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Abstract

Proteins contain a large fraction of regular, repeating conformations,

called secondary structure. A simple, generic definition of secondary structure

is presented which consists of measuring local correlations along the protein

chain. Using this definition and a simple model for proteins, the forces driving

the formation of secondary structure are explored. The relative role of energy

and entropy are examined. Recent work has indicated that compaction is

sufficient to create secondary structure. We test this hypothesis, using simple

non-lattice protein models.
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Recently, there has been a great deal of interest in the study of proteins from a physical

perspective [1–6]. Most of these works have focused on the folding problem; i.e., how

does the sequence of amino acids encode the three-dimensional structure of the protein.

Although progress has been made in this area, there is still a long way to go before there is a

complete understanding of how proteins fold. However, proteins have many other interesting

properties. While each protein has a specific structure determined by its sequence, all

proteins share several common structural features. They are highly compact, with very

little free internal space. More striking is the high degree of order found, which consists

of regular periodic arrangements of the main chain into one of a few universal patterns

(called secondary structure). Roughly 50% of the structure of all proteins is in some form

of secondary structure [7]. In this paper we define in a simple, generic way precisely what

secondary structure is. This definition will be valid not only for proteins but for simpler

polymers and simple protein like models. We then use it to investigate what forces are

responsible for the formation of secondary structure. Although this is not directly related to

the folding problem, a thorough understanding of what factors are responsible for secondary

structure may aid in the study of the folding problem.

There has been a great deal of past work attempting to understand the origins of sec-

ondary structure. At first it was believed that local interactions (local hydrogen-bonds or

dihedral angle potentials for example) were responsible. Here, the term local means close

with respect to the separation along the polymer chain. For example, a hydrogen bond

between monomer i and i + 4 would be a local interaction, as would an angle potential.

Several recent studies indicate that local forces may not be the dominant effect, rather com-

paction of the chain may be the important factor. By examining exhaustive enumerations

of short chains on a lattice, Chan and Dill [8–10] found that as the compactness of the

chains increased so did the percentage of secondary structure present. They also found that

the maximally compact chains had roughly the same amount of secondary structure as real

proteins and the proportions of helices to sheets was also approximately the same. Subse-

quently, Gregoret and Cohen [11] studied non-lattice models. Their results also suggest that
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compactness does influence the amount of secondary structure, but they indicate that the

effect is most pronounced at densities 30% greater than that of real proteins. In both of

these studies however, local interactions were present. For example, a lattice has a specific

set of allowed bond angles, which provides an effective bond angle potential. In the non-

lattice work, compact chains were generated using a biased random walk in which the bond

angles were chosen not from a uniform distribution but from the distribution observed in

real-proteins. This also provides an effective angle potential. Therefore, it is not clear from

these works whether compaction is sufficient to generate secondary structure. We wish to

determine whether compaction, without local interactions, is sufficient.

There are two distinct questions to keep in mind: (1) why do proteins (or other polymers)

form regular structures and (2) why do proteins form particular types of secondary structure.

Question one is equivalent to asking, why do proteins form helices and sheets. The second

question asks, why are these helices α-helices and the sheets β-sheets. The answer to the

second question certainly involves local interactions. It is the specific hydrogen bonding

patterns in proteins which favor the formation of α-helices. In other polymers, different local

interactions would favor other forms. For example, the structures of 179 polymers have been

solved and 79 are found to be in one of 22 different types of helices [9,12]. In each polymer

the specific types of local interactions determine the preferred type of secondary structure.

In this work we are interested in studying the first question: what forces are responsible

for formation of regular structures. Specifically we will test the previous suggestions that

compaction of the chain is the key driving force. To do so we will be using models without

any local interactions. However, without local interactions there is no way of knowing

before hand what types of secondary structure will be formed. Most definition of secondary

structure are specific to a given type of structure (i.e. α-helices), consequently one needs to

know a priori what types of secondary structures will occur in order to detect their presence.

To overcome this problem we developed a generic method of determining whether secondary

structure is present without the need to know a priori what its specific form is.

A simple way of defining secondary structure is to realize that it consists of repeating
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patterns. Consequently the polymer chain should be correlated with itself along the chain.

The correlation length should be related to the average size of secondary structures. To

detect secondary structure we measure the correlations between different points along the

protein chain. Specifically, let θj represent the value of the dihedral angle associated with

the jth α-carbon (see figure 1). We then calculate:

Cθ(∆) =
〈

ei(θj−θj+∆)
〉

C
. (1)

The average is over j; that is, over all pairs of angles separated by a distance ∆ along

the chain. The subscript C indicates that the mean,
∣

∣

∣

〈

eiθj

〉
∣

∣

∣, has been subtracted from
〈

ei(θj−θj+∆)
〉

. If secondary structure is present then Cθ(∆) will be non-zero for ∆ <
∼ lavg

where lavg is related to the average length of secondary structure. Note, this definition

makes no reference to any particular type of secondary structure; therefore, any form of

regular structure will be detected. For example, if helices are present there will be a non-

zero correlation length no matter what period the helices have. Equation 1 also has the

advantage that it can be calculated analytically in a simple model.

