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Abstract

Quantum computers exist, and offer tantalizing possiedibf dramatic increases in
computational power, but scaling them up to solve problemas are classically in-
tractable offers enormous technical challenges. Didiidhgjuantum computation of-
fers a way to surpass the limitations of an individual quanttomputer. | propose

a quantum multicomputests a form of distributed quantum computer. The quantum
multicomputer consists of a large number of small nodes amabasinterconnect for
creating entangled state between the nodes. The primancrobbsen is the perfor-
mance of such a system on Shor’s algorithm for factoringelamgmbers: specifically,
the quantum modular exponentiation step that is the cortipotd bottleneck.

This dissertation introduces a number of optimizationstiie modular exponen-
tiation, including quantum versions of the classical ca®ect and conditional-sum
adders, improvements in the modular arithmetic, and a meameducing the amount
of expensive, error-prone quantum computation by incngafie amount of cheaper,
more reliable classical computation. Parallel implemgons of these circuits are eval-
uated in detail for two abstract architectural models, aradléd Ac) which supports
long-distance communication between quantum bitgjudnits and one which allows
only communication between nearest neighbors in a linganua(calledntc). My
algorithms reduce the latency, or circuit depth, to congplleé modular exponentiation
of an n-bit number fromO(n?) to O(nlog®n) for Ac andO(n?logn) for NTC. In-
cluding improvements in the constant factors, calculatisimow that these algorithms
are one million times and thirteen thousand times fastexmandNTC, respectively,
when factoring a 6,000-bit number. These circuits alsocedine demands on quantum
error correction fromv 210n? to ~ 12n? log, n for AC and~ 3n* for NTC, potentially
reducing the number of levels of error-correction encodin@llowing execution on
more error-prone hardware.

Extending to the quantum multicomputer, | calculate théqvarance of several
types of adder circuits for several different hardware gurftions. Five different



gubus interconnect topologies and two different node saesconsidered, and two
forms of carry-ripple adder are found to be the fastest fordewange of performance
parameters. Small nodes (up to five logical qubits) and atimgerconnection network
provide adequate performance; more complex networks arec@ssary untih reaches

several hundred bits. As node size grows, it is importarttttine |/O bandwidth of a

node grow, as well, or performance can actually decline iteegipe overall decrease
in network activity. The links in the quantum multicomputee serial; parallel links
would provide only very modest improvements in system bdiigt and performance.

Two levels of the Steane [[23,1,7]] error correction codd adequately protect our
data for factoring a 1,024-bit number even when the qubgpteitation failure rate is
one percent.
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Chapter 1
Introduction

We are just started on a great venture.

Dwight Eisenhower, November 1942

The designer usually finds himself floundering in a sea of possi-
bilities, unclear about how one choice will limit his freedom to make
other choices, or affect the size and performance of the entire sys-
tem. There probably isn’t a ‘best’ way to build the system, or even
any major part of it; much more important is to avoid choosing a
terrible way, and to have clear division of responsibilities among the
parts.

I have designed and built a number of computer systems, some
that worked and some that didn’t.

Butler Lampson, “Hints for Computer System Design” [199][__]

As VLSI features continue to shrink, computers that dependuantum mechan-
ical effects to operate are inevitable; indeed, quanturecesfare predicted to affect
device behavior within a decade [236, P26, (51,1 152] 1100, BB¢ fundamental archi-
tectural issue in these future systems is whether they wéhgpt to hide this quantum
substrate beneath a veneer of classical digital logic, brexpose quantum effects to
the programmer, opening up the possibilities of dramaticdases in computational
power [114[9W, 93, 39, 42, 206, 135/ 3, P11,1248].

Small and unreliable they are, but quantum computers of ugp dozen nuclear
spins [243] and eight ion§ [1B9] exist. In these machines shin state of an atomic
nucleus or the energy level of an ion can represent a quantyor Qubit, the smallest
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4 CHAPTER 1. INTRODUCTION

unit of quantum information. The three most famous quantigorahms are Deutsch-
Jozsal[94], Grover's search [135], and Shor’s factorind@]2®\l three of these algo-
rithms have been experimentally implemented for smallespeoblems[[161], 46, 74,
[1724,/330[°339, 340, 138]. A further extremely broad rangexpkements has demon-
strated numerous building blocks [347] 83,1313, 181] 2392886, 164] based on the
one- and two-qubit technology demonstrations we will se€laptel . Although
many theoretical and practical questions remain openeihseeasonable to assert that
implementation of quantum computation is on the verge of ingpfrom a scientific
problem to an engineering one. It is now time to ask whatoae build, and what
we shouldbuild. Various computer architecture researchers havarbawyestigating
the former question, working from the bottom upl[84,1155,122%66,[324 [ 154]; this
dissertation and the related papers address the lattetiqquesorking from the top

down [334[3317,-336,-332, 333,7335].

1.1 Computing Frontiers: Why Study Quantum?

Why should computer engineers study quantum computatimhwédy now? Certainly
the field of classical computer architecture is not moriuamdi offers far more imme-
diate impact for much less intellectual risk. Work that gmses parallelism, reduces
power consumption, improves I/O performance, increases gzeed or reduces data
propagation delays is much more likely to be used in the realdyand far sooner than
guantum technologies. Intel began sampling a billiondistor microprocessor chip
in October 2005, a 580 square-millimeter chip built in a 9@araeter process. Some
researchers consider integration levels of a trillion srstors per silicon chip possi-
ble [228], though we are hardly done digesting the implaraiof a billion transistors
on a chipl[Z262, 190, 61]. Clearly there is room on-chip for gnarchitectural advances.
Ubiquitous computing, sensor networks, augmented reality mobile systems will
no doubt be among the most transformative technologieseotdming decades, rel-
egating today’s 3G Internet-connected mobile phones ttidels of Neolithic stone
adzes[[278]. In “back end” systems, continued research ampatational grids and
storage are critical. Among computing exotica, electraaduits fabricated with nan-
otechnology([363, 36, 220, 342, 284], DNA computihd [10[d amorphous computing
are all other possible fields of pursti [6]. So, why quantum?
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Different researchers have different reasons for studyirgntum computing. Physi-
cists are learning fundamental facts about the quantumvibeta both individual par-
ticles and mesoscopic systems. Theoretical computertstgeare finding many fasci-
nating new questions (and answering some of them). But toguater systems person,
guantum computation is about one thitige pursuit of performancef practical large-
scale quantum computers can be built, we may be able to sojwartant problems that
are classically intractable. Potential applicationsudel cryptographically important
functions such as factoring, which appears to offer a sugpgmpmial speedup, and
scientifically important problems such as simulations ohyabody quantum systems,
which may offer exponential speedup, though recent questiave been raised about
whether exponential speedup is achievable as the desh@eund is tightened [58].
Quantum computers therefore hold out the possibility ofusitMoore’s Law increases
in speed, but a change in computational complexity classandequent acceleration
on these, and possibly other, problems.

| will not directly address criticisms of the possibility giantum computation [104,
[169], except to note that my response is different from thazwonson, who is excited
by the inherent beauty and theoretical importance of quamtechanics while search-
ing for the ultimate limits to computationl[3]. I, too, admithese factors, but more
importantly | believe it is inevitable, as silicon devicemtinue to scale down in size,
that we will have to deal with quantum effects. Many researstare directing their
efforts at mitigating these effects; in my opinion, we widl detter by embracing them,
even if “quantum computing” ultimately proves to have no potational advantage
over classical.

Studying quantum computing indirectly benefits classigateams, as well. Quan-
tum effects are being explored for direct exploitation assical logic, for example, the
recent work on magnetic quantum dot cellular automatal [1Blglsmonicsthe study of
electromagnetic waves propagating in the surface of a mgtex developing rapidly,
and might offer improvements in how we move data within dzd<hips [258]. More
broadly, the whole area callesppintronics directly or indirectly manipulating the spin
of small numbers of electrons, is already having an impaotutih the creation of tech-
nologies such as magnetic RAM (MRAM)_[329, 351]. Quantum paters depend
on, and have served as an impetus for developing, thermadgaHly reversible com-
puting. It has been suggested that classical computers enysiby reversible logic
to exceedl0?? floating point operations per second (10 zettaFLOPS) [94]ar@um
computation serves as an excellent training ground forreegs destined to work in
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these areas, as well as providing both fundamental andigabsults that influence
the technological development of these areas.

My analogy is to the field of robotics. It has been more thahtyigears since the
original use of the termmobot to mean an autonomous, mechanical humanoid (though
the idea goes back to antiquit{/) [65], and several decades #le debut of robotics as a
respectable field of inquiry. Yet the humanoid robots of sceefiction do not roam the
streets of Tokyo in the first decade of the twenty-first cgntiihis does not mean that
robotics as a field has been barren; indeed, robots domiretg forms of manufac-
turing, and related technologies spun off from roboticeaesh are nearly ubiquitous.
Robotics depends on, and serves as an impetus for, reseaditiease as computer
vision, speech recognition, fuzzy logic, virtual reali@yyd many mechanical advances.
The road to development has been long, and the results tdoddt@othing like what
mid-twentieth century science fiction writers such as Igesimov anticipated[22], but
the results have been extremely valuable nonetheless.xet&t to be with quantum
computing.

1.2 Defining Quantum Computer Architecture

Quantum computer architecture an emerging field, spanning the gap between device
physics and algorithms. If large-scale quantum computersabe built, an overall
structural plan must be established; we refer to this plath@snachine architecture
of the quantum computer. Figurell.1 shows a representatitre oelationship among
some subfields of quantum computing, and which subfieldsatepthe broader area
of quantum computer architecture. | include in this fieldeesiglly everything above
device physics up to the design and performance analysisciimes for specific algo-
rithms. The component which has (rightly) been the focufiefmhost work to date has
been quantum error correction, though effective highidlstrectures (including physi-
cal connection topologies), control structures, efficegbrithm implementation, and
performance analysis are all receiving increased attenti@uantum computer archi-
tecture can draw heavily on classical computer architectomt presents a number of
unique challenges.

In most quantum computing technologies, a qubit is the stiéephysical device,
more like the state of a flip-flop than a signal propagatinguh a circuit. Qubits that
are physically far apart cannot directly interact, so datstbe shuffled from place to
place as they are required to interact with other qubitshiéects and compiler writers
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must cooperate to make this shuffling as efficient as posdibkbe figure this topic is
represented as “interconnection technologies and topstgdSolutions to this kind of
data transport problem form one of the key themes of thisghes

Although they are not explicitly represented in the figurearfum programming
languages and compilers, designed for programming quacwamputers, can be viewed
as the interstitial glue that holds the whole system togdffi&8]. Quantum programs
are executed classically, and must be able to manipulate du@ntum and classical
data, and make branch and loop decisions based on clasatealThe ability to look
at quantum data during program execution is extremely éidyias we will see when
we discuss measurement in Secfion 2.2.3; the operatiortseaquiantum data are per-
formed more or less blind, without examining the data itskifthis sense, program-
ming a quantum computer is like programming a Connectionhfecor systolic array,
though the analogy between qubit and CM processor is iedH.[31

Because quantum computer architecture is a young field, msangs have not yet
been addressed in the depth required to evaluate desigoeshoDften clock speed
and other architectural features are ignored as issuesantgu computing devices,
assuming that the quantum speed-up will dominate, makiagtgm algorithms prac-
tical on any physically realizable quantum computer. Hasvethis is not necessarily
so. For example, Shor’s factoring algorithm runs in polyrartime and resources, but
the details of the polynomial matter: what degree is the patyial, and what are the
constant factors? How much parallelism can be extracted froth the hardware and
software to reduce the wall-clock time consumed? All of éhissues are of concern to
architects.

Some of these issues are attacked in this thesis. We willtheeson Sectiof 812,
on future work, at the end of the dissertation.

1.3 The Quantum Multicomputer

My thesis is the design of guantum multicomputerAny single, monolithic quantum
computer will have an ultimate limit to its storage capaeity performance. Borrow-
ing from classical multicomputer design and building onfthendations of distributed
guantum computation that have been laid, these limitatansge overcome. This dis-
sertation describes the architecture of a system suitableuhning highly optimized

forms of Shor’s factoring algorithm, and examines the scpdif the performance from
sixteen to 1,024 nodes. This broad range of sizes allows seet@learly the important
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QEC & FT implementation

Qubit interconnect technologies
Small-scale multi-qubit demonstrations

Quantum
computer
architecture

Qubit storage and gate technology

Figure 1.1: Quantum computer architecture among some sbtéquantum compu-
tation.
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inflection points in behavior as the system scales up, eratiagperformance point well
above the capabilities of classical systems.

A high-level block diagram of the hardware is shown in Fidlif. Like all pro-
posed quantum computers, it is actually a hybrid quantuassital system, and to
achieve performance balance the classical portion willdugled to a supercomputer-
class machine. The classical front end is responsible feradhcoordination, download
of programs and final upload of data, but has only a loose ndled execution of a pro-
gram. The nodes perform the actual computation. Each naugste of two halves, the
guantum part (Qnode), which holds the quantum data, andlaissical part (Cnode),
which contains the real-time measurement and controlitiycfincluding program ex-
ecution) for the quantum device. There are two real-timeraunnects, one classical
and one quantum; the quantum interconnect is based ayuthesapproach for its link
technology[[30B,237]. These interconnects may be switchede-to-node direct, or
shared; a major portion of this thesis is analysis of thditrah the qubus-based quan-
tum interconnect for different possible topologies. Wel wit address the classical
portions of the system, except that classical communigatia instruction execution
are implicitly included in our timing estimates.

A well-designed architecture can outlive the technoldgec@ironment in which it
was originally created. However, some constraints aressacg as we discuss the ini-
tial implementation target, or we are left adrift on Lamps@ea. | have chosen a solid-
state qubit technology, such as Josephson-junction g(detcribed in Se€._4.2.2), as
a basis on which to build. Very, very roughly, | have chosetirtot the estimated
production cost to one hundred million U.S. dollars, anddize of the system to one
hundred meters square of floor space.

1.4 This Dissertation

The quantum multicomputer consists of three primary suksys. the quantum com-
putational node hardware, the quantum interconnect haejwaad the software to run
on the system. The status of some of these subsystems iseafed in Figur€l3.
Node hardware is not a primary focus of this thesis; we leawe other researchers
to meet the hardware requirements outlined in Chdpiér 7nterdonnect hardware
consists of basic link technologies and the manner of asgsgrd complete system,
namely the topology and any necessary lower-level switchiechanisms; finding an
appropriate topology is one of the primary contributionthis thesis. Finally, although
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classical front end

non-real-time classical interconnect

real—-time classical interconnect

Cnodel |Cnode| u n = = = s Chode

Qnodel [Qnode u = = = = = | Qnode

gubus quantum interconnect

Figure 1.2: High-level quantum multicomputer block diagraDashed lines are non-
real-time communication; solid lines are real-time comioation, either classical (thin
lines) or quantum (thick lines). Cnode, classical node;dgnguantum node.
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Software
Monolithic Distributed
Theo Des Theo Des

Arithmetic |4+ O |+ O + +
ot O JO|A|A
QEC | O | O |+ X|+ X

Interconnect hardware
Node hardware

Theo Impl Theo Impl
Topology | =+ X o) o)
Links @) A

+ Original to this thesis /\ In planning or some work done
O Done by others X Open problem

Figure 1.3: The status, or relative maturity level, of vascsubsystems within the
guantum multicomputer. QFT, quantum Fourier transforrepththeory; des, design;
impl, implementation.

the arithmetic and quantum Fourier transform (QFT) alhong that make up Shor’s
factoring algorithm have been described at a high level, \akensignificant advances
in the former in this thesis. Although this thesis makes spnogress on distributed
quantum error correction (QEC), | believe this is very muolopen problem, so it is
marked with both symbols in the figure.

1.4.1 Contributions

The primary contribution of this thesis is the architectof@ quantum multicomputer.
To validate design choices, a target workload of Shor'sralgm for factoring large

numbers is used. This validation entails analysis and opaition of the performance
of arithmetic, especially adders, on both monolithic andtimamputer quantum sys-
tems. | have designed new types of reversible adder cir@ntsdyzed the parallelism
available in Shor’s algorithm, optimized Shor’s algorithend mapped it to various ar-
chitectures, following through with performance analysistwo monolithic machine

types and a variety of adder circuits. From there, | exterarwulticomputer. | define

the capabilities necessary for a node. Detailed analysissthat the interconnect links
may be serial, rather than parallel, and that a linear néttagology will be adequate
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into the high hundreds of nodes, when a switched networkrhesanore appropriate.
The performance is analyzed assuming nodes are built ordpigd solid-state qubits,
and the performance is found to be good. Finally, | investigery loosely the prac-
tical constraints on the construction of such a systemudioly cooling, floor space,
packaging, interconnects, control equipment, and ecocgmi

In summary, the contributions of this thesis are:

e Fast, architecturally realistic quantum modular expoia¢ion algorithms.

— Based on known and new principles, improvements in both psytic per-
formance and constant factors in the time required for nardexponen-
tiation. To factor a 6,000-bit number, for example, the parfance im-
provement ranges from 13,000 times to one million timesedepmg on ar-
chitecture, compared to the previous best-known algoriffine asymptotic
performance (circuit depth, or latency) improves from?) to O(n?log n)
or O(nlog®n), again depending on architecture.

— A classical/quantum tradeoff that reduces the number aofityma gates that
must be performed.

— New square root-depth and logarithmic-depth adder cscused in some
forms of my modular exponentiation algorithms.

— Analysis of the demands of arithmetic circuits on the stterod quantum
error correction, showing that my new algorithms are sutisthy less de-
manding, and hence have higher probability of success andrfobe exe-
cuting using weaker QEC.

— A proposedarchitecturaltaxonomy of qubit technologies, complementary
to the DiVincenzo criteria that establish minimal neceg$anctionality.

— The most detailed architectural performance analysist®. da
e Architecture of a quantum multicomputer.

— Analysis of performance of adder circuits on various nekuvopologies
showing that a linear network is adequate up to moderatedye lproblem
sizes.

— Design of link transfer protocols based on quantum telgpiort and QEC,
establishing that serial links perform adequately.
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— Delineation of required traits for the computational nades

— A high-level analysis of the overall system requirememts]uding floor
space and economics, assuming a solid-state qubit teajynolo

1.4.2 Contents and Structure

This dissertation is divided into eight chapters. The first kst are the overview and
conclusions, respectively. Chaplér 2 consists primafiby i@view of existing classical
and quantum material. Chapfér 3 presents Shor’s algori@maptef¥, the taxonomy
of quantum technologies, reviews the work of experimesislibut the structure of
the taxonomy is original. ChaptEl 6 describes my contrimgito understanding and
improving the performance of the modular exponentiationShor’s algorithm, and

Chaptefl describes the architecture and performance ofusaytgm multicomputer.

Sectiond 211 anfl 3.2 introduce the fundamental conceptsvefsible classical
and quantum computation, including the graphical and nmatieal notations used
throughout this dissertation. Chaplér 3 describes thetqoaportions of Shor’s al-
gorithm for factoring large numbers, including adder citsdeveloped by various re-
searchers over the last decade to support Shor’s algorithmtaxonomy in Chaptét 4
describes existing experimental approaches to quanturpuiimy developed in many
research organizations; | attempt to extract common themiese technologies and
organize the information so that it is possible to deterntin@earchitectural promise of
each technology. Chaptér 5 is a quick sketch of the mechanissmeed for transfer-
ring data in our quantum multicomputer: the qubus approacidating entanglement,
guantum teleportation, and the classical concepts of cautputer networks.

The first section of Chapt€ét 6 addresses the practical ietjibics of scalability for
large quantum computing systems, including such mundauwessas economics and
floor space. The rest of the chapter details the mapping oéniiee quantum mod-
ular exponentiation necessary for Shor’s algorithm toralestjuantum architectures.
Section[61l describes the management of performancedintirtg theAc andNTC
architectural models and our performance notation and sanmimg the techniques
presented in the following material. Sectlonl6.2 accedsrétte quantum portion of the
algorithm in exchange for more onerous classical computatectio 613 details two
new reversible quantum adder algorithms,the/n)-depth carry-select and(logn)-
depth conditional sum circuits. Sectibnl6.4 brings all & tachniques together and
shows overall performance speedups for both architeatundels.
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ChapteV advances the state of the art in distributed goaotumputation by cre-
ating specific hardware models and performance estimatésdauantum multicom-
puter, starting with a system overview. Secfiod 7.4 coveedistributed form of quan-
tum error correction and its impact on link design, and shthas serial links are ac-
ceptable. Finally, Sectidn1.5 brings us to the goal of ariafythe behavior of Shor’s
algorithm on realistic hardware models.

A small glossary is provided as Appendix A.

1.4.3 How to Read This Dissertation

The primary target audience of this dissertation is compsitetems researchers with
little or no prior background in quantum computing. As suttfe mathematics are
limited and informal, but heavy on examples. Systems rekeas will probably benefit
most from reading the dissertation linearly from beginrtmgnd.

Physicists who are already familiar with quantum compuitiray want to skip most
of Chapteré2 and 3, though they may find enough new tidbiteati@[Z.1 to repay
the time invested. Such readers may be less familiar withesofrthe concepts in
Sectior.3 1 and Chaptéer 5, and are encouraged to skim CEhfitesome insight into
the technology issues that matter to a system architect.

For those readers interested in only the major resultsdbsdhe overview and
conclusion chapters, the most important section§ al€ 846&, and especially1.5.

1.5 What We're Not Going to Talk About

Quantum information processing (QIP), despite its yougtlaJieady a very broad field,
and there are many important and fascinating topics that hangoing to present in
this dissertation. This section merely identifies a few fompleteness, and provides
some pointers to further literature for those whose cuyasipiqued by this disser-
tation. Readers interested in more depth are referred dirgppular [34B[245] and
technical [24B, 177, 126, 2I73] texts on the subject.

Probably the most important area not addressed is compuightomplexity. Com-
puter science theorists are rapidly advancing our undststg of what quantum com-
puters are, and are not, capable of computing efficienfly[8%2,[482[B]. This re-
search is also advancing our knowledge of classical cortipantd complexity, and has
the potential to ultimately shed light on the fundameital: N P guestion.
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Feynman originally conceived of a quantum computer as addor quantum sim-
ulation [114 2711 50,17, 63, 58,123]. Quantum simulation naagy well be the first
production use of quantum computing technology. Howevéears less resemblance
to a general-purpose, programmable machine derived framwkrclassical architec-
tural principles, which is my goal in this thesis.

Other important algorithms besides Shor’s factoring atgor have been devel-
oped. The first quantum algorithm invented was DeutschaJagkich can determine
whether a function igonstant(returns the same value for all inputs)lmalanced(re-
turns zero for half of its inputs and one for the other halBing only a single call
to the function[[94]. Grover's search algorithm can seanchuastructured space of
N possibilities inO(v/N) time. It is sometimes referred to asnplitude amplifica-
tion and has been found to be useful for quantum counting, and as@per for other
algorithms [135/ 137, 55]. Although they are important, wiil not delve into Si-
mon’s algorithm[[29B], Hallgren'd[143], or the fascinaitopic of quantum random
walks [13]71686].

Quantum networking, especially as typified by quantum keyrithution, is a vital
and fascinating area, and the only area of QIP in which prizdare already avail-
able [108/2611/44]. Dense coding is also a clever and impbiti@a by Bennett and
Wiesner [22B["47] which essentially allows one system t@$pnd” half of the bits in
a message to its partneeforecomputing the data. Many researchers have worked on
various aspects of quantum information theory, includingrgum channel capacities
analogous to Shannon’s capacity for a classical channe.last third of Nielsen and
Chuang deals with this topic, including derivation of quanterror correction from
this point of view [248].

Perhaps the most interesting advance in quantum compigagyt in recent years
is the development afluster state computingr one-way computinfP74,[246]. We
refer to cluster state occasionally in this dissertatian will not have the space to deal
seriously with it.

Researchers have begun designing programming languaggedotum comput-
ers [254], and several workshops have been held. Gay’'sysana extensive bibliog-
raphy is a good place to start studying this topic]128].

All of the quantum computers being seriously discussedytadaessentially hybrid
computers: some of the data is quantum, but other data aoftl# program are classi-
cal. We will confine ourselves to such systems for this théis@migh some researchers
have investigated the next advance in quantum computeitectiire: truequantum
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programs, leading to a quantum instruction set architedi®A) [247 149, 264, 282].

Quantum games$ [ZB[L, 106], quantum computing through wolest@7] and rel-
ativistically accelerated devicds [275], and the amourtoofiputation that can be per-
formed by given amounts of mattér[212] or even the Univessa avhole [21B] are
mind-boggling ideas. We are not discussing quantum celfultomata (QCA) or quan-
tum Turing machine< [39, 98, 126], despite their importaftgeantum wires and the
original LIoyd model of a quantum computer are forms of QCAJZ256]). We are
not going into any significant detail on entanglement thedvg are also not going to
discuss qutrits, or continuous quantum variables (qunats)

And, of course, even in a work the length of a thesis it is inggae to go into any
topic in the depth it truly deserves; the device technolgie discuss in Chaptél 4
are but a few of the dozens of proposed and even instantigbed.t In addition to the
taxonomy and references in this dissertation, | recommiea@dRDA road map for its
breadth[[2D] and Chapter 7 of Nielsen and Chuang for itstglafiexposition[[248].

1.6 Summary

The fundamental principles of small-scale quantum comgutave been demonstrated
experimentally, and matching theory is progressing njdélyugh both have plenty of
challenges ahead. What has been much less clear is whetlyesdalable systems can
be built; indeed, the real-world feasibility of creatingamglement across thousands of
gubits remains very much open to question. Distributed tyuarcomputation is one
possible way to overcome the limitations of an individuakgquum computer. The basic
idea of distributed quantum computation is straightfodyut detailed analysis of its
implementation has been lacking: what hardware will it rugllwn, under what con-
ditions is it robust, and can it bring improvements in botlbi¢jgtorage capacity and
algorithmic performance? This thesis clarifies these ssddée quantum multicom-
puter framework, like a good classical architecture, haspittential to far outlive the
technological environment in which it was originally conesl. Ladd has speculated
that production quantum computers are likely to be builtechhologies which have
not yet been invented; the principles outlined here willlggyen in that eventuality.
Before we can demonstrate that the quantum multicomputeateeptable perfor-
mance and reliability for large but finite problems, we mu&tleate and optimize the
proposed workload. Prior even to that, we begin by investigahe foundations of
classical reversible and quantum computation. The roadaorking, useful, reliable,
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economically viable quantum computer is long, dangerond,ia large measure un-
known, but, like Hokusai’'s stages of the Tokaido, the sigind stops along the way
are beautiful, fascinating and important. In the next chgpte take the first step.



