, in the examples used in this section
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moll mol2 mol3
mol4 molb mol6

Figure 10: The 3D models of the inhibitors of theormolysin. Each molecule is at a random
conformation.

we obtained conformations that are fairly close to the known docked conformations. For
the 5 thermolysin inhibitors, we obtained conformations whose RMS distances from the cor-
responding docked conformation were 0.50, 2.96, 0.59, 0.81, 2.40, 2.56 A correspondingly.
In the ACE case, we obtained conformations whose RMS distances from the corresponding
docked conformation were 1.26, 1.79, 0.94, 2.03, 1.87, 1.98 A. Notice that the more features
we use, the closer we can get to the docked conformation (4 features for the thermolysin
inhibitors versus 3 features for the ACE inhibitors). The ACE inhibitors have less flexibility,
which helps to reduce the fitted RMS distance. In certain cases, we get very close to the

docked conformation (certain thermolysin inhibitors), which is an indication of good confor-
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Figure 11: The inhibitors of ACE used in our experiments.

mational space coverage. Without doubt, more extensive experiments are needed to fully

evaluate the system, but our preliminary results are encouraging.

5 Discussion

A database screening system has been presented that can help expedite the drug design

process. The system identifies molecules that are able to satisfy a given pharmacophore,

and are therefore reasonable candidates for further investigation. The key to this screening

system is a randomized conformational search approach that considers both the kinematic

error imposed by the pharmacophore constraints and the energy. The simplicity of the

approach should enable straightforward extensions to other classes of molecules, such as

those with flexible rings.

We point out, however, that a variety of candidate evaluation models are used by other

researchers. Our approach focuses on one particular model (a rigid pharmacophore), and

evaluates the correctness of our computational approach. More extensive experimentation

would be needed to evaluate our approach in comparison to other evaluation models proposed
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moll mol2 mol3
mol4 molb mol6

Figure 12: The 3D models of the inhibitors of ACE. Each molecule is at a random confor-
mation.

in pharmaceutical drug design and computational biology. One possible constraint that could
be added to our models is exclusion spheres. These would serve as additional kinematic
constraints which could be incorporated directly into the search.

A difficulty with the current approach is the selection of the step size for the random
neighborhoods in the kinematic error descent and the energy descent. Although the same
value was used over a wide variety of molecules, it seems that performance can be greatly
improved by giving more careful attention to this selection. For example, larger step sizes
might be appropriate if the conformation is near a kinematic singularity. This could com-

pensate for the fact that large displacements near a singularity lead to small displacements
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Thermolysin | Num of | Min energy found
Inhibitors || Clusters (Kcal/Mol)
moll 17 13.44
mol2 14 20.30
mol3 3 20.94
mol4 7 25.44
molb 12 27.72
mol6 14 26.84

Figure 13: The results of a 4-feature thermolysin search.

ACE Num of | Min energy found
Inhibitors || Clusters (Kcal/Mol)
moll 13 42.42
mol2 11 43.12
mol3 15 37.88
mol4 13 42.25
molb 5 39.40
mol6 2 36.38

Figure 14: The results of a 3-feature ACE search.
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Figure 15: 12 clusters were obtained for mol5 of the thermolysin inhibitors.

of the feature atom. A quaternion parameterization of the anchor orientation, instead of a
Euler angle parameterization, might also improve performance for similar reasons. Perfor-
mance improvement might also be obtained by constraining random neighborhood samples
to lie in the tangent space to the constraints.

Another limitation of our approach is the local minimum problem, which could cause
false negatives. By generating multiple conformations for each molecule, and by appropiately
focusing the database screening in an “any time” manner, we have avoided focusing matching

efforts on a single, local optimization. This avoids many local minimum problems. Over
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Figure 16: 5 clusters were obtained for mol5 of the ACE inhibitors.

time, we expect the search to gradually find a global minimum and sufficiently cover the
conformation space of each molecule, but it is difficult to guarantee that this will be done

efficiently.
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