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The fast Fourier transform (FFT) algorithm as normally formulated allows one

to compute the Fourier transform of up to N complex structure factors, F(h), N/2

� h > ÿN/2, if the transform �(r) is computed on an N-point grid. Most

crystallographic FFT programs test the ranges of the Miller indices of the input

data to ensure that the total number of grid divisions in the x, y and z directions

of the cell is suf®ciently large enough to perform the FFT. This note calls

attention to a simple remedy whereby an FFT can be used to compute the

transform on as coarse a grid as one desires without loss of precision.

1. Introduction

The adaptation of the FFT to compute the crystallographic Fourier

transform (Cooley & Tukey, 1965; Ten Eyck 1973; Immirzi, 1973) has

greatly simpli®ed the task of producing electron density maps as well

as facilitating other complex operations related to the solution and

re®nement of macromolecular structures. One stated limitation of

using an FFT to compute a map is that suf®cient storage must be

allowed for the input data to perform the calculation in place. Simply

stated, if the F(h) in a one-dimensional synthesis have the vector h

spanning the range N/2 � h > ÿN/2 for a maximum number N terms,

the electron density �(r) cannot be computed for fewer than N equi-

spaced points, say r = 0 � (N ÿ 1)/N.

2. Discussion

This note calls attention to the simple fact that if the range of h

exceeds the number of map grid points N, then
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where the quantity F 0(h) = [F(h) +
P

n 6�0 F�h� nN�] is summed to

include all the observed data prior to using an FFT to compute �(r)

from F 0(h). This idea has been tested and proven to be accurate with

no restriction as to whether the transform of F(h) is real or complex.

This appears to be the ®rst time anyone has called attention to the

possibility of computing the electron density of a structure with an

FFT on an undersized grid. However, the process of computing

structure factors F(h) from a modeled density sampled on a grid-

point lattice is well known to suffer from an effect called aliasing [see

equation (4) of Ten Eyck (1977)]. The values of Fcalc(h) obtained by

integrating the model density on an N-point grid,
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are corrupted by an in®nite series of non-vanishing higher-order

terms necessary to de®ne the model density completely. Although it is

clearly not feasible to compute �model(r) from this in®nite set, it does

suggest the validity of our application involving ®nite sums of

observed data.
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