Chapter 2
Reversible and Quantum Computation

“[A civilized man] can go up against gravitation in a balloon, and
why should he not hope that ultimately he may be able to stop or
accelerate his drift along the Time-Dimension, or even turn about
and travel the other way?”

The Time Traveler, in H.G. Wells' The Time Machine, 1895

In good time, as it were, we will come to our performance asialpf the arith-
metic necessary to run Shor’s algorithm for factoring langenbers, and ouguantum
multicomputerarchitecture designed to run the algorithm. Let us begiargo the
genesis of quantum computation, with the developmergw#rsible computingGates
in quantum computation depend on concepts developed fersiNe classical com-
puting, which is sometimes also called “conservative lagi@énce we understand the
basics of reversible classical computation, it will be easd understand the circuits
and algorithms for quantum computation presented in thergkand third parts of
this chapter, first the basic principles of quantum computhren the major topic of
guantum error correction.

2.1 Reversible Classical Computation

In a reversible computation, it is possible to recover thengiete initial state of the
system having only the final state. MOT gate, for example, is reversible; applying a
secondNOT gate recovers the initial state with no loss of informatidm AND gate

is not reversible; from the single output bit it is not alwgy@ssible to determine the
input state unambiguously. If the output is 1, we know thatitiput was 11, but if the

18
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output is 0, we can't tell whether the input was 00, 01, or liil&rly, an OR gate is
not reversible; if the output is 1, we don’t know whether thpdt state was 10, 01, or
11. A single bit of output is insufficient to discriminate angpthe possible states of
multiple bits of input. These examples suggest an importdat

Reversible gates must have the same number of outputs &s,iapd
the mapping of input to output states mustibel.

First, we briefly discuss the history and importance of rense computation, then
show the important two-bit reversible gate, followed byetinbit gates and the emula-
tion of Boolean logic. We finish by presenting ancilla mamagat techniques without
which the space required for most interesting computatiamsdd grow unacceptably.
We do not discuss the thermodynamics of computation in atgildeere; interested
readers will find this topic covered in the papers refereruze.

2.1.1 History and Importance

Reversible computation was developed in the early 1970sHayl€s Bennetf[40], act-
ing on inspiration from Landauer’s discovery that #rasureof information requires
an increase in entropi/[200,141]. In traditional logic, @mgsnformation may involve,
for example, discharging a capacitor, which dissipatesggnéit first glance this ap-
pears to be an implementation-dependent fact, but Landaoged that it is in fact
fundamental. Bennett initially proposed reversible Tgnmachines, and discussed re-
versibility in the context of the contents of several tap&s. shall discuss reversibility
in the form of circuits and gates, rather than Turing machime this thesis. In order
to be computationally complete, single-bit and even twioghtes are not enough; at
least one three-bit operation is necessary. Fredkin anfdlTofvented the two most
commonly used three-bit reversible gates, discussed HAAH.

Studying reversible computation is interesting in its ovght [112]: Kerntopf has
identified more than sixty research papers on the topia,dict a variety of basic logic
gates that we will not detail here[168]. Perhaps the mosbfatlassical example of
reversible computing is the billiard ball computer develdjpy Fredkin, Feynman, and
others, in which colliding billiard balls compute funct®h Such a system is easier
to design when conserving billiard balls, making revessiloigic the obvious choice.
For more practical circuits, Bruce et al. recently desigreaersible carry-ripple and

'Ross Berteig, Takako Matoba and | implemented a small-siaigit based on these principles in
1985, when taking Feynman'’s class on “Potentialities amaditations of Computing Machines”.
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carry-skip adders using Fredkin gates, intended to be imgitgéed in silicon[[600]. Hall
designed a reversible instruction set equivalent to a POIBd] more than a decade
ago, before quantum computation became a hot research[igi@f More recently,
Vieri, Frank and others, working in the Tom Knight group atiMdesigned and fabri-
cated a reversible microprocessor known as Pendulun [3#}, Zhey developed not
only the microprocessor, but also a small compiler. Fratheésis discusses in detail
topics such as options for subroutine call and branch strecand operating systems
for reversible computers; as reversible and quantum coenpuithitectures advance,
this thesis will be a valuable resource[122].

Reversible computation benefits the thermodynamics of gisysThe minimum
amount of energy that a circuit must dissipate is propodida the number of bits
of information that areerased Although the minimum amount of energy to erase a
bit is very small, this factor eventually must be addresseclassical systems. Athas,
Koller and their collaborators have investigated its imi@oce for lowering power con-
sumption in adiabatic CMOS and found that power distributiad clocking issues are
manageable, but that the increase in chip area requirednffisant [25/18B]. They
suggest occasionally relaxing the constraints on reviéitgjldiscarding a few interme-
diate results to reduce the area consumed. Their chipstedarabove the theoretical
minimum for irreversible logic, but take advantage of adiabcharging and discharg-
ing of capacitors to reduce power consumption. DeBenedieats argued that building
a high-performance computer system capable of exceedingy® logic gates per sec-
ond or 10 zettaFLOPS (* floating point operations per second), roughly 6-7 decimal
orders of magnitude more than the current most powerfukegyst within a realistic
power budget (750 kilowatts to the active logic componeni#l)require the use of
reversible logic[[91].

2.1.2 Two-Bit Gates

Classically, the only important one-bit gate is theT gate, and, as noted, it is re-
versible. For two-bit gates, we have theOT andswaP, and construckANOUT.

First, let us look at the controlledoT gate, orcNOT. One variable (or input) is
designated as the control line, and the other as the tarfyfte tontrol bit is one, a
NOT gate is performed on the target bit; if the control bit is zehe target bit is left
unchanged. The output is the exclusive OR (XOR) of the tws, laihd one of the input
bits: (a,b) — (a,a & b). Table[Z1 shows the truth table foraaoT with A as the
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output

PP OOo>X>sST
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PR, OoOOX
[

Table 2.1:cNOT truth table.

control bit and B as the target bit. ApplyingzaloT gate twice to the same bits returns
to the system to its original statey, b) — (a,a & b) — (a,a &b & b) = (a,b).

Swapping two bits is an important capability. Physicalfyjata signals are prop-
agating through a circuit, routing of wires may accomplis@ $wap. However, if two
register bits are to be swapped, and no temporary storaggdadgs available, we need
a different approach. In standard logic, three consecO&s will swap two bits or
two entire registers without the use of intermediate, teragovariables[37]. A similar
trick, using threecNOTs, can be done in reversible computation, as shown in Figdire 2
on pagé 2.

In reversible notation, we must explicitly specify the fahof a signal, an operation
generally done implicitly with a wire in irreversible logié cNOT performed with the
variable to be copied as the control and a zero in the targeicbomplishes this task
for us.

2.1.3 Three-Bit Gates: Toffoli and Fredkin

The two seminal reversible three-bit gates are the Toffuli Bredkin gates. Table2.2
shows the truth table for the control-contrebT (CCNOT), or Toffoli gate. If both
control lines, A and B, are one, thennadT gate is performed on the target bit, C,
otherwise, no action is performed. Table]2.3 shows the obstrap, or Fredkin, gate.
This gate has one control line (A) and two target lines (B andIfCthe control is
one, the two targets have their values swapped; if the clistzero, the targets are
unaffected. Either of these gates is adequate to perfornersal computation; any
computable circuit or equation can be reduced to a set oblTgtites or a set of Fredkin
gates. Smaller gates, such as tnoT andNOT, can of course be simulated by setting
one or two of the inputs to the gate to zero or one, as apptepria

Graphic symbols for these gates are shown in Figuie 2.1/ biralit diagrams in
this thesis, time flows left to right, a horizontal line repeats a single bit through time,
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input output
B
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Table 2.2:ccNoT (Toffoli gate) truth table.

input output
A B C/A B C
0O 0 00 O O
0O 0 1/0 0 1
0 1 00 1 O
0O 1 1{0 1 1
1 0 0|1 0 O
1 0 1|1 1 O
1 1 01 0 1
1 1 11 1 1

Table 2.3: ControswAP (Fredkin gate) truth table.

and vertical line segments represent gates. A filled dotatds a control variable,
while an open circle representiaT gate on that variable — the target of the gate, for a
CNOT Or CCNOT.

2.1.4 Ancilla Management

Every temporary variable created — every term in a logicgregsion — consumes
a bit. For example, in the simple expressiohA B) Vv (C A D), the terms(A A B)
and (C' A D) each require a temporary bit during the calculation of thalfiesult.
These temporary variables, in reversible logic terminglaye ancillae Without a
method for recovering these ancillae, the space requireal domputation would grow
in direct proportion to the length of the computation. Of kz®) since we are using only
reversible gates in this computation, we could clean ouillaadcollect our garbage)
by applying the exact same set of gates in the reverse oradortunately, that would
return the state of the entire system to the initial stateluoting resetting our desired
output to zero. We need a way to keep the output but clean ugeattimge, and maybe
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One-Bit Gate
time

NOT
A —©— A

Two-Bit Gates
CNOT fanout swap

A$A A AADCB_AmB
B A®B 0 A B A B A

Three—-Bit Gates

Toffoli Fredkin
A A A A _
B B B (A-C)®(A-B)
C (A-ByepC C (A-B)@ (A-C)
Two-Bit Gate Emulation Using Three-Bit Gates
Toffoli AND Toffoli OR

A A A A

B B B B

0 A-B 1 A+ B

Figure 2.1: Reversible gateseNOT, cCNOT (Toffoli), control-swap (Fredkin),NOT,
fanout and swap, and emulation of Boolean AND and OR using¢iffeli gate.
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Step action INPUT TEMPVARS TEMPOUT OUTPUT
0. initial state input 0 0 0

1. forward computation input garbage result 0

2. “copy” usingCNOT fanout input garbage result result

3. reverse computation input 0 0 result

Table 2.4: Erasing ancillae.

even “delete” the input if what we really want to keep is just butput.

Bennett discovered a method for cleaning ancillae whilaingtg the important
results bits. He originally constructed this method forifigrmachines; we will de-
scribe it in terms of circuits and registers. We will illLestie the computation in terms of
three registers used in the computation itself (the INPLHMPVARS for intermedi-
ate variables, and TEMPOUT, which holds the result immetjjafter completing the
computation), though in practice the roles assigned tanéig not be that clearly delin-
eated. A fourth register, OUTPUT, gets the final result. Téragutation is run forward
(step 1), then the results are “copied” out to the OUTPUTstegi(step 2¥, then the
ancillae are returned to their initial (generally, zer@tstby reversing the computation
(step 3). This is illustrated in Table2.4. Bennett also defia seven-step method for
doing in-place computation (erasing the input state, lggenly the output), and Feyn-
man stated that he had a method for doirdg astep irreversible computation reversibly
in only 3n steps, though as far as | can tell he did not publish thisresdl it has never
been replicated [113].

2.2 Introduction to Quantum Computing

Alice laughed. “There’s no use trying,” she said: “one can't be-
lieve impossible things.”

“I daresay you haven't had much practice,” said the Queen. “When
| was your age, | always did it for half-an-hour a day. Why, some-
times I've believed as many as six impossible things before break-
fast.”

Lewis Carroll , Through the Looking Glass, 1871

2In this thesis, we use the term “copy” to mean the fanout djmeraescribed above.
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A quantum computes a device that takes advantage of quantum mechanicateffec
to perform certain computations faster than a purely atassnachine can. It relies on
guantum parallelismusing physical phenomena that can be held, like Schrédimg
cat, in more than one state at once, allowing us to computdlaf those states at
the same time, using a single operation. Quantum parafiefidest understood in the
context of the concepts stiperpositionentanglemerandmeasuremenof course, we
must also learn how quantum data is represented and mateigula quantum com-
puter performs, in principle, exponentially many compiotag simultaneously; how-
ever, exponentially mangesultsof those computations cannot be read out, leaving us
with the fascinating problem of how to use such a machine telacate computations
that interest us. The most famous result in quantum comgtdidate, Shor’s algorithm
for factoring large numbers (which we will discuss in mor¢ailén the next chapter),
appears to offer superpolynomial speedup, but no genetthlatidor finding quantum
analogs to classical algorithms is known.

This section reviews the basics of quantum computing. Wenbegh quantum
mechanics, presenting Dirad®t notation, with a few notes on linear algebra, then
Schrodinger’s equation and Hamiltonian dynamics. We thearmally define a qubit,
discuss its state-vector and Bloch sphere representaimhsorresponding manipula-
tions. Two-qubit gates and their relationship to the rabéegates presented above are
explained, along with constructions for the Toffoli gatend® we have begun to under-
stand these fundamentals, we can discuss DiVincenzo&ierfor physical realization
of quantum computation. We end the chapter with a discussidistributed quantum
computation, which is the purpose of our proposed quantuiticomputer. Readers
are also referred to both popular[245,1349] and technical [248] texts on the topic
for more breadth and depth.

2.2.1 Notation and a Few Linear Algebra Notes

First, let us introduce the notation commonly used in quantomputing. We will not
give rigorous definitions, instead limiting ourselves tewa Df the practical matters that
a working engineer needs to understand.

|1} is Dirac’sketnotation for vectors, and this can be referred to as the-seattor
representation of a qubiti| is thebra corresponding to the ket. The bra is a complex-
conjugate row vector and the ket is a column vecter.|¢,) is the dot product of the
two vectorsy; andis, and|iy; )(1)s| is their outer product.
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For a single qubit|0) is the zero state, and) is the one state. For a multiple-
qubit register, we will often write the binary expansion bétstate as e.g0111) (a
four-qubit state with the value seven). This state can atsavhtten |0)|1)[1)|1) or
0) ® |1) ® |1) ® |1), emphasizing that it is the tensor product of four separate t
level systems. Sometimes, we will writg) as the state of the set of qubits. Although
the number may be written base ten for convenience, it iesgmted in binary in the
guantum register (many physical phenomena, such as thgydeeels of an atom, may
have more than two levels and therefore may use |2)gto represent the third level,
but we will confine ourselves to two-level qubits in this tis¢sThe size of the register
will usually be understood from context, and if the integesinall the high-order bits
are of course understood to be zero. Occasionally, it magbessary to writé))* to
indicate a set ok qubits all in the zero state.

We describe an arbitranqubit quantum gate via th# x 2™ matrix U, which must
be aunitary transform. A unitary matrix obeys the equatiohl/ = UU' = I, where
Ut is the adjoint ofU. In keeping with normal matrix multiplication rules, a sexiof
gates or transforms applied to a register can be written

Uy -+ - UsU Uy |9) (2.1)

whereU; is the first gate applied/; is the second, etc. This can be confusing, as we
draw circuit diagrams with time flowing left to right. We iottuced the graphical nota-
tion for reversible gates in Chapfédr 2; we extend that to tprarmgates in Sectidn 2.2.4,
and larger circuits will appear in later chapters.

2.2.2 Schibdinger’s Equation

Schrodinger’s equation

L OlY)
ih= .t = HJu) (2.2)

describes the dynamics of a quantum system. Solutionsibdegrthe time evolution
of the system are of the form

W) — e Hh ) = Uly). (2.3)

H, in this equation, is an operator (represented as a matnayvk as theHamilto-
nian of the system, and/ is the corresponding unitary transform. Solutions to the
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Schrodinger equation can be weighted, linear combinatadrany of the possible so-
lutions, such that the weights all add up to 1. Experimestslusually describe the
behavior of the system in terms of its Hamiltonian to empteagie temporal nature of
the evolution, but we are interested in specific types of biehachieved by using fixed
time intervals, so it will be easiest for us to use the unitgygrators. Unitary operators
can, in turn, be expressed as gates, which we will use thentdhis thesis.

2.2.3 Qubits
What's a Qubit?

A qubit is either a true two-level system, such as the direction ddrpration of a
photon or the direction of spin of an electron, or a pseudo&vel system, such as
two energy levels of an atom that can be treated as a two-$gadém. We will see
more examples in Chaptér 4. Of course, an electron spinshiarghe “up” or “down”
direction, not zero and one, so we chose to label the twosstseur zero and one
states, much as we choose eig volts to be a logical one and ground to be a logical
zero in classical circuits. The difference between a atasdiit and a qubit is that a
gubit can be in auperpositiorof the two states; it can be partially zero and partially
one. The state of a qubit can be written as

[¥) = al0) + 5[1) (2.4)

wherea and3 are complex numbersq|? is the probability of finding the qubit in the
state 0, and|? + | 3| = 1: the qubit must be found to be in one state or the other.

The above expression can also be written

«

a-[1]
G

showing the same probabilities for finding the states 0 ardhflicit in the position

within the vector. The top element of the vector correspdondble zero state, and the

bottom element to the one state. Technically, the 0 and @lenie ket are labels for

the states; we could choose to represent any two basis sdwt@r) and|1), but in this
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(10) —i[1))/v2 (10) +[1))/v2

1)

Figure 2.2: The Bloch sphere.

dissertation we will always use the convention that

11 10
o= w=[?]

The state of a single qubit is often thought of in terms ofBlech sphereepresen-
tation, in which the state of a qubit is a unit vector, as showFigureZ 2 (this sphere is
often called the Poincaré sphere by researchers workiogtios). If the vector points
at the north pole, our qubit is in the) state, and if it points at the south pole, the qubit
is in the|1) state. The north-south axis is theaxis, the positiveX axis is toward the
reader (out of the page or screen, for a 2-D representatiod)theY” axis is right-left.
When the unit vector points toward you, that is th@® + |1))/+/2 state, when it points
away from you that is th€l0) — |1))/+/2 state. The positiv& axis is(|0) +1i|1))/v/2,
and the negativ¥ axis is(|0) —i|1))/v/2. Thephasds the position of our vector about
the Z axis (the angl® in the figure).

Physicists, especially theorists, occasionally refer karge unitary transform as a
guantum gatebut in this dissertation we will restrict the use of the telamsmaller
units, which for most proposed implementations will be maingsically realistic. Our
gates will be one-, two-, and three-qubit transforms only.
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Quantum Registers and Weighted Probabilities

We will refer to a related set of two or more qubits apuantum registerTwo classical
bits can be in any of the four stateg, 01, 10, and11. Two qubits can be in a weighted
combination of all four states at the same time. For two kit can write

[Y) = a]00) 4+ 5]01) 4+ ~|10) + §|11) (2.7)

where|a|? + |32 + |7|*> +16|*> = 1. For example, itt = 6 = 1/v/2andf = v = 0, we
have a fifty percent probability of finding0) and a fifty percent probability of finding
|11), but no chance of finding the other states.

Similarly, three qubits can be in eight states, angubits can be in al™ possible

states at once,
2" —1

) = > aili), (2.8)

1=0

subject to the constraint that their total weightanust sum to 1,

D i’ =1. (2.9)

Of course, some of the; may be zero.

Entanglement

Two quanta can be in a shared state in which operations onfteat the other. The
guanta are said to tangled One consequence is that the probabilities of two entan-
gled qubits are not independent (but see Sefionl2.2.3 Helman important caveat). If
the state of the system is e(@00) + |11))/v/2 (a = § = 1/+/2, in the above notation),
when we measure the system, we will find either that both g@vé zero, or that both
qubits are one. Although each qubit has a 50% probabilityemfidp zero and a 50%
probability of being one, their state is not independerdart8tg from this state, we will
never find one qubit to be zero and the other qubit to be one.

Entanglement is a continuous phenomenon, not discretee Hne numerous mea-
sures of the amount of entanglement present in a systenhdyuall use a scale running
from zero to one, where zero is completely unentangled aedshully entangled (see
Munro et al. and references therein [238].) For the purpo§#ss thesis, our primary
interest will be in fully-entangled and fully-unentangleairs of qubits, though the pro-
cess of purifying a set of partially entangled pairs of gsinito fully-entangled pairs
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will figure into the qubus network protocol (Chapiér 5 andt®edZ3) [77[43[-303].

Decoherence

Quantum states are very fragile: excited atoms decay and spelectrons and atomic
nuclei spontaneously flip. Any quantum system can be affelbieinteracting with
its environment, leaking information about its state ot ithhe environment where we
cannot recover or use the information. We call this gradeehg of the state of a system
decoherenceWhen decoherence sets in, measurement of the system fyrobkinot
produce the desired results, causing the failure of ourtgyuaalgorithm. The two key
measures of decoherence are theand 75 times. T} is the energy relaxation time,
andT5; is the phase relaxation time. Both processes are memorylébgprobabilistic
behavior. The amount of time we can count on the state of & cerbaining in a usable
state is the minimum df; and7;. Researchers determine these values experimentally,
and an important area of device research is extending timss by careful engineering
of the environment and control system.

Pure and Mixed States and the Density Matrix

Quantum states can be eitlperre or mixed So far, we have discussed only pure states.
“Pure” does not mean that the superposition, when writtenirogtate-vector form,
contains only one term; pure means that ipassibleto write the state in state-vector
form. For examplely) = |0) and|)) = (|0) + |1))/+/2 are both pure states. However,
not all quantum states can be written out completely in thgestector form. Experi-
mentalists often prefer to write the state using2hex 2" density matriorm, which
can represent a more complex state of the system. In pauntithé density matrix rep-
resentation allows us to write down a representation oftidte ®f the system when the
complete state cannot be known, such as when part of thematayn in the quantum
state has leaked out into the environment. Using the exaofpder basic entangled
state,|)) = (|00) + |11))/+/2, our density matrix is

1 1 1 1
p = [¥Xy] = 5100X00] + ]00)11[ + S[11X00] + S]11)11] =

o= O O NI
o O O O
o O O O
o= O O NI

(2.10)
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The entries along the diagonal of the density matrix cowadpto the probability of
finding the system in a particular state. To be a valid densigyrix, the trace (the
sum of the diagonal) must be one, writténp) = 1. The trace must be one because,
when measured, the system will be found to besomestate. For pure states, the
square of the density matrix also has trace dhe¢p?) = 1. If the density matrix is
diagonalized (achieved via an appropriate change of hasp)re state will have only
a single non-zero element. The eigenvector corresponditiud eigenstate is the state
of the system. The Bloch sphere can be used to visualize rstagels of a single qubit
as points inside the sphere; the closer the state is to fhealdser the length of the
vector is to unity.

In Section’ZZI3 above, we referred to a caveat on our defindf entanglement;
with this understanding of the difference between pure anednstates we are now
ready to discuss it. The state of two qubits can, in fact, hEeddent, without being
entangled, if the state is mixed. In contrast to the statequafionZID, we can also
have the state

%(|00><00\ L) = % (2.11)

_ o O O

00
00
00
00

o o O

In this mixed state, the state of the two qubits is not indepeh but they are not
entangled; actions on one qubit cannot affect the stateeobther. In this particular
case, the density matrix now represents classical depepodsabilities.

Measurement

Measuremenbf a qubit causes the collapse of the wave function, forchegydtate
of the system into just one term of the superposition. In #madus thought experi-
ment of Schrodinger, measurement is opening the box eongahis cat and finding
out if the cat is dead or alive. Until measurement takes pldeestate of the system
can be in the superposition state, with various historiesarnicomes only determined
probabilistically. When we measure the system, the stalehatory pick one consis-
tent “storyline” that the system must have followed, in effehoosing among possible
pasts based on their relative probabilities. If we measuck shat more than one his-
tory is possible, the system remains in a state that is demsigith all of them, as in
the double-slit quantum interference experiment (seeefample, V. | Ch. 37 of the
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Feynman Lecture$ [115]).

In our basic example df/) = |0), we know the system is 100% in the zero state.
Measurement of the qubit’s state will definitely produce eoZe For |[¢)) = (|0) +
11))/v/2, zero and one each have a fifty percent probability of beingdo Once our
measurement determines the state (e.g., 0), the entirensysill be forced to a state
consistent with the idea that our qubit has been zero allgalon

For two or more qubits, we can measure either the entire reyste only part.
Measuring a single qubit can alter the state of the systemeXample, consider our
two-qubit statdy)) = (]00)+|11))/v/2. If we measure the low-order bit (the right-hand
one of our pair), we have a fifty percent probability of eactcome, and our result will
force the system to a matching state. We can write the maasmteoutcome and the
resulting state as

0: [b) — |0) (2.12)
10 ) — (1), (2.13)

In this case, measuring one qubit has determined the stdkee afther. For the state
) = (|00) + |10))/v/2, we can factor the state &8) = (|0) +[1))|0)/+/2. Measuring
the low-order qubit will clearly always yield the result Ohd state of the system then
moves to(|0) + |1))/+/2; the high-order qubit (now our only qubit) has not changed.
We can say that two qubits weseparablethere was no entanglement between them.

Measurement is a complex and sometimes counter-intubpeet It is important
and deep enough that books and conferences are devotefl . iCine good place to
start studying this topic is Preskill's lecture notes [27A8 will see an example of how
to use measurement in the discussion of quantum error ¢immen Sectiorf Z.13.

The Partial Trace

We are now ready to discuss tpartial trace of a system. We use the partial trace for
various purposes, including expressing the loss of a phatoptical quantum comput-
ing or the “leaking” of information about the state out inb@tenvironment.

We can discuss the state of a system in terms o$yiséenand thereservoir, where
system in this case refers to the qubits we are interesteddrihave control over, and
reservoir refers to the rest of the world. Initially, the &ya and the reservoir are not

3Assuming the measurement is performed along the Z (0/1)axisvill not deal with measurements
in other bases in this dissertation.
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entangled; that is, they are separable, and the state cantteEnw

p=ps®pr (2.14)

wherep is our overall stateys is the state of the quantum system, anpds the state of
the reservoir (which we can never know fully). Over timepimhation leaks out of the
quantum system into the larger world, or the reservoip(1j is the state at timg,

p=ps @ pr-ps(t) =Trr(p(?)) (2.15)

whereTry is the partial trace with respect to the reservoir.

For a two-qubit system, numbering our qubits O and 1, in kegpvith normal
computer architecture convention, we will |¢t be the density matrix for the system
traced out over qubit 1, and be traced out over qubit 0. Defining the partial trace as

p’ = Tri(p) = (:0lpl01) + (11]p|11), (2.16)

where|0,) is the basis vector for the zero state for qubit one. Notirad {b|0) =
(1]1) = 1 and(0|1) = (1]0) = 0, and that the trace is linear, the partial trace for the
example in equation 2110 is

2 =Try(p) = %Trl(\00)<00|) + %Trl(\11)<00|) + % Tr,(00Y(11]) + % Try ([11)(11])

~

(10[11)(11]0y)

N =

=5 60100X00102) + 5 (O[L1H00]01) + 5,0/00)11]05) +

+ S 01100X00[13) + £ (T[1IX00]11) + (11001 + 2 (111K
=510)0] + 3101

+

2
|20
0 3

(2.17)

Tr((p°)?) = 1/2, indicating that our state is now a mixed state. Our pureestat
become mixed with the environment, and we can no longer widign a definitive
description of the quantum register alone.