To test our definition we examined the crystal structures from 112 proteins which have

been recorded in the Protein Data Bank (PDB) [13]. The correlation function was calcu-

lated for each protein and normalized so Cθ(0) = 1. Then an average correlation function

was computed for all proteins. Examining this correlation function (shown in figure 2) we

see that protein chains are positively correlated up to separations of approximately nine

monomers. This is comparable to the average length of secondary structure (roughly ten

monomers) measured by others [7]. At distances greater than nine monomers the chains be-

come negatively correlated. This negative correlation may be partly due to supersecondary

structure, which consists of combinations of secondary structural elements. For example,

β-sheets are usually followed by reverse turns. There is also the βξβ-unit where two parallel

β-sheets are separated by some piece ξ which can be a random coil, an α-helix or another

sheet [14]. Eventually the correlations fall off to zero (at around ∆ = 16).

We now examine what forces drive the formation of secondary structure, specifically the
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question of whether the loss of entropy due to compaction is sufficient. To do this we need a

model without any local interactions. Lattice models are not acceptable since the restricted

degrees of freedom imply local bond angle potentials. An off-lattice model was used instead.

As in lattice and other simple models we neglect the internal degrees of freedom of the

amino acids and represent each as a single point in space. Monomers that are connected

along the chain are constrained to be separated by a fixed distance. The next step is to fold

the chains into compact conformations. The following procedure was used. Take a potential

energy function whose minima are compact conformations. Then minimize this potential

energy to fold the chain. Because the model we are using is a homopolymer there are many

compact local minima (the number grows exponentially with chain length [10]). We will

generate an ensemble of compact conformations, using chains of several different lengths.

One can think of this ensemble of different compact structures as representing the collection

of native structures of many different sequences of amino acids. We will calculate the average

correlation function (eq. 1) of the ensemble of compact conformations we generate and look

for long range correlations which will indicate the presence of secondary structure. It is

important to note that the previous works showing the connection between compaction and

secondary structure [8–11] also used a homopolymer model and many homopolymers show

secondary structure in their compact states [12]. Therefore, it does not appear necessary to

have a heteropolymer and a unique ground state to get secondary structure.

There are several different potentials that have compact minima. The dominant force for

the folding of proteins is the hydrophobic effect [15]. This is primarily a bulk, entropic effect

caused by interactions of the polymer with the surrounding water. The protein collapses to

create a hydrophobic core with polar groups on the surface. One could simulate a polymer

in a solution of water, however, this is much more complex than necessary. Instead of doing

a full water-polymer simulation we simply choose an effective potential which will also cause

the polymer to collapse. The particular one used in this work was:

V ({~ri}) =
N−1
∑

i=1

1

2
kc (|~ri − ~ri+1| − lc)

2
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+ ε







N
∑

i<j

(

σev

rij

)12

−
1

N

N
∑

i=1

|~ri − ~rcom|
2







, (2)

where rij = |~ri − ~rj|, ~ri is the position of the ith monomer and ~rcom = 1
N

∑

~ri is the position

of the center of mass. The first term represents the covalent forces that bind the monomers

along the chain. The constants kc and lc are both set equal to one, determining the energy

and length units. The middle term (which is the repulsive part of a Lennard-Jones potential)

is the excluded volume term which prevents the chain from compacting to a single point.

The last term is the radius of gyration of the chain. This term provides the compacting force.

The two constants, ε and σev, are determined by examining real proteins. The difference in

energy scales between covalent and non-covalent forces determines ε. In proteins the typical

non-covalent interaction is roughly one-hundredth the energy of a covalent bond, so ε is set

equal to 0.01 [16]. The compactness of the chains will be controlled by the value σev. To

determine the value of σev and measure compactness we looked at two features of real protein

structure: the pair-correlation function (also called the radial distribution function) and the

radius of gyration. First, the pair-correlation function was measured for both real proteins

and our chains. This function gives the probability that two α-carbons are separated by a

given distance, indicating how closely the α-carbons are packed together. We adjusted σev

until the position of the nearest neighbor peak for our chains closely matched the one for

real proteins [17]. Next, we measured the radius of gyration as a function of chain length

for real proteins. Our chains had a slightly smaller radii of gyration as proteins the same

length (see figure 3). This is not surprising since the potential we used will generate nearly

spherical shapes while proteins are ellipsoidal with varying eccentricities. An ellipsoid will

have a larger radius of gyration than a sphere of equal volume.