34 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

Interference

The state of a quantum system is a wave function that matate®d@nger’s equation.
As with classical wave mechanics, two waves c#erfere depending on the relative
phases of the waves. That interference can be positivenemgthe amplitude (hence,
probability) of a particular state, or negative, decregsive probability. Since the phase
of a state is actually complex, the addition of phases is @saplex.

As a simple example, consider the state created by applicafia Hadamard gate
(which we will define below) to thé) state,

_ o+ 11
) = ~75 — 5 [ : ] : (2.18)

The state now consists of two terms, a superposition of tatest Applying a second
Hadamard gate will return the system to its original statebsrfering the two terms,

111 1 1 1
i 21

The top element in the array exhibits positive interfere(ice- 1), and the bottom

1+1
1-1

1
= [ ; ] = |0). (2.19)

element shows negative interferente1).

2.2.4 Manipulating Qubits

Quantum computation proceeds by taking a set of qubits, fyiaditheir state such
that a “computation” of some interest is performed, andirgadut the result so that we
learn what happened. Feynman originally conceived of qumamiomputers as systems
designed to simulate the physical behavior of many-bodtesys, which are hard to
examine experimentally or in classical simulation, sajvguantum mechanical prob-
lems directly in an analog fashion rather than via numegdasdulation of properties of
the wave function[[114,211] 7.163]. This approach is sintitlee.g. simulating a set
of mechanical resonators using a set of electrical resosyade is done in analog com-
puting [189/ 12D 224]. However, this is not the only way te gsiantum phenomena
to solve problems. A quantum computation can be defined asait¢ciin which the
system is built and programmed and behaves roughly anasbgtmua classical digital
computer. Recent advances include adiabatic quantum domgd11,[ 313/ 12] and
cluster-state computing [27[7, 246, 347]. All of these araieent in computational
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power, but are believed to be very different in how usefubathms are found. In
this dissertation, we will deal almost exclusively in terofghe circuit model, which
is the basis for Shor’s factoring algorithm and most of theeotimportant quantum
algorithms discovered to date.

What's a Quantum Gate?

In the circuit model, quantum computations are decompastedseparate gates, and
can be organized more or less along the lines of classicalitst These gates are
based on the concepts of reversible computing discussduitast section, extended
to accommodate the Bloch sphere. In order for our computakioapabilities to be
“universal”, we must be able to reach any point on the Blodiesp for a single qubit,
and we must be able to entangle two qubits. First we discesmttividual gates that
compose a quantum computation, and in the next subsectiaissess larger circuits
in more detail.

Single-Qubit Gates and the Bloch Sphere

Only one interesting single-bit operation, tkeT gate, exists in the classical world
(ignoring setting and resetting the bit). In the quantumldica single-qubit operation
can be any rotation on the Bloch sphere. Rotations aboutdé® @ the Bloch sphere
can be described in terms of tRauli matrices The transforms fot80° rotations are

01

X:alel o] (2.20)
0 —i

Y:ay:[i 0] (2.21)
1 0

Z:UZ:[O _1]. (2.22)

For rotation of an anglé about each axis, the transforms (modulo a global phaserfacto
we will ignore) are (from Nielsen & Chuanf[248)):

[% s 0
COS§ ZSIH§]
. .0 0
zst (3082

R, () = X/ = [ (2.23)
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Figure 2.3: Basic one-quhitoT (X), Hadamard (H)s /8 (T), and phase (S) gates (top
two rows), and two-qubitNOTs, control-phase, and swap gates (bottom two rows).

. cos? —sgin?
Ry(6) = e /% = [ o p (2.24)
Sin 5 COS )
—i0/2 0
_ —ioz2 _ | €
R.(0)=¢ [ 0 S0/ ] (2.25)

which we will need only for the quantum Fourier transform &mdour decomposition
of the Toffoli gate.

Universal quantum computation requires that we be ableaohrany location on
the Bloch sphere starting from any other. Naturally, we done®d arbitrary rotations
about all three axes in order to achieve this; two will do. Baer, arbitrary rotations
can be approximated using a small set of fixed rotations.re[@i3 shows one such set
of gates, with their graphic representations and unitarysform matrices. The particu-
lar set shown is technically redundant; the control-Z andsgates can be constructed
from the others.

As a simple example, consider the state created by applicafia Hadamard gate
to the|0) state,

vom-a[ 2Ll e
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The state now consists of two terms, a superposition of taiest Likewise, applying
the Hadamard to thg) state, we have

e U N N N R TN N B R
vy =1 \/§[1—1”1]_\/§[—1] V2 (2:27)

Geometrically, we visualize the Hadamard gate &48(& () rotation about the Z axis,
followed by a90° (7/2) rotation about the Y axis. The rotation about the Z axis does
not directly affect the probability of finding either a O or afthe state is measured
right away, but this two-step manipulation shows clearly itmportance of the phase
(angle about the Z axis).

Unfortunately, visualizing the state of more than one qigbitore complicated than
a set of spheres, one per qubit. If it were that easy, therédd@uino exponential growth
in the complexity of our states, and quantum computationlevbe uninteresting. It
is possible to visualize the state of more than one qubitsetaf points on the Bloch
sphere, in what is called thélajorana representation Its utility is limited to pure
states; there are not enough degrees of freedom to repraseatt stated[219].

Two-Qubit Gates

In ChaptefR, we discussed classical reversible computasig controlNoT (CNOT)
gates as our primary two-qubit gate. TbeOT is an extremely useful gate in quantum
computation, as well, and will figure prominently in our qtuam arithmetic. However,
thecNOT is not the only type of two-qubit quantum gate. As with the-gubit gates,
we must consider the phase of the system, resulting in amgtes equivalent to the
rotations about the axes we saw for single-qubit gates. Wectzate a “controly”
two-qubit gate, wheré&’ is any single-qubit unitary gate.

First, let us look at the unitary transforms for single-quimtes applied to two-
gubit systems, so we can see the form the matrices take. Eoatigns on multi-qubit
registers, we will letU; be the single-qubit unitary operatidh on theith qubit in
the register. We will number qubits from zero, with qubitaéeing the “low order”
qubit in the system. Qubitthen corresponds to the val@ein the binary expansion
(note that this is in keeping with common computer architexpractice, but physicists
usual number from qubit 1, starting at the left, or high-ordé). In circuit diagrams,
the low-order qubit will be the bottom qubit. The transforon & Hadamard gate on the
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low-order qubit is

1 1 0
1 1 =10 0
Hy=I® H=— (2.28)
210 01
0 1 -1
and for one on the high-order qubit is
10 1 0
1 0 0 1
H=Hl=— 2.29
' V210 -1 o (2.29)
01 0 -1

wherel; is the identity operation on quhiand H; is the Hadamard on quhit Because
the two gates operate on independent qubits, the order ichwie compose the larger
unitary in does not matter,

1 1 1 1
111 —1 1 -1
HyH, = HHy = - (2.30)
211 1 -1 -1
1 -1 -1 1
The two-qubit swap gate has a very simple transform,
(1.0 0 0]
0010
SWAP = (2.31)
01 00
100 0 1

When we write acNOT gate, occasionally it will be necessary to distinguish \whic
qubit is which. In that case, the first subscript will be thatcol qubit and the second
subscript the target qubit, e.g.,

CNOTLO - (232)

o O O =
o O = O
_ o O O
o = O O
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and

CNOTOJ = (233)

o = O

0 0
0 0
0 1
10

o o O

In some physical implementations, a control-phase gatesisatural Hamiltonian.
The control-phase or control-Z unitary is

100 0
01 0 O
CZio = : (2.34)
001 0
000 —1
or, more generally, for an arbitrary rotation by an anjbout the Z axis,
100 O
010 0
CZy0(0) = , 2.35
1,0(0) 00 1 (2.35)
00 0 e

which is not quite what we need for most logic. However, we canstruct acNOT
gate from CZ easily, by wrapping the CZ in a pair of Hadamardthe target qubit:

HQCZL(]HQ = CNOTLQ. (236)

DiVincenzo described other related constructions in aty geper [99]. The control-

phase gate is actually symmetric; it does not matter whictheftwo qubits we treat
as the control and which we treat as the target. The chandeisytstem state is the
same. This factis illustrated in FigureP.3 on page 36 wighdbntrol-Z gate both “right

side up” and “upside down”. This feature can result in unwdrdrror propagation, as
discussed in Sectidn2.3.

Three-Qubit Gates

We have already discussed the importance of the Toffoli ardkin gates in classical
reversible computation. They form the two most importameg¢hqubit gates in the
quantum domain, as well. Most quantum algorithms are defirsgng Toffoli gates.
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The transform for the ToffolcCNOT gate with the low-order qubit being the target is

CCNOT = , (2.37)

O O O O O o o =
o O O O O o ~= O
o O O O O = O O
o O O O = O O o
o O O = O O o o
o O = O O O o o
_ O O O O o o O
SO = O O O o o o

and the transform for the Fredkin cont®lvaP gate with the high-order bit being the
control is

CSWAP = (2.38)

o O O O O O =
o O O O = O O
o O O = O O o O©
o = O O O o o o
o O = O O O o o
_ o O O O O O O

o O O O O o = O
o O O O = O O O©

0 0

TheccNoT cannot be implemented directly on most quantum technadogewe need
a breakdown into two-qubit gates. The breakdown we chooss agwo-qubit gate
which we will call the “square root ok,

1| 1+4d 1—4
VX =2 (2.39)
2 1—i 144
and its adjoint ) )
1| 1—i 144
VX == . (2.40)
2| 140 1—4 |

Our graphic representation is shown in Figlrd 2.4. We wi tiss construction and
an additional variant in Sectidn ®.1, when we discuss theaation of architecture and
gates in more detail.



2.2. INTRODUCTION TO QUANTUM COMPUTING 41

Wl
- 1o1o

Figure 2.4: OurccNOT construction. The box with the bar on the right represerds th
square root ofX, and the box with the bar on the left its adjoint.

Quantum Circuits

A quantum computation, in the abstract, is a unitary trams&tion on the initial state
of the system, creating a desired output. The completemnyrtii@ansform on: qubits,
of course, is " x 2" matrix, so direct construction of the unitary to implemeoban-
plex function of more than a few qubits is difficult. The plgaiphenomena used for
guantum computation do not, in general, lend themselvedovdirect implementation
of complex transforms. Moreover, human beings are not gbodagining such large
systems, but are very good at composing large systems frathesroomponents. Thus,
the abstraction of guantum circuitis important. A quantum circuit effects the overall
transform via a series of smaller gates (generally, ondaretqubit gates) applied in
a prescribed order on the appropriate qubits.

Researchers have found several methods for decomposiregificpnitary trans-
form into a series of small gates or operations that we know toamplement. Some
methods find optimal evolution paths (not necessarily casadamf discrete gates) but
are highly theoretical, and it is not immediately clear hovedompile a large program
by employing these methods [251] 66]. Using the most gemaeedhod, the number
of gates grows exponentially as the size of the problem as&g, negating any advan-
tage in computational complexity that quantum computirgeaps to offer([290]. Most
of the work on quantum programming languages and tools gmntassentially defers
the decomposition problem to the programner [128] P54, 1€]. F-ortunately, many
guantum algorithms depend on a few basic building blockshbgae known efficient
decompositions (such as the quantum Fourier transforno)) ateas translated directly
from classical analogues (such as arithmetic).

2.2.5 DiVincenzo’'s Criteria

DiVincenzo [97] enumerated five abilities which are necesfar real-world quantum
computing devices. A quantum computer must:
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Be a scalable physical system with well-defined qubits;
Be initializable to a known state prior to computation;
Have adequately long decoherence times;

Have a universal set of quantum gates; and

a & w0 bdF

Permit high efficiency quantum measurements.

Two additional criteria focus on moving quantum informathetween two different
guantum computers. A viable quantum communications tdolgganust:

6. Be able to convert between physical realizations of guh#t are stationary and
moving; and

7. Be able to faithfully transmit a physical realization ofj@bit between specified
locations.

The first criterion means there must be some physical estigh as energy levels
of an ion, polarization of a photon, or spin of an electroaf th the actual carrier of the
qubit. It must meet basic criteria of quantum behavior arpsu two distinct states
which can be treated as zero and one. Item 1 also refers t@absity”, which means
different things in different contexts; we will explore ggstem aspects beginning in
ChaptefZR.

The second item may seem obvious, but some qubits, espyeauiallear spins, are
difficult to “reset” to zero. Schulman and Vazirani develd@e method for taking a
poorly-initialized machine and improving the state, “dagl' the system algorithmi-
cally [291].

The third item, decoherence, has important implicationgt@antum computer ar-
chitecture. In order to fault tolerantly compute on a quanmwomputer, the native
error rate must be below a certain threshold. Aharonov amd@einitially calculated
the threshold (“errors per quantum gate”) tolte® [11]. However, this factor is ar-
chitecture dependent, with real architectures requirigstantially lower thresholds.
Furthermore, in order to not have undue overhead from eowection processes as
the size of the computation scales, quantum technologadly reeed to achieve error
rates well below this critical threshold [308].

The fourth criterion requires that a quantum computer be tbtompute any quan-
tum function. It must be able to rotate a single qubit by angl@nand must be able
to entangle a pair of qubits. The single-qubit rotations mylifficult to achieve, so a
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small number of “universal” gates that can be used to syitbdsrger, more complex
gates serves as an alternative, at polynomial €o5E[30/THF5,118]. This is equivalent
to saying that a classical computing technology should ibe &bperform at least a
NOR Or NAND operation. For quantum computers, one such set of univgasas isx,
H, T, andCNOT, the gates we have already introduced in Figureé 2.3 on [pdg®,36
andcNoOT are relatively simple to make fault tolerant, whileequires a more complex
circuit; nearly one hundred gates in one construcfionl[118]

Item 5 is the measurement we discussed above; there mustdialae way to
read out the state of a qubit. However, as noted, measuramértmore important
than retrieving results at the end of a computation; it ces@lmost continuously as
part of quantum error correction and the fault-tolerantcexien of gates on encoded
bits [297 (64308, 132, 307].

Items 6 and 7 deal specifically with moving quantum informatacross long dis-
tances for purposes of computation. Criterion 6 only agpiesystems that compute
complex quantum algorithms via shared state. It does ndy appther uses of quan-
tum effects, such as quantum cryptography [44] 108] ana lol@shonstrations of quan-
tum teleportation[[45, 125] (though teleportation may bedusr quantum computer
architectures [133, 136]).

These criteria have been used as a basis for evaluation ofujuaomputingech-
nologies[248,[302[20]. They are a necessary set of capabilitiesndusufficient to
understand the difficulty of building a quantum computertsispeed and utility once
built. Ladd has suggested that DiVincenzo’s five criteria ba restated as three [195].
A complementary set of criteria for quantum compuggstemss discussed in Chap-
ter[4.

2.2.6 Quantum Algorithms

We observed in Sectidn 2.2.3 that:amubit quantum register can be in a superposition
of all possible2™ stateg0) to [2" — 1) at the same time. Usually, quantum algorithms
begin by placing one input register in this superpositioniseffect allows a quantum
computer to calculate a function on all possible inputs atsame time, in a single
pass. The hard part is getting a useful answer out. At the étiteacalculation, the
result register is a superposition of all of the results, fimeeach of the2™ possible
inputs. However, we can’t directly read out all of those tesulf we measure the
result register to get our answer, the superposition cedlapnto a single state with
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a probability according to the weights discussed above.n'Maxe have only a single
value; our end result is no better than if we had used a clssienputer to compute
the function for one possible input chosen at random. How dstructure a quantum
algorithm so that useful results come out, taking advantdigfeese quantum effects to
accelerate computation? We must find a way to drive the systeard the state where
the weightsy; from EquatioiZB of undesirable states are zero and désistdies (the
solutions to our problem) have large weights.

Deutsch discovered the key to a quantum algorithm [94]: us@tym interference
to increase the probability that a useful state is found wiienquantum register is
measured. Deutsch’s algorithm, later refined in collabonawvith Jozsa, classifies an
unknown function as one of two types. One type of functiorl eréate interference
so that the register cannot read 0; the other type of functieates interference so that
all of the non-zero values cancel, leaving only the state Bis T perhaps the most
profound observation in all of quantum computing: we car tattvantage of the wave
nature of particles to achieve computation.

What we colloquially call quantum algorithms are, in realitybrid algorithms
with both classical and quantum components. Moreover, tla@tym portion of many
algorithms is probabilistic, often necessitating muéiplins to get the desired result
(even ignoring the physical issues of decoherence). Thelencycle of a “quantum”
computation is as follows:

1. Pre-calculate certain classical factors.
2. Repeat:

(@) Initialize quantum computer.

(b) Prepare input state.

(c) Execute quantum portion of the algorithm.

(d) Measure output register.

(e) Post-process output to determine if desired resuleaehi

(H Exitif desired result.
3. Finish post-processing.

We will see in Sectiofi 213 that this process is applied réeelssin the implemen-
tation of quantum error correction. The quantum computarlsainitialized starting
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from a partially-initialized state using quantum algonmitky, as well, using this proce-
dure for step 2.d1291].

2.2.7 Distributed Quantum Computation

Distributed quantum computation (DQC) is the cooperatise af multiple, indepen-
dent quantum computers working to solve a single probleme fheoretical foun-

dations of DQC have been laid, but very little work on designa machine to run
DQC has been done. Early suggestions of distributed quantumputation include

Grover [136], Cirac et al[T47], and Steane and Lu¢as][311}e#ent paper has pro-
posed combining the cluster state model]277] 246] withiBisted computatiori[207].

D’Hondt has done work on formal models of distributed quamttomputation, draw-

ing on formal classical techniques [96]; D’Hondt and Tanakthave worked on the
leader election problem, one of the few true distributedntua algorithms[[321]. A

distributed system generally requires the capability afisferring qubit state from one
physical representation to another, such as nuclear<spahectron spin— photon, as

in DiVincenzo's seventh criterion [227, 159,171].

Yepez distinguished between distributed computationgueirtanglement between
nodes, which he called type I, and without inter-node erltangnt (i.e., classical com-
munication only), which he called type [[[355]. Our quantamlticomputer is a type
| gquantum computer. Jozsa and Linden showed that Shor’sitigorequires entangle-
ment across the full set of qubits, concluding that a typaudhrgum computer cannot
achieve exponential speedup [16Z,1215]. Much of the work unnaulticomputer in-
volves creation and management of that shared entanglement

Yimsiriwattana and Lomonaco have discussed a distributesion of Shor’s algo-
rithm [356], based on one form of the Beckman-Chari-Dev&hima-Preskill modular
exponentiation algorithni [35]. The form they use dependsammplex individual gates,
with many control variables, inducing a large performaneergity compared to using
only two- and three-qubit gates. Their approach is simdaour telegate (SeE_5.2.2),
which we show to be slower than teledata ($ec.5.2.1). Theyad@onsider differ-
ences in network topology, and analyze only circuit comipyerot depth (time perfor-
mance).
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2.3 Error Management in Quantum Computers

By failing to prepare, you are preparing to fail.

Benjamin Franklin

There are no mistakes, save one: the failure to learn from a
mistake.

Robert Fripp

O throw away the worser part of it,
And live the purer with the other half.

Shakespeare’s Hamlet, quoted by Lampson

A bewildering array of error processes bedevil quantum aging technologies.
There are normal, independent errors of dedayand7; memoryless processes) that
affect a single qubit only, correlated error processeseraby environmental defects
that affect more than one qubit, unwanted interactions éetwqubits, stochastic gate
errors, propagation of errors by gates, “hot” and “cold"egataccidental measurement
of qubits, leakage of information into the environment treamixed states, and finally,
loss of the qubits themselves (photons or, occasionatg)io

Error management in quantum computers is accordingly aamchcomplex field.
In this section, we provide a general introduction to quamairor correction (QEC),
including a look at how QEC helps reinforce the digital nataf quantum computing,
and briefly present the notion ofthreshold We then skim over other error control
techniques such as decoherence-free subspaces and dengaisi sequences, very
different from error-correcting codes and more tightly bduo the quantum nature of
the data we are protecting. Our goal in this section is nooiecthe mathematics
of quantum errors or to provide complete coverage of thectdpit to give computer
architects a feel for the nature of the problems and theisaolsit For a more thorough
understanding, see Chapter 10 of Nielsen & Chuangl [248]dlwhiins seventy-five
pages) and the many papers referenced both there and intpsec. Keyes’ paper
is a good introduction to some of the physical concerns @ssucwith solid-state
systems[[169]. In my opinion, the single most important pdpeengineers to read
and understand, for the practicality of its results, is opeSkeane[[308]. This topic
alone would easily warrant development of a full book.
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2.3.1 Error Models

As suggested above, there are many ways in which quantumcdathe damaged.
Error processes also operate at many time scales: errorecoay at fabrication time,
over the course of many gates, or over the course of a sintge eoms are identical,
but fabricated structures are not, and the resulting @iffees may alter e.g. oscillation
frequencies, affecting gate time and coupling of qubitanferatures drift over time,
influencing behavior. Atoms may vary their position relatte a laser beam or optical
cavity, altering the ideal gate time on a moment-by-momasid Stray magnetic fields
may influence large groups of qubits.

This plethora of problems suggests that we should look failarities and simpli-
fying abstractions. The first models of errors in quantum gotation assumed that
independent errors occurred before or after the execufimyiral gates. If we assume
independent, random errors (an assumption we will graglwalax), it can be shown
that all errors can be reduced.oor Z gate errors on individual qubits.

Error Propagation

In classical circuits, whether analog or digital, we areustomed to errors propagating
from source to target; an error in an AND gate creates an iacbresult, but does not
affectits inputs. In the quantum world, we have the same &fragrors, but additionally
have errors that propagate in counter-intuitive fashion.

In Figure[Zb, we show how errors propagate through quantatesg AnX error
(aNoT error, drawn asb in the figures) on the target qubit oicaoT gate behaves the
same before or after the qubit. An error on the control bit before the gate execution,
in contrast, propagates the error to both the control amgbtayubits at the output; our
single error has become two errors. Worsé] arror (drawn as a box with & in it
in the figure) on the target qubit of @uOT prior to the gate propagates/zaback to
the control, as well; our intuition about the flow of errorgtie system fails us in this
case. This effect affects our ability to correctly executarfum error correction itself,
which we will see below.

Steane’s Error Models

The basic model introduced above correctly modelddbe of errors as single-qubit
gates that occur before or after the execution of logic gafes accurately assessing
the probability of errors, it is somewhat simplistic; we will see in Sectlod #hat,
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Figure 2.5: Error propagation in two-qubit gates.

for many calculations, many of the qubits sit idle for longipds of time. A better
model will therefore take into account memory errors an@-gaduced errors. Steane
introduced just such a model, which we will call té&() model or thespace-time
model [308]. LettingK” be the number of logical qubits in the computation @&htle
the number of time steps to complete the computation, threadhuracy of our logical
operations must be related to the inverse of the space-tioaupt,~ 1/K@Q. In this
remarkable paper, Steane went further and discussed fleeedife between the gate
error probability, which he labeled, and memory error probability, which he labeled
¢, and produced numerical values for the size of computat{éfig) achievable for
various system characteristics.

2.3.2 Quantum Error Correction Codes

Until the advent of quantum error correction, many reseasloelieved that these
problems were insurmountable [169, 1104,1328] or at leastduinthe range of prob-
lems to which quantum computing can be applied [75, 31]. Hewnein 1995, al-
most simultaneously, several researchers discovered evelopped mechanisms for
applying classical error correction codes, such as Reduhyfm codes, to quantum
data [297[ 64, 304]. The most important class of quantunt eowection (QEC) codes
is now called the Calderbank-Shor-Steane codes, afteviéntors, and includes quan-
tum analogs of Hamming, Golay, and other types of classicat eorrecting codes.

In classical systems, we often use multiple levels of ermrection. The same
principle can be applied in quantum systems, in a mannegcedincatenation In a
concatenated system, physical qubits are grouped to emdodéeal qubit, and a group
of logical qubits is further encoded (using the same or sedhfiit code) to provide
greater protection against errors. We discuss concatenatiSectiof 2.314.

First, let us examine how to correct bit-flip errors in a quamtstate. The CSS
codes, like classical codes, redundantly encode infoonatd that an error in one com-
ponent qubit can be detected by comparing to the other qu@oitsthe error corrected.
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Figure 2.6: Parity measurement for quantum error correctio

In the simplest example, one qubit is encoded by making twoif“copies™ of the
gubit. Three ones will be our logical one, and three zerodid@iour logical zero, i.e.

|0) — |0) = |000) (2.41)
1) — |1.) = |111). (2.42)

Our canonical unknown single-bit state then becomes
|v) = a|0) + B]1) — |¢r) = al0r) + B|1L) = «|000) + 5]111). (2.43)

Now that we have our proposed logical states, how do we eggaies, and how do we
perform our actual error correction? Taking the secondtiprefirst, error correction
is done by a series of parity calculations and measuremiegttsng |+/;), j = 2,1, 0 be
the three qubits in our logical stafte; ), we want to calculate the parity of the 0-1 pair
and the 1-2 pair. If the state is still unmarred, both calboites will return zero (even
parity). However, if we find, for example, that the 1-2 paieigen but the 0-1 pair is
odd, we can infer that bit O is in error, and needs to be cartedt both pairs are odd,
we can infer that bit 1 is in error. The basic circuit for thgmseity measurements is
shown in FigurgZ16.

Although it is not immediately obvious, this parity measuent will not disrupt
our qubit state, causing the collapse of the wave functi@ahraming our computation.
We saw in Sectioh Z.2.3 that measurement of a single qubisirparposition takes out
one qubit, shrinking the entangled state of the system.itivetly, this is reasoned by
considering what wéearnfrom the measurement. By doing a parity measurement, we
learn only whether the two qubits are the same, not whetlegrahe one or zero. When
the states are correct, both bits will be one, or both bitklwilzero, in accordance with

4Again, be careful that when we use the term “copy”, we arerrigfg to a fanout, rather than an
independent, cloned copy of the state, which we know is irsiptes[352].
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the usual behavior of entangled qubits.

The error case works the same. Our error model assumesip,bibt a qubit being
setto either one or zero. Thus, an error on bit 1, for example,ldvtaad to the state
a|010) 4+ |101). Parity measurement of the 0-1 pair produces a 1 (odd pawyijing
out both the correct case and the case of an error on bit Ing@dparity qubit whose
state is created using the circuit in Figlirel 2.6, we have

]000) + 8]111) — «|0000) + B|1110) = («|000) + B|111))|0) (2.44)
a]010) + B|101) — «[0101) + B1011) = («|010) + 3]101))|1) (2.45)

where the right-hand factoring makes it explicit that me@sguthe last qubit will not
affect the prior state, neither collapsing the superpasitior altering the values of
andg.

Once the parity has been calculated and measured, we knathevioe not an error
occurred, and if so, on which qubit. Assuming we found anresroqubit 1, we correct
by applying anX gate,

X1|vr) = X1(a|010) + B8[101)) = a]000) + B|111) (2.46)

and our desired state is restored.
The second type of error we must correct is phase errors. \Whlase error occurs
on our three-bit encoded state,

regardless of which qubit the phase error affected. Obiypasr three-bit code does
not detect such errors. However, if we apply a Hadamard tthtiee-qubit state before
an error occurs, then we shift into a space where a phasevglirshow up as a bit error

when the parities are calculated. Combining a three-biedodprotecting against bit
flips and a three-bit code for protecting against phase flpdave a nine-bit encoding
for a single logical qubit known as tt&hor nine-bit cod¢297].

QEC traditionally depends on interleaving measuremeni@gid gates, and there
has been recent experimental progress on this ffani [28djveder, it is possible to
perform QEC without measurement, at a cost of a number oflaat¢hat grows with
the number of applications of error correction [248]; thigpeoach is not supportable
in a large computation, but may be applied in short sequences
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QEC builds on concepts from classical error correcting sodgtabilizer codes
represent an important advance in the mathematical repgeds® of QEC, providing
a more compact representation of the code word states amplifging construction of
fault-tolerant operation$ [131].

QEC demands to be taken into account when designing a quardonputer. In-
deed, Steane has referred to a quantum computer as a madtose purpose is to ex-
ecute error correction; computation is a side effect[3@rrently, some researchers
are analyzing the behavior of QEC on proposed architecamdsattempting to design
machines that are well-adapted to performing QECI[B117, 8@,[307[ 8B, 255, 62, 95,
[230,229], or exploring the interaction of QEC withuster state computin@5sd]. Oth-
ers are demonstrating QEC and decoherence-free subspHeds described below)
experimentally, either partially or completely, on NMR[l8optical [268], Josephson
junction [164], or ion trap system5 140, 281) 70]. Knill ét dave even suggested
that the ability to run QEC be used as a reliability benchnfiarlquantum computing

technologies[181].

CSS Codes and Larger Blocks

Now that we understand the basics of the error correctiongases, surely we will
want more efficient codes than the Shor nine-bit code. Taudsthe efficiency of the
encoding of various schemes, we need a notation. We willriiesa quantum error
correcting code using the notatiom[k,d]], wheren is the number of physical bitg,
is the number of logical bits encoded, ahis the Hamming distancéd — 1)/2 errors
can be corrected by the code). In this notation, the nin&oitr code is [[9,1,3]]. Nine
physical qubits encode a single logical qubit, and can comay single-qubit error,
whether bit flip or phase flip (or both).

More efficient encodings for a single qubit are known. The theosnmonly used
example is the [[7,1,3]] Steane code [304]. Thus, for theuSte7-bit code, we encode
each logical qubit in seven physical qubits, and this stateaorrect a single error. In
this code, logical zero and logical one drel[64]

1
NG
+10111100) + [1010101) + [1100110) + [0001111)) (2.48)
[12) = X0z).

10) = —=(|0000000) + [1101001) + [1011010) + [0110011)
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Figure 2.7: Circuit to create the, ) state for the Steane [[7,1,3]] code.

In the equation, we have underlined the last three bits addred the terms in the
superposition to emphasize that all of the binary valuesDdppear there. Figute2.7
shows a circuit that can create the logical zero state; tliahards on the bottom three
qubits give us our superposition of 0 to 7 from which the réghe state is built. The
subscripts in the figure are the bit number in the QEC blockh wubit 6 being the
leftmost bit in the state as written in Equation 2.48. Theligpaf the state must be
verified after creation and before use.

This seven-bit code is still not the limit for a single qubitithin months of the
elucidation of the basic concepts of quantum error cowactiwo groups had discov-
ered a [[5,1,3]] code, which was demonstrated experimigndal an NMR system in
2001 [198[ 45, 181]. However, this code is difficult to workhyiexecuting many kinds
of logical gates on the logical states for this code requoag sequences of physical
gates.

As with classical error correction, we can encode more thamgle qubit into a
block that is collectively protected. In classical systemeen with strong codes, in
practice the overhead is rarely more than 30%. Unfortupaitelthe quantum world,
even with modest-sized blocks, the overhead runs to a fattthree or so. Steane
described codes as efficient as [[63,39,5]], with an ovettedaonly 1.6, but this one
can correct only two errors in the entire block, and the o#fécient codes likewise
trade protection for space. Steane recommends a [[23dgdl based on a classical
Golay code as giving higher error tolerance (a larger péssipplication-levelK ())
for a given overhead in storage, when multiple layers of QECcancatenated. For a
concatenated code, he recommehds 1 for the lowest level(s) of the system, it being
much easier to construct higher-level codes in this das@][30
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2.3.3 Fault Tolerance

Fault tolerance as the term is usually applied in quantum computing, meagisdy-
namic errors in our state do not propagate uncontrollabiyudphout the system. The
system can tolerate individual errors and still succegstitdmpute. Thus, fault toler-
ance is primarily a set of techniques for controlling erroygagation. Fault tolerance
does not mean, as the term is often used in classical sydteshthe quantum computer
is prepared to deal with near-permanent failure of large\ware subsystems.

As we saw above, errors can propagate from one qubit to anathgates are ex-
ecuted. For this reason, errors are especially dangeroQ&® blocks that contain
more than one logical qubit. A code that can correct only glsierror across multiple
gubits can never be robust against a logical gate error wieegdte is applied between
two qubits in the same QEC code block. Therefore, to execgabetween qubits
in the same block, one logical qubit must first be swappeddet, we apply the gate
laterally between blocks and perform error correction s#pdy in each block, after
which the qubit can be swapped back in to its original loggtibdesired.

Figure[Z®6 on page_#9 shows a simple, ideal circuit for catod) the error syn-
dromes. To prevent the kind of error propagation describeétectior 2,311, we cannot
use this circuit directly; we must have a scheme which prisvphase error propaga-
tion. Steane described an algorithm for this, based oneeamork by himself, Shor,
Zalka, and otherd [308]. Figute®.8 shows Steane’s alguariglightly reformulated.
In actual implementation, the creation of the logiftgl) state will be decoupled from
the syndrome measurement part of the subroutine. The syrednoeasurement will
draw from a pool of logical zeroes that is refilled contindgusined to guarantee that
logical zeroes are available when necessary, and as frggisable, while minimizing
the number of qubits required.

Many researchers have studied fault tolerance, includiegcomposition of fault-
tolerant logical gate$ 310, 6Z, 118]. We will not delve het into this topic here.

2.3.4 Threshold Calculations and Concatenation

Error correction only improves the quality of the state of system if, on average,
it repairs more errors than it introduces. If the resultingerate is still inadequate,
we can concatenate multiple levels of QEC, pushing down #teerror rate to the
necessary level.

In an h-level concatenated encoding, the effective error prdibabs (cp)Qh /¢,
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subroutine get_one_syndrone:
r epeat
prepare n qubits in state | 0>
apply circuit to create logical |0>
verify logical |0> state
until logical |0> state is good
couple | 0> to data bl ock
Hadamard transform | 0>
nmeasur e
return result
endsubrouti ne

routi ne syndrone:
get _one_syndrone
if syndrone = 0 then
return O
el se
repeat r-1 tines
get _one_syndrone
if nore than chosen limt of r syndronmes agree then
return syndrone
el se
fail
endr outi ne

Figure 2.8: Fault-tolerant error syndrome measuremewtigtgn.
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wherec is thethresholdvalue andp is the error probability (which is assumed to be
the same at each level, for the moment). The threshold, sreipuation, is the number
of operations required to execute a single level of erroremion. Ifcp < 1, then each
level of encoding we add to the system decreases our nethilibpaf failure. If an
encoding level uses qubits from the level below to encode a single qubit, our wtat
per logical qubit is»" physical qubits. In two-level concatenated QEC, with défet
inner and outer codes,{[,1d;]] and [[n.,k,d,]], respectively, we use;n, physical
qubits to represerit logical qubits.

Aharonov and Ben-Or were among the first to calculate a nwalevalue for a
threshold[[TlL]. They found a value ef 10~ for a particular set of assumptions. That
is, if more than one gate out of a million fails (a levetll beyond experimental capabil-
ities for all guantum technologies at the moment), using talerant techniques actual
makes the state of the system worse rather than bettersitiias one in a million gates
fails, fault tolerance makes the state of the system better,via repeated application
of fault tolerance we can reach an arbitrary level of reliphiAharonov and Ben-Or
also proved (without providing a numerical figure) that aestnrold exists even when
the qubits are arranged in a linear nearest neighbor-opblagy, which we will see in
Sectior[&1l. Thresholds have been calculated many timekfferent sets of physical
assumptions and error correcting codes, with answersngbyi several orders of mag-
nitude in both directions 185, 90, 120, 182, 183,1318, 13H]2Knill has suggested
that, under some conditions, error rates as high as 1% maghtbeptable [180]. In
this dissertation, we will work with the Steane algorithndanemory/gate error as-
sumptions described above, working toward a finite compmnaif a particular size
and ignoring the issues around thresholds.

2.3.5 Why QEC Suppresses Over-Rotation Errors

One counter-intuitive aspect of operating on encodedsstatihe suppression of over-

rotating gates (gates running “hot”) or under-rotatingeggtjates running “cold”) [233]

It is easy to see that QEC corrects a single gate error, buitof he physical gates

comprising a logical gate over-rotate by similar amouras, that be corrected?
Examining the three-bit encoding once again,

) = @|000) + B|111) (2.49)

SThis is a key factor in the “quantum computation is not an@lomputation” argument.
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an X gate that runs hot on a single qubit will actually perform giage

2 2

€ i€
COS 3 Sin 3

(2.50)

X, = Ry((1 4 )m) = [ sin§ cos 5 ]

The logical X gate for this encoding i¥ = X X X (X gates on all three component
qubits), where the over-line indicates a logical operatidmis-rotation at thdogical
level is

X |y = (a51n§+ﬁcos )|000> (acos§+ﬁsm )|111) (2.51)

but X, # X.X.X.! Itis easy to be confused about how the system distinguishes
tween a deliberate attempt to rotatesbgnd1.17. The answer is that this construction
X. XX, suppresses the (apparent) over-rotation famnces X, X, X, ~ X. This fact
can be seen by doing the vectors explicitly.
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beforeapplying the error correction. This encoding suppressesatigular error to
O(sin® §) = O(€?), even without going through the QEC correction step, bsiiisier
to see once we've applied the QEC. Assuming perfect QEC,akrisult is

[,y = (asin® 3 +ﬁ0083;

+3arsin® 5 Ccos 5 + 313 cos® 5 sin — )|000)
s % + ﬁSiH3 5
+3a cos? % sin — 5 S 3/ sin % oS — )|111) (2.53)

+(cvcos

and we see that the angular rotation error is insihé terms.
Mathematicians would say, of the deliberate attempt taedig1.17, that “it's not
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in the Clifford group,” or “it’s not in the normalizer.” Tharportance of this mathe-
matical distinction is that there are only a few gates, suctheX gate, that are easily
constructed by applying the same gate in a transverse fashiall elements of our
logical qubit. It is not possible to (easily) construct aildefate rotation byl.17 on

the logical state. We will not delve further into these mathécal issues or terminol-
ogy, though they affect compilation of efficient programsl @tuster-state computing
as well as quantum error correction, and are influenced byaheal gate for a specific

technology([145,118].

2.3.6 Other Error-Suppression Techniques

Other forms of error management techniques exist, somadb@saleep theoretical
insights. One particularly intriguing one, from a theacatipoint of view, istopolog-
ical quantum memoryin which a 2-D array or torus of qubits is entangled in vasiou
patterns to make a logical qubif]92]. The state is stableabse it is the patterns of
the connections, rather than the value or phase of any sijudji, that determines the
logical state. The resources required are large, and ittismoediately clear how to
implement this scheme on a physical system.

QEC works best on systems with uncorrelated errors on sepqudits. When
error processes are more likely to affect groups of nearltgja technique known as
decoherence free subspa¢Bs$-S) helps to mitigate these problems [P06,1140] 205]. In
a DFS, the logical value is encoded in the relative, rathem eibsolute, state of a group
of qubits. A stray magnetic field that caused them all to flgy,dxample, would not
affect the logical state.

In optical systems, the principal source of error is loss ledtpns. In this case,
erasure codesgin contrast toerror correcting codeswork well [183]. Erasure codes
can be as simple as a parity check. Reconstruction of theistatraightforward when
the position of the missing qubit is known. Erasure codesuaesl in RAID arrays,
where the position of the disk spindle that has failed pluswke parity check provide
enough information to reconstruct the original data [263].

As we noted above, individual gates can run hot or cold, owernder-rotating
compared to the intended angle. Besides using (digitatyuaerror correction, ana-
log techniques for improving the accuracy of gates have bleseloped. Composite
pulses break down a rotation into a series of steps desigrtbassimilar errors in each
step cancel[338, 81]. As a simple example, a rotation froemitrth pole to the south
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pole can be broken down intd&° rotation about the&” axis, then d80° rotation about
theY axis, then anothe¥0° rotation aboutX . If the X rotations both under-rotate, the
Y rotation will compensate by mirroring the position abowd dguator betweeX ro-
tations. Realistic sequences for arbitrary (and unknowan}ieg positions and gates
are substantially more complex but valuable. Some seqearaereduce an error ef
in each step of the process to an er@e®) in the final outcome.

2.4 Summary

Reversible computation allows us to reverse the arrow of tmd return to the starting
point of a computation, recovering all inputs to the systérhis is possible because
information is conserved, rather than destroyed, as in comBoolean logic; each
gate has an inverse that undoes its operation. In reverddmssical logic, the inverse
of a gate is the same gate, but in quantum that is not necdgssarias we saw in
SectionZZHK. In reversible classical logic, we need aetliie gate in order to have
universal computation; we have also seen that in quantunpatation we can construct
the three-bit gates from many types of two-bit gates.

When Bennett, Feynman, Fredkin, Toffoli and others oritlyndeveloped the con-
cepts behind reversible computing in the 1970s, they weascking for the ultimate
limits to the energy consumption of a computation, as welplaying with remark-
able intellectual facets of information. They probably machotion that beginning just
a few years later they would help to found the fields of quant@amputation, quan-
tum information theory and quantum communication, and their names would be
indelibly linked with those fields. Feynman, Benioff and Bsaln conceived of quan-
tum computing in the 1980s as utilizing quantum effects teptially, dramatically
accelerate computation of certain functiong [39,] 114, 94].

Quantum computing must be contrasted with classical coatiput performed us-
ing quantum phenomena. Of course, the behavior of semicboiducan be viewed as
an analog quantum phenomenon, but transistors currergliauge numbers of charge
carriers, allowing us to treat transistors as classicataligevices. As device size con-
tinues to decrease according to Moore’s Law, we will soonernato the range where
individual electrons are useld [236,110]. Other approaohedve using qguantum cel-
lular automata as logic gates, or more directly maniputgtie spin of small numbers
of electrons for e.g. magnetic RAM and logic devices, in afteloadly calledspin-
tronics [153,[329[3511]. Although the physics of the devices and #éofiriology for
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manipulating such states have much in common with the exyertal techniques for
guantum computation, there is a key difference. In what er te as quantum com-
putation, we are attempting to take direct advantage ofélyeakpects of superposition
and entanglement, whereas in quantum-executed classicgdutation, the goal is to
suppress these effects as unwanted, and maintain a cleay siate.

A quantum bit, or qubit, can be in a superposition of stather than the definite
zero or one state of a classical bit. In this chapter, we heesgmted the basic concepts
of qubit state, starting with the relationship between tla@evfunction and the proba-
bility of getting certain results. We discussed represgtine state of a single qubit as
a point on the Bloch sphere; visualization of the state oftiplel qubits is much harder,
and if the qubits are entangled they cannot be represerdegémdently. We discussed
the basic principles of quantum superposition, entanghémeeasurement, and deco-
herence. We can entangle multiple qubits and interfereettmad in the superposition,
driving the system toward our desired states. Measuringytstem will produce values
that would be difficult to calculate using only classical gaiters, in some cases, expo-
nentially more difficult. Designing algorithms that gerterauperpositions with useful
speedups has proved to be a difficult problem.

We have outlined some of the coherence and computationatasycproblems in-
herent in quantum computing devices, and shown a varietyagbwf mitigating these
problems. In particular, we focused on quantum error ctioe¢QEC). Besides sim-
ple bit errors, QEC must be able to correct phase errors ds Weis fact results in
substantially less efficient codes than in the classica.c@lbe counter-intuitive prop-
agation of phase errors also forces complex fault-tolexramechanisms. The state of a
gubit is something of an analog phenomenon, with a continalistates for the phase
and probabilities of different states; fortunately, as va@éhseen, QEC helps to sup-
press analog errors, at the expense of requiring more carppbeesses to effect many
logical qubit rotations.

This chapter has described the building blocks of quantumpedation. The mate-
rial presented so far gives only the vaguest notion how tbeseepts cooperate to give
us the power of quantum computation. We will gradually efab® on these topics,
beginning in the next chapter with Shor’s algorithm for &aatg large numbers.



Chapter 3

Shor’s Algorithm for Factoring Large
Numbers

“I am fairly familiar with all forms of secret writings, and am my-
self the author of a trifing monograph upon the subject, in which |
analyze one hundred and sixty separate ciphers, but | confess that
this is entirely new to me. The object of those who invented the
system has apparently been to conceal that these characters con-
vey a message, and to give the idea that they are the mere random
sketches of children.”

Sherlock Holmes in “The Adventure of the Dancing Men,” Sir
Arthur Conan Doyle, 1903.

Before we can design a computer, we have to understand haWlienwsed. Char-
acterizing the workload of a proposed system is the first mamb task in the design
process. For our quantum multicomputer design, we haveechBbor’s algorithm as
our primary target application [2P6, 1107]. Shor’s algamithequires arithmetic and the
guantum Fourier transform (QFT), both of which are congddundamental building
blocks of other algorithms. Moreover, Shor’s algorithm i®aous and important re-
sult in its own right. This chapter presents an informal wiew of the algorithm. Our
discussion does not detail the theoretical mathematidseoélgorithm, instead cover-
ing the importance and structure of the algorithm, and isti@ship to the quantum
mathematical building blocks which are the primary focushié thesis. The chapter
begins by discussing the factoring problem, then preséetQFT, followed by arith-
metic algorithms for reversible and quantum addition anduatar exponentiation, then

60
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combines the parts into Shor’s overall algorithm.

3.1 The Importance of Factoring

Authentication of identity is one of the key factors in cortgrusecurity. To authen-
ticate yourself, you prove in some fashion that you are who glaim to be (or, at
least, have rights that you claim to have). Authenticat®woften said to depend on
something you have, something you are, or something you Khotthat is not known
to other people). A door key, for example, is one way to auibate that you are al-
lowed to pass through the corresponding door; it is somgtiiou have. Biometric
sensors, such as fingerprint or iris readers, are canoniaat@es of “something you
are” authentication. A computer password is something ymwk

The RSA algorithm (Rivest-Shamir-Adelman, named for itgadiepers) is the most
important authentication mechanism on the Internet tog80,[289]. RSA is a classic
example of gpublic key or asymmetricencryption algorithm. RSA is used primarily
for authentication, rather than encryption of bulk dataahese it is expensive to cal-
culate relative to other encryption algorithms. In RSA, gptographic key has two
parts, the public key and the private key. The public key camlisclosed to anyone,
and should be made available via some trustworthy means. titstworthy publica-
tion of the public key is beyond the scope of our discussiom,can be recursive use
of the same authentication mechanism leading back to &trgsturce such as a friend
or the RSA Corporation, or an out-of-band trust mechanisoh s1$ publication in the
New York Times. The private key is used to calculate a fumctitnose result can be
disclosed publicly. Using the result and the previousipeamced public key, any party
can then verify that the function result was calculated leyhiblder of the private key,
thereby authenticating the identity of the creator.

Factoring a large integer into its components would seemeta lbather esoteric
problem, but in fact, it is directly relevant to this issueanithentication. The difficulty
of cracking RSA is known to be related to the difficulty of fachg a large, compos-
ite number into its prime factors. Letting be the ciphertext and/ be the original
message, the function calculated in RSA is

C = M° modn (3.1)
M = C%mod n. (3.2)
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The encryption keyor public key, is(e,n), and thedecryption keyor private key, is
(d,n). nis chosen to be a simple composite number, the product of tiweeg,n = pq.
d is a large, random number which is relatively priméo- 1)(¢ — 1). e must then be
the multiplicative inverse of, modulo(p — 1)(¢ — 1), such that

ed =1mod (p—1)(qg —1). (3.3)

From this, we can easily see that the ability to factdanto p andq would allow the
encryption scheme to be broken. Thus, the security of RSAitt® depend on the
computational difficulty of the factoring problem.

3.2 Historical Progress in Factoring

The factoring problem has never begamvedto be impossible to solve classically in
polynomial time, though many researchers strongly beliete be impossible. The
best known classical algorithm, the general Number Fiedd&S{NFS), consumes total
resources that are superpolynomial in the length of the murfi87]. Its asymptotic
computational complexity on large numbers is

O (k1o m)1/%) (3.4)

wheren is the length of the number, in bits, akd= % log 2.

RSA, the company founded by the inventors of the RSA algerjttvhich owns
the (now expired) patents on the RSA algorithm and mucheadlabftware, issues an
ongoing series of public challenges to the factoring comityiuin the form of numbers
to be factored. These challenges carry with them cash phzg¢sre currently modest
but grow into the hundreds of thousands dollars for longenlers [288]. Figur&3l1
shows the progress of the RSA Challenge factoring recorde i991.

RSA places no restrictions on the amount or type of compuyimger to be used
in the challenge. At a constant dollar value of computing @oused, in the current
range of~ 600 bits, Moore’s Law applied to CPU power alone (ignoring meynor
and 1/0O, and software improvements) suggests that the sbmyember factorable us-
ing NFS should be growing at about 18 bits per year. In the thataugh 2003, we
see roughly this trend. The line on the plot is a least-squfEréo the records through
2003. The current world record for factoring is 663 bits; ar@an team (Bahr, Boehm,
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Figure 3.1: Length of RSA Challenge numbers successfuliiofad, in bits, plotted
versus date accomplished.

Franke, and Keinjung) announced the factoring of the RSB-@tallenge number in
May, 2005. This data point appears to be an anomalously leage whether it rep-
resents a shift in the long-term trend remains to be seenall@aet al. estimated in
2000 that a 768-bit RSA key will be factored by 2010, and a 16i24ne by 2018[[6/7];
progress appears to be on track to meet those predictionstraeet al. have also noted
that NFS scales well to large numbers of parallel processmiss amenable to custom
hardware acceleration; they suggest that a machine thit famtor a 1,024-bit number
in one year could be built for US$10M using 2003 technol@did2 It may be possible
to use an Internet-scale distributed system, such as thkeRgrOpen Infrastructure for
Network Computing (BOINC), to attack this problem 150! 1BOINC, upon which
SETI@home is based, has the potential to manage 100,000 re&r modes simulta-
neously attacking the same problem, a 1,000-fold increase the size of systems
deployed to date on factoring problems. We can infer thathiatpoint, moderately
large jumps in factoring records are primarily a matter ahaotment of resources.

The execution time to factor a number using NFS an a set ofassidal computers
is shown in Figur&3]2. The left curve is extrapolated penfamce based on the previous
world record, factoring a 530-bit number in one month, d&thbd using 104 PCs and
workstations made in 20087[283]. The right curve is speawdgberformance using
1,000 times as much computing power. This could be 100,060iR2003, or, based
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Figure 3.2: Scaling of number field sieve (NFS) on classioaiguters. Both horizontal
and vertical axes are log scale. The horizontal axis is the sf the number being
factored, in bits.

on Moore’s law, 100 PCs in 2018. From these curves it is easgédhat Moore’s law
has only a modest effect on our ability to factor large nureb&actoring a 1,000-bit
number is only a matter of time, but a 2,000-bit number awetteer some theoretical
advance or the advent of large-scale quantum computers.

3.3 The Quantum Fourier Transform

We have noted several times that quantum parallelism efédgtcalculates exponen-
tially many functions at the same time, but that the diffigliks in extracting useful

information from the superposition of results. Shor’s rekaale insight showed the
path to creating a desirable superposition by interferegoalic elements. Some prob-
lems exhibit periodicity in their results, but with a chamgjioffset from zero. Classi-
cally, one method for finding a period in such an environmstibiFourier transform

the data, which eliminates phase (the offset) and leavesdafaency (or period) infor-

mation.

The quantum Fourier transform (QFT) transforms each iddizi basis state in the
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r input o output g, L/r
j=0 1 2 3 4 5 6 7|k=0 1 2 3 4 5 6 7
8 1 00 00 O0ODO 11 1111111
4 1 00 01000 1 01 01010 2
2 1 01 01010 1 00 010 0O 4
1 111 11111 1 00 OO0 0 O O 8
Table 3.1: Transform values of the coefficients in the QFT.
following way:
L—1
QFT 1 Z QWij/L‘k (35)

whereL is 2!, and! is the length of our state in bits. Writing out the entire sfamm
for I = 3 and lettingw = ¢*™/% = /i, we have

11 1 1 1 1 1 1

1 w w? W oWt W Wl W
1 w? ot Wb 1 W oWt W

1 1 wd W w Wt W Ww? WP (3.6)
V81T wt 1wt 1 oWt 1 Wt .