The chains were compacted by minimizing this potential energy (equation 2). The al-

gorithm used was a conjugate-gradient decent minimizer [18]. At each iteration in this

algorithm the energy is decreased, so it is somewhat analogous to a zero temperature Monte-

Carlo simulations, in that only energy reducing steps are accepted. There is the possibility

that for some potentials this type of algorithm will be trapped in local non-compact minima.

6



However for the potential used here this was not a problem. All minima that we generated

were observed to be compact; i.e., their radius of gyration was roughly the same as those

of proteins the same length (see figure 3). Starting from a random initial condition (which

was a taken to be a self-avoiding random walk) 200 chains, ranging in length from 50 to

450 monomers [19], were folded. The average dihedral angle correlation function was then

calculated for these chains to determine if any secondary structure was present. Figure 4

shows the average for the compacted chains with the correlation function for real proteins

superimposed. The compacted chains show no long range correlations. The plot falls al-

most immediately to zero, with a slight negative correlation at separations of roughly two

monomers. This lack of any correlations indicates the absence of any secondary structure.

The potential (equation 2) was chosen to have no local interactions other than the one

term which bonds a monomer to its two neighbors along the chain. Again, local here means

local (close) as measured along the chain, not through space. The excluded volume term

is through space local, but in a folded structure any two monomers can interact via the

excluded volume term regardless of there separation along the chain. In particular, there

is no angle term in the potential (either implicit or explicit). The previous works which

did find secondary structure with increasing compactness did have implicit angle potentials.

It appears that compacting the chain is not enough to generate secondary structure. It is

possible that the particular form of the compacting potential we used destroys secondary

structure or was biased in favor of compact conformation without secondary structure.

To test this we tried a different compacting potential, the Lennard-Jones 6–12 potential.

We replaced the radius of gyration term in eq. 2 by a r−6 term to give:

V ({~ri}) =
N−1
∑

i=1

1

2
kc (|~ri − ~ri+1| − lc)

2

+ ε







N
∑

i<j

(

σev

rij

)12

−

(

σev

rij

)6






. (3)

By itself the 6–12 potential is too short ranged to compact an extended chain so we did

a two stage minimization. At the first we added an additional 1/r piece which is long

ranged and will collapse an extended chain. Once the chain was semi-compact, we finish
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the minimization without the 1/r term. We generated an ensemble of compact chains and

measured the average correlation function (see figures 3 and 4). Again there where no long

range correlations hence no secondary structure.

To explore the forces responsible for the formation of secondary structure in proteins we

have defined a simple, generic method of measuring secondary structure in polymers. This

method consists of calculating the angle correlation function along the chain and looking for

long range correlations. If secondary structure is present there will be long range correlations

with a length comparable to average size of the secondary structure. This method does not

depend on the precise details of what type of structure is present and can be used when

these details are not known. Real proteins whose structures have been solved were examined

and long range correlations were found. This technique was then used to examined whether

compaction leads to the formation of secondary structure. Simple models with no local

interactions were used and two different compacting potentials were examined. There were

no long range correlations indicating the absence of secondary structure was present. These

results indicate that compaction by itself is not sufficient to generate secondary structure.

In the previous studies demonstrating a connection between secondary structure and com-

paction there was always some form of local interactions present. It appears, however, that

local interactions are not sufficient since compactness was also necessary to get structure.

In proteins the formation of secondary structure appears to result from the combination

of both the entropic effect of compaction and local energetic effects. The loss of entropy

from compaction is not enough to force the chain into regular conformations. Using our

definition of secondary structure further studies can be carried out to determine the relative

importance of the these two factors.

We acknowledge helpful discussions with S. Skourtis, A. Libchaber, A. Schweitzer and

S. Favarolo. J. N. O. is a Beckman Young Investigator. This work was funded by the

Arnold and Mabel Beckman Foundation and the National Science Foundation (Grant No.

MCB-9018768 and a previous graduate fellowship to N. D. S.). J. N. O. is in residence at

the Instituto de F́ısica e Qúımica de São Carlos, Universidade de São Paulo, São Carlos, SP,
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FIGURES

FIG. 1. The dihedral (also called torsion) angle, Θ i, associated with the i
th monomer. The

inset shows the view along the bond from monomer i − 1 to i. The angle shown is defined as

positive by our sign convention.

FIG. 2. Real part of the dihedral angle correlation function averaged over 112 proteins from

the protein data bank. The distance, ∆, is the number of monomers along the chain. Cθ(0) has

been normalized to one.

FIG. 3. The radius of gyration versus chain length (plotted on a log-log scale) for real pro-

teins (small circles), chains compacted using the radius of gyration potential (diamonds), and

the Lennard-Jones potential (stars). The radius of gyration for the three systems is very similar

indicating that they all have the same level of compactness.

FIG. 4. The two solid lines show the correlation functions for the radius of gyration potential

(circles) and Lennard-Jones potential (squares). The dotted line is the real protein correlations

(from figure 2) for comparison.
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