1 W w? W oWt w Wb Wl
1 Wb w* w? 1 Wb oWt W?
1 W' W W oWt W W ow

Let us look at the input and output of the QFT in more detailln Table[31,
a; are the coefficients of the valugsn the input superpositiod | «;|j). 3 are the
coefficients in the output superposition. The top left erfioy example, has a one in
the leftmostn; column, corresponding to the statg. The next line includef)) and
|4), corresponding to the two onesis the period of repetition, that is, how often ones
appear in the fully-written-out superposition. The tald® de used, for example, to
see the following transformation:

QFT 1

(10) +14)) = S(10) + [2) + |4) +[6)) 3.7)

\/’

What happens if the values in the superposition are period faut not|0) and|4),
perhaps beingl) and|5) instead? Such an offset difference shows up in a differemce i

These examples are borrowed from Lieven Vandersypen'st{&s9)].
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input o outputgy
j=0 1 2 3 45 6 7|k=0 1 2 3 4 5 6 7
1 0O 00O 1 000 1 0O 1 01 0 1 O
0 1 00 01 0 Of 1 O ¢« 0 -1 0 —i O
0 01 00010 1 0O -1 01 0 -1 O
0 0O 01 00 O 1 1 O -« 0 -1 0 ¢« O

Table 3.2: Transform of different offsets into phase via@fer.

the phaseof the output, as shown in Talle B.2, giving e.g.

%un 150 28 210y +12) — [4) — ile)). (3.8)
After the transformall of the period four superpositions will have an equal chance
of returning 0, 2, 4, or 6 when the register is measured, dégss of their original
input values (this discarding of offset or phase is a charastic of the classical Fourier
transform, as well).

Thus, when we have an unknown superposition that we suspaststs of some
terms|;j) where thejs have a periodic relationship, the quantum Fourier transfaill
allow us to extract that period. Shor has used quantum ernte to cause undesirable
terms to cancel when transformed. This remarkable resolterdrates portions of our
total probability into superposition terms that tell us sthing useful about the entire
superposition when measured, holding out the tantalizosgipility of an exponential
increase in computational power.

Shor built on work by Simon to develop his algorithm [299]. tWaresearchers
have examined the QFT in more detail, including describiowy to implement it, and
discussing the necessity of exponentially small rotatiarthe low-order bits[[31], 69,
180,[82[141/,332,121]. We will leave off discussing the QFill move on to arithmetic,
which we also need for Shor’s algorithm.

3.4 Prior Art in Quantum Adders

Shor’s factoring algorithm depends on the creation of augsition consisting of the
modular integer exponentiation of a randomly-chosen numlyaised to all powers 0
to 22" — 1, for ann-bit number. Exponentiation, of course, depends on integstipli-
cation, which in turn depends on addition. In this sectiorwilereview several types
of quantum adders developed by other researchers, whitbeuised to construct the
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complete modular exponentiation in the following section.

Classically, engineers have found many ways of buildingeasléind multipliers;
choosing the correct one is a technology-dependent ergfli®]. The performance
of an adder depends primarily on how quickly the informatadoout the carry can
propagate from bit to bit. The most obvious methods resulatency that is linear
in the number of bits to be added, but more complex technigaasreduce that to
O(y/n) or evenO(logn). Classical multipliers are usually built by deferring treery
calculation, allowing the: additions necessary for a multiplication to be completed
in much less tham times the latency of an individual adder; we will see beloatth
this is less attractive for quantum arithmetic. Only a fewhsdse classical techniques
have been explored for quantum computation. We review tbieseits in this chapter.
For our purposes, we need only unsigned integer arithnmeithe standard unsigned
integer representation is used.

We begin by explaining our notation for performance, thealyre progressively
faster types of adders developed by other researchersigstng presentation of my
new adder types for Secti@n b.3. Rather than the details gfthdse circuits work, we
are more interested in how to implement them and evaluategedormance.

3.4.1 Arithmetic Performance Notation

We express the circuit cost using the notatio@NOTs; CNOTs; NOT's) or

(CNOTs; NOTs). The values may be total gates or circuit depth (latencyjedding on
context. The notation is sometimes enhanced to show rebjcmecurrency and space,
(CCNOTs; CNOTs; NOTs)#(concurrency; space).

t is time, or latency to execute an algorithm, afids space, subscripted with the
name of the algorithm or circuit subroutine. Whear S' is superscripted witlac or
NTC, the values are for the latency of the construct on that tachire, as described in
Sectior & 1. Equations without superscripts are for atratt machine assuming no
concurrencyR is the number of calls to a subroutine, subscripted with #iraenof the
routine.

3.4.2 Linear-Time Adders

The two most commonly cited modular exponentiation al¢pong are those of Vedral,
Barenco, and Ekert[342], which we will refer to as VBE, and¢Bean, Chari, Devab-
haktuni, and Preskil[35], which we will refer to as BCDP.tBdhe BCDP and VBE
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algorithms build multipliers from variants of carry-rigphdders, the simplest but slow-
est method. Draper designed an adder that acts in the Foanesform space whose
principal advantage is its smaller size [102]. CuccaroperaKutin and Moulton have
more recently shown the design of a smaller, faster cappteiadder, which we call
(CDKM) [B8], which appears to make the Fourier adder obsolet

VBE Carry-Ripple

We use the VBE adder in several of our algorithmic varianssdbed in Chaptdd 6. In
this algorithm, the values to be added in (the convolutiotigdgoroducts ofz?, in the
overall modular exponentiation) are programmed into a taany register (combined
with a superposition of0) as necessary) based on a control line and a data bit via
appropriatecCNOT gates. Here we examine just the adder itself.

The latency of ADDER, assumingio concurrent gate execution, is

tapp = (4n —4;4n — 3;0)#(1; 3n) (3.9)

that is,4n — 4 cCNOT times plusin — 3 CNOT times and zero NOT times, executing
only one gate at a time and usiBg qubits. Since we are assuming no concurrent
gate operations, this value is the same as the total numbgates$ in the circuit. In
Figure[3.B, we have drawn the circuit with multiple gatesigeexecuted in some time
slots; the actual expression for the performance of theiitias drawn is

49, = (3n — 3; 2n — 3; 0)#(3; 3n) (3.10)

It requires that at least 3 gates can be executed concyriemitder to meet the perfor-
mance specified, and uses qubits during the calculation. These numbers are calcu-
lated assuming that gates on independent qubits can betegemncurrently, and that
CCNOTs take longer to execute thamoTs.

Figure[3B shows the circuit for an eight-bit VBE adder, adgdhe A and B regis-
ters, with the”' register used as temporary variables that begin in the r&t@and must
be returned to that state at the end. The graphical notasied for quantum circuits is
a superset of the classical reversible notation introdircédgure[Z-1 on page23; we
will introduce new gates as necessary. The structure ofithaitis straightforward.

2When we write ADDER in all capital letters, we mean the cortgpBE n-bit construction, with
the necessary undo; when we write adder in small lettersyevasually referring to a smaller or generic
circuit block.
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Figure 3.3: An eight-bit VBE adder.

Along the left-hand edge, all of the partial sums are congbatacurrently (as drawn,
the concurrency used ig but it is easy to see that doing the partial sums in a “just in
time” fashion would result in a concurrency of 3). Next, dasting from the top edge,
we see a chain afCNOT gates; these propagate the carry from one bit to the next. The
entire latter two-thirds of the circuit cleans up the amr@lwe have used, leaving the
A register in its original state and th¢ register containing the eight-bit value+ B,
with C7 the output carry. The numbers across the top of the diagrarmlack cycles.
These numbers are counted assuming that all gates regeisathe amount of time,
which is not the case in most systems, so the numbers shotitddied as a guideline
rather than an actual performance figure.

Murali et al. experimentally demonstrated a half-addewusitiof the VBE carry-
ripple on an NMR systeni [239]. This experiment and the NMR lengentation of
Shor’s algorithm to factor the number fifteen [340] are, te best of my knowledge,
the only experimental demonstrations of quantum arithere@tcuits.

BCDP Carry-Ripple

The BCDP algorithm is also based on a carry-ripple addeifférd from VBE in that it
more aggressively takes advantage of classical compujatitniing a classical number
into the register conditional on a quantum enable bit. H@xefor our purposes, this
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makes it harder to use some of the optimization techniquesepted in later chapters.
Beckman et al. present several optimizations and tradeb8pace and time, slightly
complicating the analysis. The latency of their adder is

toappn = (6n — 2;2n;2) (3.11)

which, assumin@CNOT gates are slower tharNOTs, is slower than the VBE adder.

Gossett Carry-Ripple

Shortly after the publication of the VBE and BCDP algorithr@®ssett realized that
it is possible to do much better than carry-ripple arithmedrawing on the important
classical Boolean techniques adrry-save arithmeti§d30]. Gossett does not provide
a full modular exponentiation circuit, only adders, mulgps, and a modular adder.
Carry-save arithmetic is particularly well suited to ingoration into a larger multiplier
structure, but in this case a large penalty in the number bftguequired must be
paid. Unfortunately, the paper’s secondary contributidossett’s carry-ripple adder,
as drawn in his figure 7, seems to be incorrect. Once fixed.itagitoptimizes to be
similar to VBE.

Draper QFT-based Adder

Draper developed a clever method for doing addition on feodransformed represen-
tations of numberd[102]. It uses on®y. qubits, but it requires. concurrent gates.
Moreover, the comparison operations necessary for modutéimetic are difficult in
the Fourier space, necessitating frequent transformafitime representation between
integer and Fourier forms. The accuracy required in the gatgions is very high,
which may be difficult to achieve. Finally, although the tatg isO(n), | believe the
constant factors to actually implementing this circuit orc@ded logical states will be
large, making it ultimately an unattractive option for mpatposes.

CDKM Carry-Ripple

Cuccaro et al. have recently introduced a carry-rippleudirovhich we will call
CDKM, which uses only a single ancilla qubii’]88]. The authalo not present a
complete modular exponentiation circuit; we will use thedider in our algorithm&
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Figure 3.4: Building blocks for the CDKM adder.

andG (Sectior &1). This adder, we will see in sec{ion 8.4.3,éstiost efficient known
for some architectures.

Figure[3# shows the building blocks of the CDKM adder. MAJhis majority
function; the bottom qubit winds up holding zero if two orebrof the bits are zero,
and one if two or three of the bits are one. It is the basis ot#rey calculation chain.
UMA is unmajority and add, undoing the MAJ calculation whilening the middle bit
into the correct, carry-adjusted final sum. Two ways to caesthe UMA function are
shown. A full adder circuit is illustrated in FiguEeB.5, ngithe right-hand construct
for UMA, which is more gates than the left-hand constructdan be pipelined more
effectively, overlapping the execution of multiple gatesl aeducing the total latency.

The latency of their adder is

tepkm = (27l - 1; 5; 0)#(6, 2n + 2) (312)

This circuit uses only2n + 2 qubits and runs perhaps one and a half times as fast
as the VBE adder (again, depending on implementation dgtailt requires higher
concurrency in gate operations. This factor affects théopmance of the distributed
forms of our algorithms, presented in Sectiod 7.5.

3.4.3 O(logn) Adders

Carry-save, carry-lookahead and conditional-sum (seel(c8®) are all adder types
that reachD(logn) performance by deferring carry computation or by commuiriga
the carry to distant parts of the circuit more rapidly.

Gossett Carry-Save

Gossett’s arithmetic is pure quantum, as opposed to thedbessical-quantum of
BCDP. Gossett’s carry-save adder[1130], the primary cbation of the paper, can run
in O(logn) time. More importantly, carry-save adders are designediobine well
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Figure 3.5: An eight-bit CDKM adder. X is a temporary vargband Z is the carry
out.

into fast multiplier circuits. However, such a circuit witmain impractical for the
foreseeable future due to the large number of qubits reduiE®ssett estimates:?
qubits for a full multiplier, which would run i (log® n) time. It bears further analysis
because of its high speed and resemblance to standarddsasicell multipliers.

Carry-Lookahead

Draper, Kutin, Rains, and Svore have recently designedrg-taskahead adder, which
we call QCLA [103]. This method allows the latency of an adiedrop toO(logn).
The latency and storage of their adder is

tra = (4logyn + 3; 4; 2)#(n; 4n —logn — 1). (3.13)

This circuit is illustrated in Figure_3.6. Although an eigdfit carry-lookahead adder is
not faster than a CDKM carry-ripple adder, the logarithndeantage quickly becomes
apparent as grows. When looking at this figure, it is immediately obvidbat the

circuit is denser than the carry-ripple adders. All quantarry-ripple adders exhibit
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Figure 3.6: An eight-bit carry-lookahead adder.

a “V” shape in which many of the qubits sit idle for long persodhile the carry prop-

agates down and back the length of the register. In the ¢taokahead adder, various
carry signals leapfrog up and down the register, with thealetate gradually con-

verging on the correct value. In the figure, this leapfroggsillustrated by gates that
stretch is much as half the height of the total circuit. Wel wée shortly that such
gates are not always practical, and that this issue willglamits on our achievable
performance.

3.4.4 Ultimate Limits on Performance of Addition

The performance of any circuit must be specified with resfmeatparticular architec-
ture. Architectural assumptions are implied in the numipeovided throughout this
chapter; we will detail these more carefully in Secfiod 6.4.
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Engineers tend to use tki#(-) notation more loosely than theorists. The behavior
of an algorithm is generally understood to hold only for atipatar range of problem
size, or as long as a certain set of assumptions holds. licplart signal propagation
times are often approximated to be zero, an assumption wihéenly does not hold
indefinitely. All algorithms which require any signal to propagate to allgpafta com-
putation are ultimately limited t@(/n) for any system in which bits occupy a finite
volume, as the signal propagation is constrained to thefsgeed of light and bits can
only be packed in three dimensions. This constraint holdsifllition; our assertion
above that certain adders can reétftiog n) performance holds only until signal prop-
agation effects come into play. We will present the systehab®r for more realistic
conditions when we discuss both monolithic and distribai@aputation.

3.45 Summary

Recent focus on quantum arithmetic has provided a bountgwfreversible addition
algorithms. With the exception of Draper’s quantum Fouttansform-based adder,
all of the adder circuits we have just presented will bendfissical reversible logic,
as well. In Boolean logic, the carry-ripple adder is so gtitforward that there are
not many distinctions to be made. In the reversible and qumamtrenas, we now have
the VBE, BCDP, and CDKM carry-ripple circuits, using diféeit numbers of ancillae
gubits and having different performance characteristM& also have various more
complex adder circuits that reach square-root or logaitlt®pth instead of the linear
depth of carry-ripple. These faster circuits include therycaave adder, the carry-
lookahead adder, and my two circuits, the conditional-smaeh @arry-select adders,
which we will see in Sectiof 8.3. All of these adders except ¢arry-ripple ones
require qubits that are some distance apart to interacsslaly, the choice of adder
circuit in modern systems is made not based on actual gatet,cbut on the time
and space required for the wiring to connect the bits; th@gch will inevitably be
necessary in quantum computing, as well.

Integer arithmetic, of course, is the foundation of all corep arithmetic, but has
been extended in many ways to make more complex functioalsidimg integer mul-
tiplication and floating-point arithmetic. Research irftese areas for reversible logic
remains very basic. The next section introduces two metfardsomposing the com-
plete quantum modular exponentiation, and several opditioizs, but multiplication is
still created by serial execution of addition.
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3.5 Quantum Modular Exponentiation

We now come to the part of the algorithm most relevant to thésis. The modular
exponentiation of a random integer is the most computallipineensive portion of
Shor’s algorithm, and is our benchmark for the behavior efquantum multicomputer.
These algorithms are introduced here and improved thrautdgbloapteflb.

To factor the numbeN using Shor’s algorithn{[296], a quantum computing device
must evolve to hold the state

22n_1

2% Z |a)|z® mod N). (3.14)
a=0

for a randomly chosen, fixed, wheren is the bit length ofN. |a) is the register that
holds the superposition of all valués2?" — 1, created by applying a Hadamard gate
to each qubit ina). Depending on the algorithm chosen for modular exponeotiat
x may appear explicitly in a register in the quantum compuienmnay appear only
implicitly in the choice of instructions to be executed.

In general, quantum modular exponentiation algorithmscegated from building
blocks that do modular multiplication,

|a)|0) — |a)|af mod N) (3.15)

where and N may or may not appear explicitly in quantum registers. Thoslotar
multiplication is built from blocks that perform modulardition,

|a)]0) — |a)|a + 5 mod N) (3.16)

which, in turn, are usually built from blocks that perforndétbn and comparison.

In most modular exponentiation algorithms, the multigiica step is performean
times, once for each bit in the registef [342,[35]. The running product is multiplied
by a value held in a quantum register. That value is eithef thei corresponding bit
of |a) is zero, orz?', if the corresponding bit is one. Lét = =%, anda,_a,_s..ao
be the binary expansion af Thed; can be calculated classically, Qut is a quantum
register. The value® mod N can be rewritten [191,"342] as

2n
[ mod N. (3.17)

j=0
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Fundamentally, quantum modular exponentiatio®{&?); that is, the number of
guantum gates or operations scales with the cube of thehendiits of the number
to be factored[296, 342, B5]. It consistsf modular multiplications, each of which
consists of0(n) additions, each of which requiré3(n) operations. However)(n?)
operationsdo not necessarily requi@(n?) time steps On an abstract machine, it is
relatively straightforward to see how to reduce each ofefhtbsee layers t@)(logn)
time steps, in exchange for more space and niot@ gates, giving a total running
time of O(log® n) if O(n®) qubits are available and an arbitrary number of gates can
be executed concurrently on separate qubits. Such largdersnof qubits are not
expected to be practical for the foreseeable future, so nmtekesting engineering lies
in optimizing for a given set of constraints.

3.5.1 VBE, BCDP and Others

Both the VBE and BCDP algorithms construct modular multiglion from a straight-
forward series of modular additions. Each modular addisgeerformed by adding in
the chosen number, comparingitoto see if the result has overflowed, and subtracting
N if so. This method results in a large number of additions adractions, which can
easily be reduced, as will be demonstrated in Chdpter 6.

The VBE algorithm[[342] builds full modular exponentiatitom smaller building
blocks. The bulk of the time is spent #9n? — 5n calls to ADDER. The full circuit
requires’n + 1 qubits of storage2n + 1 for a, n for the other multiplicands for a
running sumy for the convolution products, for a copy of NV, andn for carries.

In this algorithm, the values to be added in, the convolugpiartial products of:“,
are programmed into a temporary register (combined withperposition of|0) as
necessary) based on a control line and a data bit via appte@NOT gates. The
latencyt, of the complete VBE algorithm is

tv = (20712 - 5n)tADD
= (80n® — 100n? + 20n; 96n° — 84n* + 15n;
8n? — 2n + 1). (3.18)

The BCDP algorithm is similar in structure to VBE, but usesrenoomplicated
gates and presents numerous engineering tradeoffs. Bagdwm their equation
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6.23, the latencyy of the complete BCDP algorithm is

tg = (54n® —127n* + 108n — 29;
10n® + 15n% — 38n + 14;
20n° — 38n? 4 22n — 4). (3.19)

The exact sequence of gates to be applied is also dependém ormput values ofV
andz, saving space but making it less suitable for hardware imptgation with fixed
gates (e.g., in an optical system). In the form we analyzesgtiiressn + 3 qubits,
including2n + 1 for |a).

Beauregard has designed a circuit for doing modular exga@tem in only2n + 3
gubits of space[[34], based on Draper’s clever method fangladdition on Fourier-
transformed representations of numbérs [102]. The depteafuregard’s circuit is
O(n?), the same as VBE and BCDP. However, we believe the constetior$aon this
circuit are very large; every modulo addition consists afrféourier transforms and
five Fourier additions. Moreover, its primary advantagduion of the scratch space
used in addition, has been partially nullified by the develept of a carry-ripple adder
that likewise uses onl§n + 1 qubits [88].

Fowler, Devitt, and Hollenberg have simulated Shor’s athar using Beauregard’s
algorithm, for a class of machine they chiear nearest neighbofLNN) [L19, [95].
LNN corresponds approximately to onmc. In their implementation of the algorithm,
they found no significant change in the computational corml®f the algorithm on
LNN or anAc-like abstract architecture, suggesting that the perfogeaf Draper’s
adder, like a carry-ripple adder, is essentially architezindependent.

3.5.2 Cleve-Watrous Parallel Multiplication

Modular exponentiation is often drawn as a string of moduraltiplications, but Cleve
and Watrous pointed out that these can easily be paralliekedinear cost in space [80].
We always have to execufer multiplications; the goal is to do them in as few time-
delays as possible.

To go (almost) twice as fast, use two multipliers. For fonrds, use four. Naturally,
this can be built up to» multipliers to multiply the necessa3n + 1 numbers, in
which case a tree recombining the partial results requikgs: quantum-quantum (Q-
Q) multiplier latency times, as shown in Figurel3.8. We wilalyze this method in
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Figure 3.7: Concurrent modular multiplication in modulapenentiation using two
multipliers. QSET simply sets the sum register to the appatgvalue.
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Figure 3.8: Cleve-Watrous parallel multiplication (r&dtninety degrees relative to
other graphs, with time flowing bottom to top).
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more detail in Section 6.4.2.

3.5.3 Scldnhage-Strassen

The Schonhage-Strassen multiplication algorithm isrofjeoted in quantum com-
puting research as bein@(nlognloglogn) in complexity for a single multiplica-
tion [362,[187]. However, simply citing Schonhage-Stesswithout further qualifi-
cation is misleading for several reasons. Most importattily constant factors matter.
Shor noted this in his original paper, without explicitlyegfying a bound. Quantum
modular exponentiation based on Schdonhage-Strassetyigaster than basi©(n?)
algorithms for more than approximately Bifobits3. In this thesis, we will concentrate
on smaller problem sizes, and exact, rather thar), performance. Note also that this
bound is for a Turing machine; a random-access machine e&h ¢&n logn) using
Schonhage-Strassen.

3.6 Shor’s Algorithm

Finally, we come to Shor’s factoring algorithm itself. Thgaithm consists of both
classical and quantum portions, with the quantum portiamgoe period-finding method
based on the QFT and arithmetic to calculate the modularrexg@tion of two inte-
gers. The period-finding method operates on two quanturatexgi the control register
and the function result register; in the end, we will actpaleasure theontrolregister
to find the period of the function (this is perhaps the mosheewintuitive feature of
the algorithm).

To factor a numbeN whose length is bits, we begin by checking that the number
is not even and determining that it not an integer powerfor « > 1 andb > 2.
Efficient classical methods are known for this calculatiod &r finding the greatest
common divisor §cd), which we will not present. Next, choose an integet = < N,
and check thagcd(xz, N) = 1; if not, returnged(z, N). The value ofr need not be
strictly random, but is not important except that repeathmgalgorithm after a failure
sometimes requires thatbe changed.

Next, use the quantum period-finding method to determinettierr of x modulo
N. If risevenand’/? # —1 mod N, calculatezed(z"/2—1, N) andged(2"/2—1, N).

3zalka found that his approach would be faster for 8kilohitsng a slightly different set of assump-
tions.
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One of these should be a factor/®f If not, or if r is odd, repeat the algorithm, choosing
a differentz.

The order ofxr modulo N is found by noting that we can calculate the modular
exponentiationt® mod N for all a. We use two quantum registers, which will hold,
respectivelyg andz® mod N. The register for, must be2n qubits long. Starting from

the state
22k -1

o >l (3.20)
a=0

in which all of the qubits are disentangled, the modular egpdiation then produces

the state
22k -1

> |a)|2" mod N). (3.21)

a=0

1
oL
Once we have that entangled state]167], we apply the IQTe first registermeasure
both registers, and use the value in the first register (disog the second) to find the
order ofx modulo/N, and from there the factors o¥.

How the QFT creates a state that can tell us the order of thegifumis mysterious,
almost spooky, and certainly difficult to grasp. To make thizre concrete, let’s look
at an example. 15 is the smallest number upon which Shosidign works properly,
and we will choose: = 7 as a good example. For reasons we won't go into here, we
really need at least one bit more in auregister than the length d¥ itself, but we will
restrict ourselves to four bits far to keep the size of the example manageable. This
gives us

1 15

12 la)z* mod N) =i(|0>|1> + D7) +12)14) +[3)[13)

+[4)[1) + 5)|7) + 16)[4) + [7)[13)

+ [8)[1) +[9)|7) 4 [10)[4) + [11)[13)

+ [12)]1) 4 [13)[7) + [14)[4) + [15)|13)) (3.22)
=i<<|0> + [4) +18) +[12))[1)

+ (11) +15) +[9) + [13))[7)

+(|2) +16) + |10) + |14

+(|3) +|7) + |11) + |15

)4)

)
)I13)).

The second form makes it clear that what we have accomplistiéal is togroup the
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values ofz based on:® mod N. Each of these groups — 0-4-8-12, 1-5-9-13, etc. — has
elements that skip four values, but with an offset that dsffeom group to group. This
information — the length of that stride between elementdefduperposition in each
group — is what will allow us to find the order. But how can weragt that piece of
information?

If we were to apply the QFT to our original razwregisteri Eclio a), the result
would simply be|0). The grouping created by the modular exponentiation noatese
sets of elements that can effectively be Fourier transfdrimeéependently. The Fourier
transform, as noted, eliminates the offset, “hiding” ithe phase of the elements of the
superposition and leaving the frequency components in tingenic values. The QFT
of Equatior32R is

1

QFT(—(

7 ((10) +14) +[8) +112))[1)
)

1) +[5) +19) + [13))[7)
) +16) +[10) + [14))[4)
13) +17) + [11) + [15))[13)))

+ o+ 4
~

(3.23)

—~
A~ =
—~~ o~ = —~~  —~

(10) +14) +18) + [12))[1)

10) +il4) = [8) = i[12))|7)

10) = 14) +18) = [12))[4)

|0) — i[4) — 18) +[12))[13))).

+ o+ 4

Now, when we measure the two registers, we will always findafr@ 4, 8, or 12 in
the first register, with equal probability. If we find 0, thgatithm has failed and we
must repeat. Otherwise, we use the number found asd apply Euclid’s algorithm
for finding greatest common denominators to find the GCIVaind2"/2 — 1, and of
N andz'/? + 1, as described above.

3.7 Summary

In this chapter, we have introduced Shor’s algorithm fotdaog large numbers, and
discussed its significance. The creation of a machine thetut®s Shor’s algorithm
would have implications for security on the Internet, biegkthe widely-used RSA
public-key crypto system. Most of the tasks assigned to R&A lze accomplished
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via other mechanisms, including symmetric, private-kegrgption, but such solutions
may be less efficient in using resources both locally andajlpf289].

Shor’s algorithm rests on the breakthrough insight thatageifunctions produce
the same results for inputs that are separated by a spedificipand that the quantum
Fourier transform can extract that period efficiently. Famtbring large composite inte-
gers, the function of interest is the exponentiation of @lcen number moduldV, the
number to be factored. The modular exponentiation is coot&d in a straightforward
fashion from integer addition and comparison, and we sawwasarcircuits for addi-
tion. We will see in later chapters how to implement theseraipens efficiently; we
turn next to a taxonomy of quantum computing technologieskvimight used to build
systems on which Shor’s algorithm can be run.



Chapter 4

A Taxonomy of Quantum Computing
Technologies

In this chapter we present a classification scheme for quaotumputing technologies,
based on the characteristics most relevant to computezragsirchitecture, and apply
it to analyze several candidate technologies. This taxgnisnrsomplementary to the
DiVincenzo criteria introduced in Secti@n 2.2. Whereas Bli¢incenzo criteria help
define whether or not it ipossibleto build a quantum computer based on the specified
technology, in our taxonomy we are concerned with whethenatrit is practical.
This taxonomy will be used in our definition of a scalable syst{Sectioi_7]2), and
the performance-relevant portions will affect our anaysi systems throughout the
remainder of this thesis. We will describe each criteriowalsas some of its high-level
architectural implications. In the last section, we wilkeukis taxonomy to evaluate
several proposed computing technologies.

4.1 Taxonomy Framework

4.1.1 Basic Features

Stationary, flying and mobile: Quantum computing technologies can be divided
into two categories: those in which the qubits are represkhy constantly moving
phenomena (photons) and those in which qubits are repezsegtstatic phenomena
(nuclear or electron spins). For phenomena that move, getgshysical devices which
affect qubits as they flow through the gate. These are caflgohg qubits”. Optical
implementations generally fall into this category, wheh®fons are qubits and e.g.

83
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beam splitters serve as gates. For “stationary” phenonugriats occupy a physical
place and gate operations from an application are appliedetm. The “stationary”
notion appliesonly during gate operation. Some stationary technologies, aadhe

proposed scalable ion trap [170], permit the physical qednitier to be moved prior to
application of a gate; we will call these “mobile” qubits.

The key reason to make the distinction between stationadyflging implemen-
tations is dynamic control. In a flying qubit device, the ardad type of gates must
typically be fixed in advance, often at device constructioret different program ex-
ecution is achieved by classical control of switches thateaubits through different
portions of the circuit. A stationary qubit device has mosxityility to reconfigure
gates. In this sense, using stationary devices is likeickElggrogramming, while flying
qubit designs are more like classical circuit des[gn[354].

Single system versus ensemble:A significant distinction in quantum computing
technologies is the choice ehsembleomputing orsingletoncomputing. In ensemble
computing, generally implemented on stationary qubiteyst, there are many identi-
cal quantum computers, all receiving the same operatorgxecliting the same pro-
gram on the same data (except for noise). Singleton systavesthe ability to directly
control a single physical entity that is used to represeatibit.

From a technology perspective, ensemble systems are &asigreriment with, as
techniques for manipulating and measuring large numbeagashs or molecules are
well understood. Hence, the largest quantum computingsydemonstrations to date
have all been on bulk-spin NMR340,152], which uses an engemibmolecules to
compute.

Quantum I/O: There are a variety of reasons why we may want to move quantum
data from one place to another: we may simply be aggregatirigpie devices into a
larger machine, or the far node may provide different corafpenal capabilities (e.qg.
long-term storage) or have access to different data. In stases, we may wish to
move quantum data between devices of different techn@dd@Z2]. In our quantum
multicomputer, we will be aggregating homogeneous nodesanarger system using
the qubus protocol described in Chajifler 5.

Quantum I/O (QIO) is a very error-prone process. Therefoigdone by first using
QIO on “empty” qubits, which we will call QIO sites or transeer qubits, creating an
entangled state between a pair of devices. Once the exestdribe entangled state is
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confirmed through a process called purification [43[77] 258hn be used to transfer
any desired quantum state by using quantum teleportatioagi@i[b).

Question marks appear in the QIO entries in tablk 4.1 be@ymrimental demon-
stration in structures similar to those expected to be usgdantum computers has not
yet been done, or because adequate fidelity has not been stiowome cases, ba-
sic experimental confirmation or proposals backed by redbtisolid analysis exist; in
others, only a few sentences in a longer paper.

Measurement: In Section[Z2I13 we discussed measurement in the abstratina
ChaptefZB we saw its importance for quantum error cooBcfrour architectural fea-
tures characterize different measurement schemes: (1jr@éasurements of multiple
guantum bits be performed in parallel or must they be seddR (2) Does measure-
ment of a quantum bit require interaction with another “nlegubit in order to produce
aresult? (3) Is the speed of measurement about as fast Gamhe order of magnitude)
as performing an operation? (4) Can measurement be pedcainmest anywhere, or
must the physical entities that are used to represent thigsqudomoved to specialized
measurement sites?

Reliably computing on a quantum system will mean that mari@total quantum
operations will be measurements, as we discussed in theHapter. From an archi-
tectural perspective, if measurements must be performealgeor are inordinately
slow, then Amdahl’'s Lawi[18] will apply and measurement vl the bottleneck in
computation. Furthermore, if additional ancillae qubits eequired for measurement
to take place, then we must plan for the initialization ofslqubits to occur frequently.
Similarly, if technologies restrict where measurementa@aeur, then those restrictions
will need to be designed into the architecture and algosthm

4.1.2 Algorithmic Efficiency Features

Many features of the various quantum computing proposdldwwe profound impli-
cations for the execution of quantum algorithms on realastchitectures.

Concurrency (control parallelism): The most fundamental feature required to ac-
celerate quantum computation is concurrent execution tEsgarhis is useful at the
algorithmic (logical) level, but critical at the physicaMel, where concurrent operation
is required in order to execute quantum error correctiogueatly enough to prevent
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decoherence of large numbers of qubits.

Despite the advantages in computational complexity clestssbome quantum algo-
rithms promise, it is still important to extract parall@isrom quantum algorithms.
If all operations had to be sequentialized, then on somegsalp, such as silicon
NMR [300], it would still require significant time to factoalge values. For example,
Kunihiro [193] has estimated the sequential running tim8ludr’s algorithm factoring
a 530-bit number at 1.18 years for a 1kHz device (approxip®&IR speeds), 10
hours for a 1MHz device, or 37 seconds for a 1GHz device.

Fortunately, there is significant parallelism availab&gPin quantum software (er-
ror correction [[308] and factorind [80,"334]). The ability €xploit this parallelism,
however, requires technologies with parallel control.sTarallel control will require
significant classical support circuitry. If this circuitcannot be located “on chip” near
the qubits then a high-bandwidth interface between a dakdévice generating control
pulses and a quantum device containing the actual qubitberkequired. This may be
a control line per qubit, or may be multiplexed across thewieducing the need for
I/O pads at the cost of reduced concurrent operation (angelotimes between QEC
cycles). Thaker et al. have designed a large-scale ion tithpseparate storage and gate
action sites (see below), and investigated the use of thg-tmykahead adder on this
system, finding that performance grows only linearly duartotéd application-level
concurrency([324].

Total available qubits: The feature with the single largest impact on the scalabil-
ity, usefulness, and reliability of the computer is the attwumber of physical qubits
available. Clearly, too few qubits and the ability to execoh large data sizes will be
inhibited. Additional qubits can be utilized for increasetiability via error correction,

as well as algorithmic parallelism.

All entries in tabld 4R are followed by question marks beeaof very high uncer-
tainty; in some cases, even which factors will prove to beptiaetical limits are not yet
clear. As most researchers are still focusing on very snoafibrers of qubits, they have
not yet attempted to circumscribe this upper limit.

Wiring topologies: Optimization of the architecture to support the data moveme
of a useful class of algorithms is one of the key areas whemgpater architects can
contribute. In many proposed technologies, only neighmgpgubits are allowed to
perform two-qubit gates. Either the physical entities espnting the qubits (using a
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control process [170]) or just the state (using quantum sMB&6]) must be moved
around the machine to support computation. In some casdg®dbgical constraints
limit the interconnection topology to a one-dimensionakli in others, a loose two-
dimensional lattice, full 2-D mesh, or even 3-D structurgenbeen proposed [2110].
A few proposals support long-distance gates with varioadeoffs, such as limited
concurrency([359].

Addressability: In some systems, addressing specific qubits is difficultabse lo-
calization of the classical control required (e.g., micaverfrequency electromagnetic
field) to just the small region the qubit occupies is difficiltne solution, the original
Lloyd model, proposes forming small groups of qubits intuter automatal[210].
One suggested implementation is long molecular chains avitbpeating pattern in
which each unit is a C.A. Each qubit position in the automatan be addressed via
a specific electromagnetic frequency. Each automatonvislkthe same program, ef-
fected by electromagnetic radiation blanketing the wha&eick, which is, in effect, a
fully concurrent SIMD machine. One technique for turningedildar automata into a
more-easily-controlled serial machine is to include indbBular automata a token that
is passed from automaton to automaton; only the automatadinigahe token performs
the indicated action. We expect that designing architestand software systems for
technologies without the ability to address and operatepecitic qubits will be diffi-
cult.

Operations on all qubits: In most physical implementations, all qubits are identical
any qubit can have any operation performed on it during aogkctycle. A few tech-
nologies, however, notably the scalable ion trap, sepatatage and action locations,
so that qubits (e.g., individual atoms) must be physicalbyved from a storage location
to an action location before a gate can be executed on thé qubi

4.1.3 Time and Gate Characteristics

Decoherence time: We discussed decoherence in Secfion ?.2.3. The upside tb goo
isolation from environmental effects is lomgherence timeor the time which a qubit
can be “kept”. As a broad generalization, those technofoggéying upon electrons
to maintain quantum state have short coherence times leetarons are fairly mo-
bile and tend to interact with their surrounding environmdrechnologies that utilize
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nuclear effects are more stable. However, the downside ¢al ggolation from en-
vironment effects is relatively slow operation times forotgubit gates. Across the
technologies we examine, the gate speed and decoherereedignover eight orders
of magnitude or more [197]. Coherence time is an especiaifyortant research area
and will be subject to potentially large advances as QC teldyy progresses. Gate op-
eration time, however, is often tied directly to physicalgesses with limited flexibility
in engineering parameters.

Measurement time: How long does it take to accurately measure the state of ajubi
For many technologies the measurement time is longer thategigne, dominating the
time for a quantum error correction cycle and hence the &gilock speed.

Single-qubit and two-qubit gate clock speeds: In some cases, the time it takes to
perform a one-qubit gate can be vastly different from theetfor a two-qubit gate, so
we must specify both.

Natural two-qubit gate: Various sets of gates have been shown to form elementary
basis setd 30, 98]. The standard set of universal gatesmiashsin SectiofZ.2.5(

H, T, CNOT) is just one example, and all serious proposals for quantompating
technologies include enough operations to provide thisncequivalent universal set.
Beyond universality, however, are three important charatics. (1) Does the tech-
nology provide an arbitrary single qubit rotation, or mushbe synthesized fronx,

H andT; (2) How complex are the syntheses foc®oT and three qubit controlled-
controlled-not (arorFrFoLI gate), which is commonly used in quantum algorithims [30];
(3) Do specific gates have unwanted effects on qubits thaicitbe intended operands
(that is, are other qubits being implicitly manipulated)® Will discuss these in more
detail below.

Several of most common physical interactions result in arotiable exchange
(SWAP), theJ coupling [339], and a controlled phase shift, which, whepliggl for
the appropriate amounts of time, give us possible two-quditiral gates with these
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unitary transforms:

1 0 0 0
0 %5 5 O

SWAP = viooV2 (4.1)
0 &% -2 0
00 0 1
[ i 00 0 |
0 i 0 0

J= ! 4.2)
0 0 i 0
L 0_7/_
100 0
010 0

CzZ= (4.3)
001 0
000 —1

From these three possible entangling two-qubit gates, weoastruct a CNOT with
only a few single-qubit rotations on the two qubits.

In stationary qubit devices such as ion traps or NMR systemeral electromag-
netic pulses are generally required to implement each datigpical number is five or
six, though the exact number and timing are dependent oreties@ be executed. One
side effect in NMR systems is that nearby qubits are affebiethese pulses and are
implicitly operated on by them. To overcome this, additics@ntrol sequences called
decoupling pulseare required[35,204].

4.1.4 Other Features

Logical Encoding: Quantum algorithms are written to manipulate abstractichig
qubits. Logical qubits, however, are not always represkehtea single physical phe-
nomenon such as a single ion or photon. We call the entitasstiftware manipulates
“logical qubits” (or “encoded qubits” when quantum errorreetion is involved) and

the entities that technologies use to implement them “efeamg qubits” or “physical

qubits”. This is not the same as the ensemble / singletomdigin outlined above.
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In some technologies, such as electron count (charge) intgumedots, a “dual
rail” encoding is used. Similarly, a single photon may takbez the left or right path
through a circuit, corresponding to logical different quan states (i.e. 0 or 1). In
both of these technologies, it is possible to talk about glsiquantum dot (or path)
as a single qubit, but we arrange computation and measutdéméake place on the
encoded pair.

Gate-Level Timing Control: Because the state of an individual qubit is something
of an analog phenomenon, precise timing of gates is critiat will limit our ability

to achieve the necessary precision? And, in the case of photoother flying qubits,
how do we dynamically adjust their arrival times so that mpldgt qubits can be in the
right place at the same time? Most qubits oscillate; how daeep the relative phases
of multiple qubits right?

Scalability Limits:  Scaling to large numbers of qubits is, for most architectuee
function of all of the above factors and more. Other factasyet described are tech-
nology specific. For example, in lithography-based systehey include I/O pads on
the chip, the supporting infrastructure such as rack-maouatowave generators, and
the practical challenge of simply providing enough contvives to such a small device.
Few of the proposals suggest that an actual numerical upperdexists because of
any of these factors, yet they are critical to the successitifibg systems. In the next
section we will highlight what the primary scalability litis perceived to be for each
technology.

4.1.5 Manufacturing and Operating Environment

At the moment, all scalable quantum computing technologresproposals and sig-
nificant advances in manufacturing will be required to brihgm to reality. Never-

theless, some proposals have less onerous technologrcésiin front of them than

others. Furthermore, certain proposed technologiesratiedpetter with existing clas-
sical silicon-based computing.

Fabrication challenges: To what extent do the proposed technologies rely on difficult
to-achieve advances in manufacturing? For example, thes ksditon-based NMR
technology relies upon the ability to dope silicon with psety placed individual phos-
phorus atoms, and to align those with overlaid structureated using standard VLSI
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lithography [163]. All of the solid-state circuit technigsirequire classical control lines
(e.g., [124/242]), which may benefit from expected improgatin VLSI feature sizes
following Moore’s Law [236/110]. In our taxonomy we will hidight the major tech-
nological challenges facing each quantum computing prpasd discuss the latest
advances in overcoming them.

Operating temperature: In order to control noise, most proposals call for extremely
low temperatures achievable only with liquid helium. Of)exuch as superconducting
qubits and quantum dot qubits, require still colaeitlikelvin temperatures achieved
through a dilution refrigerator. A dilution refrigeratasy dil fridge, uses the differ-
ent condensation characteristics of helium-3 and heliumebol things down to mil-
likelvin temperature<[86].

Although there are numerous models, the dil fridges madeXdgr@ Instruments
seem to be popular. The most commonly used ones are almoshéiars tall and a
little under a meter in diameter. The researcher loads gtesgenple in from the top on
a long insert, so another two meters’ clearance above (@uosadl winch) are required.
The lowest temperature a dil fridge can reach is limited gotly to approximately 7
millikelvin, and in practice to higher values depending ood®al. A dil fridge can typ-
ically extract only a few hundred microwatts of heat from tlexice under test, which
is limited to a few cubic centimeters. This thermal limit Wimit the number of de-
vices per chip and the operating speed of the devices, imgasi important constraint
on scalability. These low temperatures are not only opamnatly challenging, but also
affect the ability of classical circuits to operate, corngting the design of the control
process[[256].

The atom chip[[117] and ion trap[l78] operate by cooling imdlixal atoms to ex-
tremely low temperatures using lasers and electrical arghetec control fields, but the
devices themselves are kept at room temperature and na&faloooling mechanisms
are required.

Supporting equipment: Some technologies require complex supporting equipment,
notably high-frequency microwave and voltage signal gatoes and high-precision
lasers. One or more of these per qubit may be needed; as systaie, switching

or sharing of this equipment or direct integration into drpcsystems are likely to be
required.
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4.2 Quantum Technologies

In this section we survey a variety of proposed quantum camg@technologies using
the taxonomy framework described in the last section. We bhwesen to focus on eight
technologies: Si-NMR, P-NMR, solution NMR, quantum dotigjea scalable ion traps,
Josephson junction charge, linear optics, and opticatéatT his selection should by no
means be interpreted as exhaustive; several dozen viaipesals exist[117, 294, 265,
[77]. These systems were chosen for their near and long teptein@ntability, and/or
scalability and/or pedagogical interest. It is also worthimg that the fundamental
technology, in some case, can lead to several possible msgsentations, such as
spin, energy level, or particle count. The information imsoarized in TableS4[1-4.5.
Below we will briefly discuss each technology and its ardtiteal implications.

4.2.1 Solution NMR

Probably the most complete demonstrations of quantum ctatipo to date are the
solution NMR experiment$ [340, 52, 182]. In an NMR system,dhbit is represented
by the spin of the nucleus of an atom. When placed in a maghel; that spin pre-
cesses, and the spin can be manipulated via microwaveicadidn solution NMR, a
carefully-designed molecule is used. Some of the atomseimtblecule have nuclear
spins, and the frequency of radiation to which they are qigde varies depending
on their position in the molecule, so that different qubits addressed by frequency.
In some cases, isotopic composition must be carefully otiatt. Many copies of the
molecule are held in a liquid solution; each molecule is as#e quantum computer,
run independently, with the large numbers providing adegsignal strength for read-
out. This is the canonical ensemble system. Solution NMRbleas used to factor the
number 15 using Shor’s algorithm, which required 720 nellisnds[[3400]. The largest
demonstration to date is 12 qubits [243].

No special cooling apparatus is required for this ensenmyséesn. However, its
scalability is believed to be quite limited due to fallingsal/noise ratio as the number
of qubits increases.

e strengths: good decoherence time, room temperature operation, aegdamc
perimental verification

e weaknessesslow gates, poor scalability, difficult concurrent opevas
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technology

stationary/

flying/mobile

single/
ensemble

QIO?

measurement

references

SiNMR

stationary

ensemble

mechanical vibra
tion, concurrent,
frequency analysis

[196]

solution NMR

stationary

ensemble

concurrent,  fre-
quency analysis

[340]

quantum
charge

dot

stationary

single

Y?

concurrent,  on4
chip auxiliary
structures, similar
to quantum dots in
size and structure

[214]

scalable ion trap

mobile

single

Y?

limited  concur-
rent, optically
induced fluores-
cence

[78,[170]

JJ charge

stationary

single

Y?

concurrent,  on{
chip charge probe

[260,[360]

Kane model

stationary

single

N?

concurrent, singlet
electron spin meat
surement

[163]

LOQC

flying

single

single qubit polar-
ization via single
photon number ret
solving optical de-
tectors

[184]

optical lattice

stationary

single

N?

fluorescence, but
resolution of indi-
vidual atoms diffi-
cult

[66, [157,
326]

Table 4.1: Qubit technology basic characteristics. Qaastiarks under QIO indicate
that experimental verification has not yet been shown. &&plson junction, LOQC:
linear optics quantum computing
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technology| concurrency max qubits| wiring addressability ops
topologies on all
qubits?
SiNMR limited by abil- | hundreds?| linear nearest by frequency, alll Y
ity to suppress neighbor independent
activity of unin-
volved qubits
solution limited by abil-| low tens? | linear nearest by frequency, alll Y
NMR ity to suppress neighbor, independent
activity of unin- limited
volved qubits non-neighbor|
quantum | limited by con-| large? | linear nearest localized, inde- Y
dot charge | trol mechanism neighbor pendent contro
via on-chip
systems
scalable limited by # of large? | open, irregu- individual ions| N
ion trap action sites with lar, up to 2-| and chains moved
lasers D? from addressable
storage to actior
sites
JJ charge | limited by large? | 1-D, 2-D?,| localized, inde- Y
coupling mech- long-distance pendent contro
anism possible? via on-chip
systems
Kane limited by con- large? | 1-D or 2-D? | localized, inde-| Y
model trol mechanism pendent contro
via on-chip
systems
LOQC unlimited? large? | physical physical position | Y
routing,
essentially
unlimited
optical lat-| mandatory thousands? 1-, 2-, or 3-D| none Y
tice neighbors

Table 4.2: Features affecting algorithm efficiency on dipequbit technologies. The
maximum number of qubits in all technologies remains undateed with any relia-
bility. Question marks in topologies indicate that the matarea for layout is 2-D, but
practical engineering constraints may limit full 2-D layou

NJ
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technology| decoherence measurementsingle-qubit | two-qubit | natural
time time gate  clock| gate clock| two-qubit
speed speed gate
SiNMR 25s long 40kHz 400Hz J coupling
solution seconds long 50kHz 50Hz J coupling
NMR
quantum | afew ns 10- 10GHz 10GHz exchange
dot charge 100ns [124, [214]
214]
scalable 1ms-20s 10Qus [230] | can trade off conditional
ion trap to speed for phase shift
10msec([288] gate fidelity
in the range
of 14kHz to
100kHz; also
limited by
ion  move-
ment times to
~ 20kHz
JJ charge | afew ns 10ns 10GHz 10GHz conditional
phase shift
Kane long? long 75kHz 75kHz J coupling
model
LOQC limited by | 5-10ns < 1ns limited by | several
scatter- detector possi-
ing and time bilities,
absorption including
conditional
phase shift
optical lat-| seconds? | N/A 160kHz 5kHz conditional
tice phase shift

Table 4.3: Clock speed and gate characteristics




96 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

circuits subject to loss

technology logical: el-| gate-level scalability limit
ementary en4 timing control
coding
SiNMR 1:1 slow gates make quality of initialization (no
precise timing| more thanl/n copies may be
feasible mis-polarized for largen, to
achieve adequate SNR), pre-
cision of placement in static
magnetic field, area of high-
quality magnetic field
solution NMR | 1:1 slow gates make SNR falls exponentially im
precise timing
feasible
guantum dot 1:3 gates must be external wiring/control
charge precise, but jitter
is not a problem
scalable ion 1:1 recommends probably ability to accurately
trap use of| track large numbers of indi-
decoherence- | vidual ions, and their move-
free subspace tp ment times
reduce jitter
JJ charge 1:1 active control of| cross-qubit interference; in-
phases ductance of Josephson junic-
tions; large numbers of rack-
mount microwave generators
and getting wires into the di-
lution refrigerator
Kane model | 1:1 manufacturing complexity
LOQC 1:1 but many| “stopped” skew and jitter in both input
auxiliary light [116] generation and gates; single-
photons used photon photodetector efficien-
cies of~ 0.9 will scale poorly
when used for large numbefs
of independent qubits; deep

optical lattice

1:1

slow gates makée
precise timing
feasible

2 region of high-quality lattice
tens of sites per side?

Table 4.4: Other Features
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| technology | fabrication | operating environmerit supporting equipment |
SiNMR Si micromachining| 4 K, 7 T magnetic field r.f. signal generator
solution NMR | chemical room temperature, 1lr.f. signal generator

T magnetic field

1-D quantum

GaAs lithography

20 mK

GHz voltage pulse gen

tromechanical
assembly

detectors; liquid he
lium to room tempera
ture

switches, atomic clocks

optical lattice

vacuum chamber
lasers, macroscopi
electromechanical
assembly

,ultracold atoms in

croom temp. vacuum

multiple lasers

)

—+

U

dot charge erator (per qubit?)
scalable ion macroscopic elect supercooled ions in multiple lasers (gate
trap tromechanical room temperature vag-and measurement
assembly uum electronic signal gent
erators (ion movemen
control), CCD camera
(state detection)
JJ charge Si lithography 30 mK GHz voltage pulse gen
erator (per qubit?)
Kane model | P implanted in Sii 1.5 K, 2 T magnetig
lithography field
LOQC macroscopic elect dependent on opticalhigh speed optical

D

Table 4.5: Manufacturing and operating environment. K,rdeg Kelvin; mK, mil-

likelvin.
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4.2.2 Josephson Junction

Josephson junction-based (JJ) quantum computing devieesugerconducting sys-
tems [295]. They come in four flavors: those that represehitguising charge (such
as the device shown in figure 4. 1) 242, 260], those that us€e@Bd, 72 [271], those
that use phasé [36[, 221], and a recently-designed highetature form[[32]; most
of the information in the tables applies to all but the lattéabrication is done using
conventional electron-beam lithography and shadow ewdjoor of Al onto an Sily
insulating substrate. In the JJ charge qubit, a sub-micizm superconducting box
(essentially, a small capacitor) is coupled to a larger sigrelucting reservoir. In a
superconductor, electrons move in pairs known as Coopes. peie qubit representa-
tion is the number of Cooper pairs in the box, controlled teibeer zero or one, or a
superposition of both. Similarly, for the flux qubit, Coogairs are introduced into a
superconducting ring, where they circulate and induce atiped magnetic flux. Be-
cause the flux qubit has slower gate times but a relatively &wgger coherence time,
experimental efforts appear to be shifting toward the flulit@approach.

Josephson junction technologies can couple qubits in etyaf ways[49, 216, 85,
[252,[208[209, 272]. In one proposed scalable form of thegehqubit, neighboring
qubits are linked in a one-dimensional structure that stppanly nearest-neighbor
gates, but concurrent gates on independent qubits may deeall[201]. In another
proposal, it is possible to address any two qubits and cotnglen through a shared
inductancel]359]. In this case, the restriction of operatimvolving only neighboring
qubits in a linear array is removed, but execution is limitedne gate at a time. Rigetti
et al. have proposed a scheme that borrows ideas from NMRuplemeighboring
gubits of either flux or charge typ€&1279]; their proposal hias benefit that slight
differences in fabrication between qubits are a help rathen a hindrance.

The high-temperature JJ device requires complex faboicatind careful alignment
to crystal lattice axes. “High temperature”, in this casgers to the materials po-
tentially being superconductors at liquid nitrogen tenapares, but the experiments
described are conducted at 15mK to minimize other sourcdsasherence.

e strengths: very fast gates, advanced experimental demonstratioaigktfor-
ward fabrication (for all but the high-temperature device)

e weaknesses:low coherence time relative to measurement time, sertyitioi
background charge fluctuations and local magnetic fields
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-----

Pulse gate 2 L Pulse gate 1

Figure 4.1: A pair of coupled Josephson-junction chargetguytabeled Box 1 and
Box 2). This device is designed to execute a two-qubit gaiedsn the qubit labeled
“Control” and the one labeled “Target”. The coupling betwele two qubits is fixed
in hardware in this device. Image courtesy of Y. Nakamura®ainthmamoto, NEC.
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NiFe magnet

Figure 4.2: Schematic of the all-silicon NMR computer. Qsil@ire the spin of’Si
nuclei on a spin-free base 6fSi. Distance from the micromagnet determines oscilla-
tion frequencyw; and provides individual qubit addressability. Image cesytof K.

M. Itoh, Keio University.

4.2.3 All-Silicon NMR

Ladd et al. have proposed an all-silicon NMR-based quantompeiter which stores
qubits in the nuclear spin of a chain ¥ (spin1/2 nucleus) in a substrate of spin 0
nuclei f8Si and®*’Si). In one form, the?’Si atoms are laid down in a line across a mi-
cromechanical bridgé [196]. Readout is done via magnesi@mance force microscopy
(MRFM), reading oscillations of the bridge. Other measuatschemes for the same
basic architecture are being pursued, as Velll[156]. Thaignsemble systen()?
copies are required to get an adequate signal for measutre@mea form of the system
is illustrated in Figur€Z12. Only one chain ¥§i is shown. Initialization is done via
electrons whose spin is set with polarized light (opticahping). Operations are done
via microwave radiation directed at the device. A micronetgurovides a high field
gradient, allowing individual atoms to be addressed byuesgy. The device is fabri-
cated via near-atomically precise machining, then refinegdssing electrical current
through it in a carefully controlled fashion 292, 358, B48]

e strengths: longest known decoherence time

e weaknesses:slow gates, no QIO, measurement still being designed, wliffic
fabrication
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4.2.4 Scalable lon Trap

One of the few systems which explicitly separates storagasafirom interaction areas
is the scalable ion trap 170, 350, 173, 230,1309[ 29, 32449, 1nitially designed and
built at NIST, this is a proposal to scale up an ion trap quantamputer([78, 30%, 301,
[288]. Inion trap systems, qubits are usually stored in thegynlevels of individual
ions. In early ion trap experiments, small numbers of ionseweld in a single trap
known as an RF Paul trap. In the scalable trap system, whiehlasge system of
interconnected, individually controllable traps, thed@me kept suspended in a vacuum
in a channel in the device and are literally moved aroundgusiagnetic fields until
they reach locations in the system designated for opegtas shown in Figurie—4.3.
Small numbers of ions are brought together and formed in&inshto execute multi-
qubit gates. Gates are effected by laser pulses; readolsoisecomplished by laser
pulses creating fluorescence (interpreted as a 1) or not38)e times are moderate,
but overall system performance will likely be driven by iorovement times (which
naturally depend on distance and topology), times for argatnd splitting chains of
atoms, time to cool atoms heated by the movement processnaltighlexing of gate
operations. For both gates and measurement in scalableasjoisystems, many laser
beams must excite many ions. Complex optics and photontdetemay be required
to read out the state of many qubits at once; CCD camerasvieeotlirect tradeoff of
speed versus noise, while avalanche photodiodes are Hitiicintegrate and photon
counters require cryogenic operation [1L73].

The Monroe group has recently shown the ability to move iasigd corners,
a fundamental engineering advance in control of indivicataims [14F]. As noted
above, the efficiency of algorithms implemented on ion trajisdepend on realizable
concurrency, and on the time to move and cool ions.

In Table[4.B, we list the decoherence time of ions as a randewflisecond to 20
seconds. The lifetime of individual ions has been shown tim Iblee millisecond range,
but Haffner et al., in the Blatt group in Austria, recentlyceded a state on a pair of
ions using a decoherence free subspace and experimenealyumed a lifetime of 20
seconds[[140]. Other experiments from both the Blatt graupthe Wineland group
at NIST have recently confirmed the existence of entangledpg of 6, 7, and 8 ions,
prompting the coining of the term “qubytd” [139, 202]. Whiteese accomplishments
do not yet surpass the size of the Cory group’s 12 qubit NMResysresearchers
are excited because ion trap technology is viewed as a stamdjdate for a scalable
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system. It will be interesting to see when it becomes possitiraw a “Moore’s Law”
parallel for the size of an entangled system, graphing thibliaog time of the largest
entanglement demonstrated in ion traps.

e strengths: scalability of storage

e weaknesses:slow gates[[306]; limitations on concurrent operations areh-
surements

4.2.5 All-Optical

All-optical systems come in two flavors: those that dependamlinear effects to exe-
cute gates, and those in which the only necessary non-ipgameasurement, known
asLOQC (linear optics quantum computation)[184]. Research owpatiical systems
has focused on photon sources capable of generating preaisigers of photons with
the necessary timing precisidn [286], gates based on mmasat [184] 287, 179, 59,
[357], and high-quality single-photon detectdrs [232,] BH)].

Measurement-based gates are inherently probabilistiature, though it has been
shown that these gates can be built into a scalable feedafdrmetwork [184[-276].
Much of the current experimental work is focusing on thisrapgh, and individual
gates have been shown to work [2[70,1253] 269] 127, 285].

Jitter and skew are likely to be managed by “stopped lightated by electromag-
netically induced transparendy [116,144], which has a¢s®mtly been shown to be
useful for creating and managing single photons both dyr¢€05] and in combina-
tion with other technique$168].

e strengths: well-understood physics and easy fabrication

e weaknessesphoton losses; for non-linear systems, weak non-lineactffgive
poor gate quality; high resource requirements for prolstlulgates; large phys-
ical size of systems

4.2.6 Quantum Dot

A “quantum dot”, as used in quantum information processia@ lithographically-
defined structure that confines electrons at the boundaey lastween two materials,
creating a two-dimensional electron gas (2DEG). By varyirggsurrounding electrical
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200 microns

Figure 4.3: A six-zone ion trap capable of moving individigals. lons are inserted in
the landing zone L, and manipulated in the zones A, S, and Bgéntourtesy of D.
Wineland, NIST.
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potential, individual electrons can be confined to a smahacalled the quantum dot.
A qubit can be defined based on the number of electrons in awuashot or the spin
or energy levels of a single electron held in a quantum dot.

Several quantum dot devices are under development; oneiegreally advanced
approach uses a pair of quantum dots as a dual-rail encogedligubit, with a single
electron in the left dot representing a logical 0, and theteda in the right dot repre-
senting a logical 11124, "323]. Another approach uses atiagay of single-electron
guantum dots, and encodes the qubit in the spin of the extastsomn [214].

In a third approach, DiVincenzo et al. proposed that the oplgration needed is
an exchange between two neighboring qubits, accomplispéalNering the electrical
potential and allowing the electrons to tunrel[100,1214])2Z his is easier to accom-
plish than precise control of a magnetic field, which woulddxguired in order to effect
gates on specifically addressable bits. Perhaps the bidgegback of this approach is
that exchange-only computation requires encoding a slogieal qubit onto multiple
physical qubits. A CNOT, for example, requires each logagabit to be encoded in
three physical qubits, and the exchange times must be diedtrfairly precisely. The
CNOT on neighboring logical qubits requires 19 exchangeatpmns [100], though
Myrgren and Whaley have found interesting optimizatiorad #llow non-neighbor op-
erations to be effected in 28% fewer total operations thamotivious formulation of
repeated use of the 19-exchange CNQT [240]. Continued dempork may reduce
the encoded execution time penalty further, though the apb storage penalty re-
mains.

e strengths: advanced fabrication

e weaknessestow coherence time

4.2.7 Kane Solid-State NMR

Kane has proposed a solid-state NMR system with excellehisitity, built on VLSI
techniques for contro[[163], and Clark et al. have made msgjin fabrication[79].
In this system, individual phosphorus atoms are embeddadsiticon substrate, and
standard photolithography techniques are used to builttr@ostructures on the sur-
face. The qubit is held in the spin of the phosphorus nuckeug interactions between
neighboring qubits are mediated by electrons coupled tatickei via hyperfine inter-
actions. The shape of the electron wave function is comilotia the control structures
built on the Si surface; the distance between neighboringpsand the accuracy of
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aligning the control gates to the P impurities will deterethe quality of qubit inter-

actions. Some Si isotopes have a nuclear spin; the preséatenos of these isotopes
could potentially disrupt the operation of the Kane struetuAbe et al. have studied
the behavior of such a system as the isotopic compositioheofSi substrate is var-
ied [5,[4]. Oskin, Copsey et al. have performed engineerindiss, suggesting that
teleportation may be required to move qubits long distaeees for error correction,
and that matching the pitch of the necessary lithograplyicaéated control structures
to the desirable atomic spacing is difficlli [256] 84].

e strengths: long coherence time

o weaknesses:difficult fabrication, creating adequate overlap in elentwave
functions

4.2.8 Optical Lattice

In an optical lattice, qubits are the internal states ofvithlial atoms[15/7, 56, 326].
The optical lattice itself is a set of standing waves of ljgineating magnetic fields that
hold individual atoms in place in an array, suspended in awac Two-qubit gates are
executed by adjusting the positions of the peaks and trooftie light waves so that
neighboring atoms collide. This basic approach is simdardapping of ions, but since
the atoms are neutral rather than charged, they do not abtesith the environment
as strongly, and hence have the potential to have much ldifgmes. The lifetime
of a Bose-Einstein condensate (a coherent quantum st ditferent from qubits)
has been measured in seconds in a latficel[134]. The latégework well in multiple
dimensions. The principal drawbacks to this approach aeitidividual addressing
and readout of atoms have not been shown. Each pair of atorni itattice acts
exactly the same, and the spacing between the atoms is tdldfenagtical resolution
for fluorescent readout. The “atom chip” approach uses ampihysics for the qubits
and gates, but is a dramatically different engineering @ggn, using lithographically
created structures to move individual atoms at will, sonmethike the scalable ion

trap [T17[326,175].

e strengths: long coherence time, easy fabrication

e weaknessesno individual addressability for gates or readout
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4.3 Summary

DiVincenzo laid down the defining characteristics of a veatplantum computing tech-
nology [97]. Many engineering factors extend beyond theili¥nzo criteria to deter-
mine how practical it is to build a machine based on a givehrtelogy [337]. These
factors include such basic issues as possible measurecternes, the difficulty of
building and operating large-capacity devices, and séigsizes affecting performance,
notably clock speed, the qubit-to-qubit layout topology sossible concurrent oper-
ation. For our purposes, some quantum I/O mechanism is segeswvithout one,
we cannot build a quantum multicomputer, and the systenatabdity with respect
to number of qubits (and possibly concurrent operation) el quite limited. In the
next chapter, we will develop thgubusmechanism and accompanyitejeportation
techniques that we will use to connect quantum computeetheg

This chapter organizes information about quantum comgpirea way that specifi-
cally focuses on scalability, implementability, and atebiural implications. The eval-
uation criteria we have laid out should make it possible tmpare technologies and
determine which will be useful in different roles of a systeand how application al-
gorithms can be mapped to and compiled for various architest

Each of the technologies discussed here has its own pantisat of technologi-
cal hurdles to overcome before it can be considered practNBIR-based systems
have slow gate times, but have good coherence times; if a Q¢Chamism can be
designed[[346], they will make excellent storage devicespore NMR systems are
unlikely to make adequate factoring machines. Josephsweiipn devices and quan-
tum dots have extremely fast gate times, but have poor coberémes. Both of
these systems have yet to demonstrate scalability in ingidation and addressing
of qubits, though both have been designed. Pure opticatsgsheed more efficient
single-photon detectors. lon traps have many desirablerfesathat make them scalable
architecturally.

The complex tradeoffs in controlling a quantum computetude trading speed
for coherence time. The quantum wiring and classical cban® under investigation
in both technology-dependent and -independent fashiartanbny scaling questions
remain. Work on both programming language design to sumgp@mtum computation
and back-end optimization for specific architectural cbhmastics has just begun|254,
[14,[241.[16b]. The mapping of algorithms to these architestwill determine the
performance and practicality of particular architectures



Chapter 5
Networking

True and serious traveling is no pastime, but is as serious as the
grave.

Henry David Thoreau

Our quantum multicomputer will require a quantum netwoskjllaistrated in Fig-
ure[L.2 on page_10. The physical layer of the network must laatgm, of course,
but the techniques for describing and understanding clalssetworks can be applied
easily to quantum networks. In this chapter, we take a quiok kat the qubus phys-
ical layer for creating entangled pairs, and the classi@fsnof describing network
topologies and their performance.

5.1 Weak Nonlinearity and Qubus Entanglement

Protocols

EPR pairs or Einstein-Podolsky-Rosen pairs, are pairs of particklegubits which

are entangled so that actions on one affect the state of thex, gfuch as the state
(]00) + [11))/+/2 (which can also be called a Bell pair). EPR pairs can be aldate
a variety of ways, including reactions that simultaneoeshyt pairs of photons whose
characteristics are related and many quantum gates on titsgEor an ion trap sys-
tem, for example, two ions can be moved together, an entapgperation performed,
and the ions separated. As long as the quantum state renadi@seat, the ions can be
separated by any physical distance and their state willireretated. In the next sec-
tion, we will see how to use EPR pairs both to move data anddowgr gates remotely,
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laser D

qubit O qubit 1 homodyr
detector

Figure 5.1: Physical configuration of a qubus.

via a process known as quantum teleportation. In this sectie present our mech-
anism for making the EPR pairs. Technically, an EPR pair issaimally entangled
pair; that is, operations on one qubit have the strongesilplesnfluence on the other.
In this thesis, we use the term somewhat more loosely, inojyghirs whose entangle-
ment has decayed somewhat from the maximum, or whose eimgioglerations failed
to produce a perfect pair.

Our approach to creating EPR pairs contains no direct guit interactions and
does not require the use of single photons, as e.g. Kiml@daisithas recently demon-
strated [7B]. We use the invention of Munro, Nemoto and 8pilivhich uses laser
or microwave pulses as@obe beanfZ44,[237]. Two qubits are entangled indirectly
through the interaction of qubits with a common quantum fralode created by the
probe beam — a continuous quantum variable — which can bglhad as a commu-
nication bus, or “qubusT[303]. We call this process the qibaotanglement protocol
(QEP).

Physically, the qubus consists of a laser or microwave so@w@air of qubits and
some means of interacting them with the probe beam, amzhzodyne detectd@1]],
as shown in Figure8.1. The distance between the qubits canbitearily large, lim-
ited only by losses in the probe beam. The probe beam comdiattarge number of
photons, each of which interacts minutely with the qubitshé qubits are single pho-
tons, this is accomplished using a type of crystal with a priypknown as @ross-Kerr
nonlinearity.

For some solid state qubit systems, we can put the qubits iici@wave resonant
cavity and use a microwave pulse to create the qubus effaetinferaction with a bus
mode takes the effective form of a cross-Kerr nonlineaaityglogous to that for optical
systems, described by an interaction Hamiltonian of theafor

H;y = hyo.ala. (5.1)

In this equationa’ and a are, respectively, the creation and annihilation opesator
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Figure 5.2: Phase space diagram of the qubus entanglenotot k.
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Figure 5.3: Logical equivalent of the qubus entanglemeatiomol.

representing the raising or lowering of the number of phstpresent in the probe
beam. When acting for a timeon a qubit-bus system where the nonlinear interaction
is of strengthy, this interaction causes a rotation in phase space by ae aiighn a
bus coherent state, whete= yt and the sign depends on the qubit computational basis
amplitude. In a phase space diagram, the horizontal anttaeaxes correspond to
the quadrature amplitudes of two variables. They are contyneferred to as position
(z) and momentunmy), respectively, due to mathematical similarities in thghavior,

but they do not physically represent these quantities. Tagram for this interaction

is shown in FiguréX®l2. By interacting the probe beam withghkit, the probe beam
picks up af phase shift if it is in one basis state (e.{f}}) and a—6 phase shift if

it is in the other (e.g.|1)). If the same probe beam interacts with two qubits, it is
straightforward to see that the probe beam acting on theguiit stateg0)|1) and
|1)|0) picks up no net phase shift because the opposite-sign shiftsel, while the
probe beam acting on the staf@s0) and|1)|1) picks up phase shift:26.

The homodyne measurement projects the point in phase sptzéhex axis (po-
sition). This projection determines whether the probe bhambeen phase shifted (in
effect taking the absolute value of the angular shift), @cbpg the qubits into either
an even parity state or an odd parity state. The measurerhentssonly the parity
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of the qubits, not the actual values, leaving them in an eahstate. If the homo-
dyne measurement returnsos 26, we know that the state is eith@0) or |11). If
the measurement returns we know that the state is eithgrl) or [10). In the latter
case, we can apply a NOT gate to either qubit, moving the Bti€00) or |11). Fig-
ure[53 shows a circuit that is logically similar to QEP, €ifhg only in its possible
error propagation characteristics, which we will not detai

Although the qubus is physically asymmetric, with a probarbeource and homo-
dyne detector at opposite ends of the physical layout andimaitéeordering of qubits
along the bus, this layout does not influence the logic of thieug. The qubus is used
to create EPR pairs, which are symmetric. Each teleporntafperation, as we will see
in the next section, consumes one EPR pair to send a qubitrfozta to node. We can
schedule use of the bus as if it ihalf-duplexbus.

This procedure is general, and can be applied to any pair lofsjto determine
their parity. If all of the terms of the superposition have Hame parity, the state of the
superposition is not affected by the parity measurementimka small phase change
which can be corrected with single-qubit gates. If we staitt Wwoth qubits in the state
(10) + [1))/+/2, we are left with the statg00) + [11))/v/2, which is a good state for
beginning the teleportation protocols described in the segtion.

5.2 Teleportation

Teleportation, discovered by Bennett and his collabosatimansfers the state of one
guantum to another by using EPR pairs. Teleportation of munarstates has been
known for more than a decade[45]. It has been demonstrapetienentally [125], 54],
and has been suggested as being necessary for moving dgtdistances within a
single quantum computer [256, 229]. Teleportation canfasa part of the process of
transferring quantum state from one physical represemi&ti another.

For our quantum multicomputer, we propose using the qubtanglement proto-
col (QEP), described in the last section. Entanglement isngirtuous, not discrete,
phenomenon, and several weakly entangled pairs can be aisadke one strongly
entangled pair using a process knowrpasification[43,[77]. Purification starts with
EPR pairs in a known (but possibly degraded) state, themgabyg performs an error
correction protocol that is specific to that state. This igenefficient than full-fledged
guantum error correction.
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\J

Figure 5.4: Teleporting a single qubit.

5.2.1 Teleporting Data

Figurd 5.2 shows the basic teleportation circuit to moveglsiqubit from one location

to another. The box labeled QEP is the qubus entanglemetatgatpthe output of the

box is the EPR pair. The near and far ends of the teleportatich hold one member
of the entangled pair. To teleport the qubit = «|0) +5|1), the first step is to perform
a CNOT at the source between the qubit and the source-sidenteiber, causing the
change

|¢>M N i|ooo>+%|o11>+%|110>+%|101> (5.2)

NG NG NG NG
where the qubits in our written representation correspopdd bottom to the qubits in
the figure. That is, the left-most qubit in our notation is tginal qubit, the middle
one is the source-side EPR pair member, and the right-mdmst iguthe member of
the EPR pair at the destination. We then apply a Hadamardgate original qubit,
moving to the state

e ! ! e 3 B B 3
— -1 —[011) + =[111) — =]101) — =11 Z1001) + =01
2\000>+2\00>+2|0 )+2| ) 2\0> 2| 0)+2\00>+2\0 0)

= %(I00>(al0>+ﬁ|1>)+|01>(ﬁl0>+all>)+|10>(a|0>—B|1>)+|11>(—ﬁ|0>+a|1>))-
(5.3)

The last representation makes it clear that the destingtibit now has some relation-
ship to the state of the original qubit. In the first term, ié thrst two qubits are zero,
then the last qubit holds the state of our original qubjé) + |1). In the other three
terms, the state of the last qubit is a simple permutatioh@btiginal qubit, which can
be recovered via ai gate, aZ gate, or both. The four terms correspond to the states
00, 01, 10, and 11 in the first two qubits. Thus, if we force tlagesof the system into
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one of those four states, we can determine which gates tg &pfix” the destination
qubit, so that it ends in the starting state of the qubit wete@io send}y).

In the figure, this is shown by the measurements, followeddontrol” X and Z
gates. Of course, the outcomes of the measurements arealddts, so our control, in
this case, is a classical choice to apply¥agate or not, depending on the measured bit.
After the measurements but before the control gates, tiggnatiqubit and the source-
side EPR pair member have both been “destroyed” (the pHysacaers of the qubits
likely still exist, but we no longer have a useful quantuntestas the superposition has
collapsed).

As an example, assume that the node A bits are measured,@hetprthe value 11.
This value is then transmitted via classical means to nod& Bode B, we now know
that the state of the destination qubitig|0) + «|1). We apply bothX and Z gates,
and the state shifts t|0) + 3|1), recovering the original qubjt) at the destination.

The “spooky action at a distance” of entangled pairs of pkagiwas one of Ein-
stein’s concerns about quantum mechanics, especiallybecbappears to violate rel-
ativity. Part of the answer to his concern is tiveformationcannot travel faster than
the speed of light. Thus, although the state of the qubitet#stination may change
“instantaneously” as we perform the measurements at theesaihe state of the qubit
remains in the indeterminate state until we receive thesiak relativity-limited in-
formation telling us which gates to apply to recover the miage we are teleporting.

5.2.2 Teleporting Gates

So far, we have discussed the teleportation of data. It ss@dssible to teleport gates.
Gottesman and Chuang showed that teleportation can be aisehstruct a control-
NOT (CNOT) gatel[133]. Their original teleported gate reqaitwo EPR pairs. We
use an approach based on parity gates that consumes onlyPéhedir, as shown in
figure[55 [2377]. Locally, the parity gates can be implemémntéth two CNOT gates
and a measurement (outlined with dotted lines in the figuBjuble lines are clas-
sical values that are the output of the measurements; whashassa control line, we
decide classically whether or not to execute the quantum, ¢aised on the measure-
ment value. The last gate involves classical communicatfadhe measurement result
between nodes. As shown, this construction is not faultaole it must be built over
fault-tolerant gates. Alternatively, the qubus approaa loe used as the node-internal
interconnect. Its natural gate is the parity gate, and i falerant; this is the approach
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Figure 5.5: A teleported control-NOT (CNQOT) gate.

we will use when we come to distributed computing in Chalgter 7

5.3 Multicomputer Networks

The theme of this dissertation is the design of a quantumicoahputer, a collection
of smaller quantum computers connected via a messagergassiwork so as to col-
laborate to solve a single problem]24]. A multicomputer disaributed-memory mul-
tiprocessor, in which processing units run programs indéeaetly, and cannot directly
access the memory of other processing units. All shared atatipn is accomplished
by exchanging messages through an interconnection netwotkis section, we take
a very brief, technology-independent look at the interemtion networks that turn a
group of individual computers into a multicomputer. In Cteafd, we will apply these
principles to our quantum system, designing an intercannetwork to create EPR
pairs.

Networks consist ohodesandlinks. A node is a computational element, where
data is stored and manipulated. A link transfers messagesdne node to another. A
link may be serial, with one data line, or parallel, with save A serial link requires
only a singletransceiver whereas a parallel link requires one per wire, or s
width. The current trend in local-area networks and peripheraébysuch as Fibre
Channel, USB, and serial ATA) is serial links, which alloghter packaging, lower
power requirements, simpler cabling, etc. The savingsardlareas offset the cost of a
single higher-speed transceiver, generally meaning tr&lshetworks wind up being
roughly as fast as the parallel ones they replace.

For multicomputer network$ [145, 151,189], as with all netk#y we have most of
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Topology degree| diameter | avg. dist. | bisection| tot. BW (links)
Bus 1 1 1 1 1

Line 2 N -1 N/2 1 N -1

2D Mesh 4 |2(VN-1)| 2VN/3 VN 2N —2¢/N
Hypercube(2-cube)) log, N log, N (logy N)/2 N/2 (Nlogy, N)/2
Fully Connected | N —1 1 1 N2 /4 N(N —1)/2

Table 5.1: Some common interconnect topologigsnumber of total nodes.

what we need to know about the topology when we know four aterstics:

degreeThe number of links from each node.

diameter The maximum distance across the network, measured in hops.

average distancelhe average distance between any two nodes.

bisection The minimum number of links you must cut to chop the machine in
half.

This assumes, generally, a regular network, though the gaimeiples apply for
arbitrary topologies. For a link, we also need to know thk& latency, bandwidth, and
protocol and processing overhead; we will mostly ignoreséhissues and express our
results in units of a single transfer, or EPR pair creatiore 80 include aggregate
system bandwidth in our analysis.

These characteristics give us some guidelines and hinteageherality (or lack
thereof) of a particular network. What ultimately mattes§,course, is how long it
takes to execute the application algorithm(s) that coreig workload. In most cases,
this is a function of both the network topology and the mesgaagssing pattern of the
algorithm. “Incast” problems (two nodes trying to send te #ame destination at the
same time) inevitably cause contention (competition faeas to resources); we will
see some of the effects of contention in Sedfioh 7.5.

Table[51 and Figued.6 show five topologies. Dlasis a single, shared medium
on which any node can send a message directly to any other hatlenly one pair
can be communicating at a time; this configuration roughtyesponds to the original
Ethernet scheme and most computer buses. lineaconfiguration, each node has a
neighbor to the left and a neighbor to the right, and can exghanessages with both
of them simultaneously. In 2D mesheach node has four neighbors, north, east, south
and west, and the nodes are laid out in a two-dimensional tjrelIintel Touchstone
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Figure 5.6: Five important interconnect network topolggie

Delta and other large-scale systems found this topologg ta ¢pood choice. The orig-
inal Caltech Cosmic Cube was a hypercube, with each of theoBésconnected to
log, 64 = 6 neighbors. Scaling this system up is difficult, as each doghbf the
number of nodes requires adding a link to each one of theiegisbdes; packaging
constraints quickly become a problem. In a fully-connegctetivork, each node can
communicate directly with each other node. Given that thigiiresO(N?) links, it is
clearly impractical, but serves as a theoretical upper doun

All of these topologies ardirect network also sometimes calledistributed switch
topologies, where the hardware to route messages fronidodatlocation resides with
the compute nodes. It is also possible to ubrect network also calledcentralized
switchtopologies, such as crossbars and fat trees. In indireatonk$, packets must
pass through switching nodes in the middle of the networkselsmle purpose is rout-
ing packets. For reasons that will become clear in later telapwe ignore indirect
network systems.

The performance of a system depends on several factorselsebiel topology. Al-
though a hypercube offers excellent theoretical propgriidth no node more than
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log, N hops away, if each hop is slow, the overall system sufferse mbst straight-
forward implementationstore and forwardrequires waiting for an entire message to
arrive at a node before beginning the retransmission albaghéxt hop. Based on
this experience, 2D meshes such as the Intel Touchstona Wete implemented with
wormhole routingallowing the start of a message to begin transmitting whidetail is
still arriving, giving excellent overall performance withore scalable hardware. These
issues matter less in our environment.

For most of the 1980s and 1990s, with fine-grained paraihediad many proces-
sors attempting to send messages at the same time, cardélhingeof applications to
network topologies and management of resources (pringj@aicess to the network)
were required. In recent years, the availability of faseajhh general-purpose network-
ing hardware and improving software tools for larger-gediparallel systems, such as
Beowulf, MPI, and BOINC, have largely decoupled parallglagations from the need
for such hardware-specific tuning [314, 107, 19].

The field of interconnection networks for distributed, pl@tacomputation is a vast
one; here we have hardly begun to even hint at the s¢cop& [89, Odr current needs
for a quantum multicomputer are modest, so this level ofyemslwill suffice.

5.4 Summary

In this chapter, we have introduced the disparate conceggided to build a quantum
multicomputer: the fundamental qubus technology we intendgse to create entangled
pairs of qubits (EPR pairs), the teleportation of both quantlata and quantum gates
that will use EPR pairs to effect distributed quantum corapan, and the principles of
store-and-forward multicomputer networks that will detare how efficient the system
can be.

We now come to the end of not only the chapter on the qubus, fhiltecentire
first part of this thesis, covering the fundamentals of quantomputation. We have
studied the basic ideas of quantum computation, seen Shigicsithm for factoring
large numbers, which we will use as our target applicatiaplaned how to control
errors, and discussed many different quantum computifmt#ogies. And finally, we
presented quantum teleportation and the qubus protocal wpach we will build our
guantum multicomputer.

We now set aside the distributed nature of our system for &ewand move into
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the detailed analysis of the performance and limitatiore wfonolithic quantum com-
puter. Once that analysis is complete, we will return to tharqum multicomputer in
ChaptefY.



Chapter 6
Performance of Large-Scale Systems

[T]he period matters little until the acceleration itself is admit-
ted. The subject is even more amusing in the seventeenth than
in the eighteenth century, because Galileo and Kepler, Descartes,
Huygens, and Isaac Newton took vast pains to fix the laws of ac-
celeration for moving bodies, while Lord Bacon and William Harvey
were content with showing experimentally the fact of acceleration in
knowledge...

Henry Adams, “A Law of Acceleration,” 1905

We are now prepared to design the architecture of a quantormpuier and evaluate
its performance. Up to this point, we have examined what iamseto do quantum
computation, discussed what a quantum computer could lsefoseand analyzed the
technologies available to build such a system. In Seéfid@2we saw DiVincenzo'’s
five criteria which must be met by any useful quantum computigthnology([97]. In
addition to these criteria, a useful quantum computingrietdgy must also support a
guantum computesystem architectur&hich can run one or more quantum algorithms
in a usefully short time. This observation subsumes intoregairement several issues
which, while not strictly necessary to build a quantum cotepwwill have a strong
impact on the possibility of engineering a practical, uksfistem; we presented our
analysis of those requirements in Chapler 4.

The process of adapting abstract algorithms to quantum otergnaturally de-
pends on the architecture, but the application of classieaiputer architecture prin-
ciples to quantum computers has only just begun, makingfficdit to definitively
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pronounce that a certain quantum computer will be “usefualving real-world prob-
lems. In this chapter, my aim is to advance our understarafititgs design process, in-
cluding designing some specific algorithmic subroutinas éne appropriate for certain
architectures. | analyze and optimize the performance ehibdular exponentiation
that forms the largest part of Shor’s factoring algorithrmsdéd on the Vedral-Barenco-
Ekert algorithm as discussed in Secfiod 3.5. We have fouryd teeimprove the scaling
of performance with respect to the length of the number b&otpred; the accelera-
tion is thousands of times for important problem sizes, gwrone million times when
factoring a 6,000-bit number. We show that this accelenadiepends on the architec-
ture of the system, and how to optimize for certain constsaiwe also show that the
faster modular exponentiation algorithms reduce the deishan the error management
subsystems and increase the fidelity of our calculation.

The first section of this chapter provides a brief overviewheftechniques we use
to accelerate arithmetic, then discusses the impact oftacthre on quantum error
correction, and presents our architectural models andiootalhe next two sections
explain the tradeoff between classical and quantum cortipatand present our new
adder designs, the carry-select and conditional-sum add8ectiorf €614 closes this
chapter with our major analytical and numerical resultgti@rcomplete modular expo-
nentiation algorithm. The material presented here shaelfdther researchers analyze
the performance of systems they design, both large and ;sim#éfie next part of this
dissertation, | use these techniques to analyze the betehaguantum multicomputer
based on an overall structure | propose.

6.1 Managing Performance

The realized performance of a system is a product of both idenlying technology
and the architecture imposed above it. In SectionsUI123 4and 4115, we introduced
the technological factors that affect performance of th&tesy: physical and logical
clock speed, concurrency or parallelism, the number oflavia qubits, the ability
of qubits to communicate with each other (the “wiring togply), addressability of
individual qubits, and the decomposition of logical gatés iphysical ones. From this
point forward in the dissertation, we will ignore addresbkgband assume individual
control over qubits. For our purposes (primarily arithroeircuits), the issue of direct
or polynomial approximation of arbitrary rotations onlyno@rns us as described below,
in the breakdown ofcNOT. The ability of a system to retire application instructi@ss
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quickly as possible derives from more than the clock speddaeing parallelism and
moving data as efficiently as possible strongly impact bieinaand these issues drive
much of the rest of this dissertation.

Concurrent quantum computation is the execution of mone tme quantum gate
on independent qubits at the same time. We generally usetimebncurrencyrather
than parallelism, to avoid confusion with the concept ofrquen parallelism. Utilizing
concurrency, the latency, or circuit depth, to execute abmmof gates can be smaller
than the number of gates. We discussed parallel multipiie&ection[3.52. Circuit
depth is also explicitly considered in Cleve and Watrousapel implementation of the
guantum Fourier transform [80], various types of arithm 8,103/ 334, 130], and
Zalka's Schonhage-Strassen-based implementation ofilmodxponentiation [362].
Moore and Nilsson define the computational complexity cEE to describe certain
parallelizable circuits, and show which gates can be peréadr concurrently, proving
that any circuit composed exclusively of ContrabTs (CNOTS) can be parallelized to
be of depthO(logn) usingO(n?) ancillae on an abstract machife[235]. In Chapter 4,
we discussed the capability of different technologies tdgoen concurrent gates; in
this part of the thesis, we combine the theoretical and jmaatoncerns to analyze the
demands of the algorithms.

Here we summarize the techniques which are detailed invigllp sections. Our
fast modular exponentiation circuit is built using the és¥ing optimizations:

e Trade classical for quantum computation, to reduce thetleafithe expensive
and difficult guantum portions (Sectiénb.2).

e Move to better adders; our algorithms concentrate on theie conditional-
sum adder (Section 6.3.3), carry-lookahead adder (SelgiaB), and CDKM
carry-ripple adder (Sectidn 3.4.2).

e Look for concurrency within addition; our concurrent versof VBE forms our
baseline case, and the other adder circuits are defined anttucrency in mind.

¢ Do multiplications concurrently, using Cleve-Watrousc@ens[3.b an@6.412).

e Reduce modulo comparisons, only subtratbn overflow; this incurs a small
space penalty and requires some cleanup at the end, in eyecfama nearlys x
reduction in the number of calls to the adder routine (Se@d.2).
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e Select correct qubit layout and subsequences to implenages ghen hand opti-

mize [339/14/ 169, 192, 3P0, 354, 15].

6.1.1 Error Correction, Architecture, and Clock Speed

A basic understanding of the pressures that quantum emeratimn and fault tolerance
place on architecture is critical. As we saw in Chapiel 2BC@nd FT demand the
continuous preparation and measurement of a set of an@idagorary work qubits),
and raise the overall cost of quantum computation by as msiébwet orders of magni-
tude foreachlevel of QEC built into the system — and it appears that two oretevels
may be necessary. The logical clock speed of the systemavikspond roughly to the
QEC cycle time, and is correspondingly slower than the maysilock speed, though
the exact ratio will depend on both technology- and machlieygendent details.

QEC codes encode one or more qubits into a code word. The gnoiromes
on this code word are continuously calculated and measuaredi,corrective actions
applied to the code word. The measurement of the syndronualpceffects a key
portion of the error control process; it forces (“projegttie state either back into a
good state (with high probability) and returns a zero (he@rsyndrome, or an error
state (with low probability) and returns a non-zero syndeorwhen the syndrome is
non-zero, one or two corrective gates are indicated andegbplUnfortunately, this
syndrome calculation and measurement process may alsdimct errors. Technolo-
gies that support nearest-neighbor-only interactionsiregwapping of qubits in order
to calculate the error syndrome, with the swap gates pgssittbducing errors them-
selves, making the threshold requirements for effectiver @orrection more stringent;
in some studies, as much as 175 times warse [317 308, 11318D, The parity calcu-
lations necessary to retrieve the error syndrome cannatoed out directly, but must
operate indirectly using a logical zer{®{)) state to defend against propagation of er-
rors. That state preparation requires as many qubits astieeveord itself, and may be
the driver of the cycle time for QEC. Measurement of qubitestan some technologies
is slow compared to the gate time, so this also figures pramtlinmto the cycle time.

As qubits are subject to error processes when idle, as wellndle being used,
the total amount of error correction in the system is depende the size of the ma-
chine, as well as the number of logical gates being execufeglach qubit must be
“refreshed” at one-tenth the QEC cycle rate, for examplen tlve must build a system
in which one-tenth of the qubits can all be undergoing QEQatsame time. Longer
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waits for correction increase the probability of errorsthiust be balanced against the
number of levels of QEC and the engineering difficulties @fafization and measure-
ment. Quantum dots and superconducting qubits requirdiaddi on-chip structures
to perform measuremerii[266], limiting layout flexibilitp@ consuming die space. If
possible, it will be desirable to perform entire QEC seqgesran-chip; however, in the
short run, it may be necessary to use off-chip signal geoesand control circuitry,
requiring a wide, high-bandwidth 1/O interface from theghiself.

To manage errors effectively, then, we can say that a teoggaohust support large
numbers of concurrent qubit state preparations, gatespeadurements. As the re-
quired operations are much more complex than a DRAM refrgslecand are close
to the universal gate set, a large-scale difference in strei@kin to the CPU/RAM
dichotomy is unlikely. However, at the small scale, systemnéch store qubits in
nuclear spins while idle and shift to electron spins for\actjates have been pro-

posed[ 311, 163, 227, 169.171].

6.1.2 Ac and NTC Architectural Models

This dissertation analyzes two separate architectuitgfsstract but with some impor-
tant features that help us understand performance. Fordoliitectures, we assume
any qubit can be the control or target for only one gate at @.tifihe first, theac,

or Abstract Concurrentarchitecture, is our more abstract model. It suppodsoT
(the three-qubit Toffoli gate, or Control-ContraloT), arbitrary concurrency, and gate
operands any distance apart without penalty. It does n@stigrbitrary control strings
on control operations, onklyCNOT with two ones as controlc corresponds to the ma-
chine we have implicitly assumed to this point. The secdmelytrc, or Neighbor-only,
Two-qubit-gate, Concurrerdrchitecture, is similar but does not suppodNoOT, only
two-qubit gates, and assumes the qubits are laid out in @onensional line, and only
neighboring qubits can interact. The 1D layout will have tinghest communications
costs among possible physical topologies.

The NTC model is a reasonable description of several importantrexpatal ap-
proaches, including a one-dimensional chain of quanturs [@d#], the original Kane
proposal [[168], and the all-silicon NMR devide [196]. Sugmrducting qubits [260,
1359] may map tonTc, depending on the details of the qubit interconnection.

For NTC, which does not suppodcCNOT directly, we compose€CcNOT from a set
of five two-qubit gates’[30], as shown in figurel6.1. The boxwtite bar on the right
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Figure 6.1:CCNOT constructions for our architectures andNnTcC. The box with the
bar on the right represents the square roakofind the box with the bar on the left its
adjoint.

1+ 1=
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on the left its adjoint. We assume that this gate requires#nee execution time as a

represents the square root®f vX = and the box with the bar

CNOT.

The difference betweenc andNTcC is critical; beyond the important constant fac-
tors as nearby qubits shuffle, we will see in Seclion 6.4 Altatan achieve)(logn)
performance on addition whererc is limited to O(n). Most real, scalable architec-
tures will have constraints with this flavor, if differenttdés, soAcC andNTC can be
viewed as bounds within which many real architectures \aill fThe layout of vari-
ables on this structure has a large impact on performanca; iwpresented here is the
best we have discovered to date, but we do not claim it is gbtim

6.1.3 Notation

In the rest of this dissertation, as in Chaifer 3, where wedhiced Shor’s factoring
algorithm, we will use/V as the number to be factored, amdo represent its length in
bits. For convenience, we will assume thast a power of two, and that the high bit of
N is one. z is the random value, smaller thav, to be exponentiated, and) is our
superposition of exponents, with< 2/NV? so that the length of is 2n + 1 bits.

As described in Sectidn3.4.1, when discussing circuit,dbstnotation we use is
(CCNOTs; CNOTs; NOTs) or (CNOTs; NOTs). The values will usually be circuit depth
(latency), but may be total gate count, depending on confd notation is sometimes
enhanced to show required concurrency and space,

(CCNOTs; CNOTs; NOTs)# (concurrency; space).

t is time, or latency to execute an algorithm, asids space, subscripted with the
name of the algorithm or circuit subroutine. Wheis superscripted withC or NTC,
the values are for the latency of the construct on that achite. Equations without
superscripts are for an abstract machine assuming no gencyr equivalent to a total
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gate count for thec architecture R is the number of calls to a subroutine, subscripted
with the name of the routine.

m, g, f, p, b, ands are parameters that determine the behavior of portions iof ou
modular exponentiation algorithm, g, andf are part of our carry-select/conditional-
sum adder (Section8.3)» andb are used in our indirection scheme (Secfiod 6.2).
s is the number of multiplier blocks we can fit into a chosen antaf space (Sec-
tion[6.4.2).

6.2 Trading Classical for Quantum Computation

Any software problem can be solved by adding another layer of
indirection.

David Wheeler

This section discusses balancing the ovesgditenperformance. With a classical
computer as much d$)'® times as fast as quantum computewe can afford to trade
many classical operations for a single quantum onel[333¢ S&me principle applies
if the metric of interest is economic cost, rather than timgg@rmance; quantum gates
will remain many orders of magnitude more expensive thassatal ones for the fore-
seeable future.

As we saw in earlier chapters, modular exponentiation isrthst expensive portion
of Shor’s algorithm, consisting @» multiplication operations to exponentiateaiit
number. Here, | show that it is possible to reduce the numbguantum modular
multiplications necessary by a factor of at a cost of performing® times as many
classical modular multiplications and adding temporaoyaje space and associated
machinery for a table o2 entries. The storage space may be quantum-addressable
classical memory, pure quantum memory, or pure classicalong Values ofw from
2 to 30 seem attractive; physically feasible values deperti®@ implementation of the
memory.

Lvery, very roughly, a modern microprocessor hé$transistors, of which perhaps 10% are involved
in a “gate” in a clock cycle, of which there ai®® per second, yielding somi'” gates/second. In
contrast, the slowest quantum devices (liquid NMR) may ruardy a few tens of gates per second,
beforeapplying quantum error correction. Note that this ignorethlparallel classical computation and
faster quantum devices, but the point is still valid.
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6.2.1 Introduction

To factor the numbeV using Shor’s algorithm]296], a quantum computing device
must evolve to hold the state

227L_1
o > |a)z mod N). (6.1)
a=0
This is themodular exponentiatiostep discussed in SectibnB.5, the first major quan-
tum step in the order-finding process. We also saw that theeval mod N can be

rewritten [191[342] as

n—1
[ mod N (6.2)
7=0
whered; = 22, anda,,_1a,,_»..ao is the binary expansion af Thed, can be calculated
classically, buta) must be a quantum register.

This approach treats) as a sequence bits; my approach to reducing the number
of multiplications is to treafa) as a series of showords Dividing |a) up into/ words
of lengthw, let|t(a)), thekth word in|a), belt,(a)) = |@wk+1)—1Cw(k+1)—2--Qwkt+1Cwk)
for0 <k <l,l=[n/w].|ti(a)), as part ofa), will hold a superposition of all values
0to2* — 1.

We can reduce th2n quantum multiplications té by iterating over the words in
|a), using the superpositidey (a)) as a quantum index into a memory array holding the
2" n-bit entries with value$,, , = 22" mod N, wherem is the index into the array
andk is the iteration number, O tb— 1. The superposition of values retrieved from the
memory is multiplied with the current value, giving

22n_1 22n_1 -1

1 . 1
on ; [ mod N) = - > T 04 @ mod N). (6.3)

a=0 j=0

A total of [w2¥ = n2¥*! classical and quantum modular multiplications must be
performed, compared witkn, classical an@n quantum modular multiplications using
Vedral’'s formulation[[342].
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6.2.2 Indirection

In a computer, arguments to an instruction (or function) lsarpassedy valueor by
reference By value arguments appear directly in the bits of the irdiom. When ac-
cessing arguments by reference, the address of the argisresitl in the instruction;
the actual value must be retrieved from memory before thetiom can be evaluated.
The address is calledmointeror anindex Indirectionis a generalization of by refer-
ence, in which the value retrieved from memory may itself lp@iater which must in
turn be dereferenced.

In the straightforward, bit-based implementation of quamimodular exponentia-
tion, thed; values are classical values programmed into a registerangtiperposition
of 0, based on the matching bit in the superposition In the word-oriented approach,
theb,, . values are held in a table. Logically, a portion of the superposition is used
as an index into that table, fetching one of the values to agseeamultiplicand (more
correctly, fetching a superposition of thg ;. values to use as the multiplicand). That
is, we are accessing the arguments for our multiplicatioouthh a single level of indi-
rection.

6.2.3 Theb Array

Theb array is our bridge from classical computation to quantuecheentry is» bits.
We must compute” values for the table, requiring classical modular multiplications
each, before each of tHeguantum multiplications. Then, we must figure out how to
getb,, . values into the multiplicand register, in superpositione ¥&n use quantum
memory, classical memory, or a type of mixed device to hoéddata.

Quantum-Addressable Classical Memory

The array can be held using a quantum addressable classoabm (QACM) [249].

In such a device, memory cells (the modular exponentiatadmes) are classical, but a
guantum superposition is used as an address, and the reaalwelis a superposition
of each classical value in proportion to the “amount” of itlligess present in the ad-
dress superposition. One such possible device is an optatal, with photons steered
through the various cells according to the value of specdidress bits. Figure_d.2
shows a 3-bit example. At the top, the input (generdlly is steered left or right ac-
cording to the high-order bit of the address superpositanried on a control line not
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Figure 6.2: Quantum-Addressable Classical Memory (QACM)

shown in the figure). Subsequent circles steer left or righbaling to their address
bits, to reach the appropriate classical data memory CHlls values retrieved from the
memory are combined to give the full output superpositionyeights according to the
address superposition.

Pure Quantum Memory

An equivalent array of qubits can be used in place of the QABMvever, in that case,
the cost of filling the table must be accounted for, and ouitdition will be the number

of available qubits. Figure 8.3 shows a 3-bit select circainposed of Fredkin gates
which will choose from among the 8 possible arguments formioglular multiplier.
The desired value;, = b;, ;, occupies the location as shown on the right of the figure;
it is then used as the argument to the modular multiplier.s Beiect circuit can be
reversed following the multiplication to restore the onigli locations of the, ;. values.
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bo.k Ck

Figure 6.3: 3-bit Quantum Select Circuit (Q-SEL)

Classically-Driven Setting of Multiplicand Register

In the VBE algorithm, the multiplicand register is filled ngicNOTs, with the ap-
propriate bit of|a) as the control. For our word-oriented approach, we can ity
perform the lookup by choosing which gates to apply whil¢isgtthe argument. In
Figure[&.4%, we show the setting and resetting of the argurfieent = 2, where the
arrows indicatecCNOTS to set the appropriate bits of the O register to 1. Thealues
are classically calculated and stored; we are settingOtheegister to a superposition
of theb values. The actual implementation can use a calculatedeshilbo reduce the
CCNOTs tocNOTs. Only one of the valueg’, z!, 22, or 23 will be enabled, based on
the value ofla;ay).

The setting of this input register may require propagatin@r the enable bit across
the entire register. Use of a few extra qubit$ (') will allow the several setting oper-
ations to propagate in a tree. The cost of setting the arguimen

2Y(1;0;1) = (4;0;4)w = 2
tarc = . (6.4)
2(3;0; 1)w = 3, 4

Forw = 2 andw = 3, we calculate that setting the argument agt$); 4)#(4, 5)
and (24;0; 8)#(8,9), respectively, to the latency, concurrency and storageaoh e
adder. We create separate enable signals for each @f“tip@ssible arguments and
pipeline flowing them across the register to set the addeisd We consider this cost
only when using indirection. Figufe®.5 shows circuitsdoe 2, 3, 4.
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b3 1: b2, 1.1 Do i b3 : b2, 1.1 Do i
|lay)
|ao)

0)

|sum

|overflow)

adder

Figure 6.4: Implicitindirection using a classical memadFe arrows pointing to blocks
indicate the setting of the multiplicand register to theueahbove, based on the control

lines.

X X X
|2y |a> lag>
|3p> 2> |2,>
|enable | ag> |a;>
w=2 [tmp=0>-4 D- |ag>
|enable [tmp=0>—D D
W=3 |tmp,=0>—& ﬂ{ <>
|enable> NP
w=4

Figure 6.5: Argument setting for indirection for differevdlues ofw. For thew = 4
case, the twacNOTs on the left can be executed concurrently, as can the twoeon th

right, for a total latency of 3.
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6.2.4 The Algorithm

In essence, the algorithm involves moving from a bit-oeenbreakdown of the mul-
tiplications to a word-oriented breakdown. The algorithomsists of two main parts:
classically calculating thearray values, and calculating their products in the quantum
domain. We pay the classical cost in siep 1b in the algoriteloviy and the quantum
cost in stefp3c.

The cost of setting up to use thth iteration of the) array is technology dependent;
only one of stepglc adl3a is necess@yn2™) gates may be required to set a quantum
memory, or only the change of a single pointer or position@ACM is large enough
to hold the entiré array at once.

1. Calculate thé array elements:

(a) Classically calculate;, = 27 forall j,0 < j < 2¥

(b) Fork from1tol — 1, classically square (moduliy) all 2* elements, ;_,
w times to createé; .

(c) (Store allb; ;, into QACM)
2. Initialize|p) to 1
3. Forkfrom0tol—1,do

(a) (Setup to use,;; values: store into QACM or quantum memory)
(b) In quantum domain, uge;(a)) as index intd, |cy) = |b, (a),k)

(©) lp) = lexp mod N)

Figure[6.6 shows a portion of a modified form of Veedral’s citasing indirection.
The dashed box indicates where update ofitlagray takes place, if necessary; only
one-qubit gates are required. Note also that Q-SEL andviesse are used, but, unlike
Vedral's circuit, we do not need the reverse of multiplioatto free up our argument.
The degenerate casewf= 1 is therefore faster than Vedral's circuit.

6.2.5 Evaluating Cost and Selecting Word Length

The goal of this work is to minimize the cost of executing Shatgorithm, for some
metric of cost important to the user. In Figlirel6.7 we showtdite cost of calculating
the modular exponentiation, as a function of word lengtiCost” in this graph is an



6.2. TRADING CLASSICAL FOR QUANTUM COMPUTATION

b array

)

1)

o
[ ]
ﬂ -
Bow_1.0)| T Coa| A
D 0!
° : ICU|
I i
[1.0) =
1bo,0) -
|cop mod N)
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arbitrary metric; it may be wall clock time, total time on pHel machines, price tag,
or some other economic cost of quantum and classical machPerhaps the easiest
cost to consider is simply time to perform a modular multation. The five curves
represent total cost at different ratios of quantum:ctadsiost, ranging from 1:1 to
10'2:1. The 'x’ marks on each curve are the nearest integer vdlueto the minimum.
This recommended word length increases by approximatght dits for each factor
of one thousand the relative quantum cost increases.

This graph is somewhat simplified, in that the cost ratiogated as fixed. In reality,
the QACM cost will almost certainly depend on the word length

Commodity microprocessors may be as muchl@$ times as fast as quantum
computing devices, even before accounting for quantunt emoection. Faster tech-
nologies, ranging up to gigahertz clock rates, still leasreesal orders of magnitude
difference between classical and quantum aggregate gate r&ombined with the
success probability, it is clear that the limitationomwill be the practical size of the
array rather than computational cost.

This section has shown that the standard computer scieclzeitgie of indirection
can be used in the quantum domain to accelerate the modylanertiation that is the
primary cost of Shor’s algorithm. This technique reducesthmber of multiplications
necessary, and is independent of the multiplication allgwrchosen. The price we pay
for this is a large classical/quantum tradeoff; we perfa@rfhrmore multiplications in the
classical domain in exchange for reducing the quantum pligiitions by a factor of
w. This basic technique will likely apply to other algorithpas well.

6.3 New Adder Types

“I only took the regular course...Reeling and Writhing, of course,
to begin with, and then the different branches of Arithmetic — Ambi-
tion, Distraction, Uglification and Derision.”
the Mock Turtle, in Lewis Carroll's Alice’s Adventures in Wonder-
land, 1865

Quantum versions of the classical carry-select and camditisum adders deepen
the toolbox of arithmetic routines available for matchiraftware to hardware [109,
[334]. The basic carry-select adder concurrently calcslate possible results without
knowing the value of the carry in, one assuming that the carnyill be zero, one
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assuming that the carry in will be one. Once the carry in bexoavailable, the correct
output value is selected using a multiplexer (MUX). The tyfeMUX determines
whether the latency of the circuit 8(1/n) (called a carry-select adder) 6x(logn)
(called a conditional-sum adder).

Zalka has proposed a carry-select adder, without callibg hame [36R]. He did
not present a full circuit, making it difficult to reproducés hresults, and my circuit
produces slightly different numbers than his.

6.3.1 Basic Carry-Select Adder

First, we present the basic carry-select adder, then shewWthX structure that com-
pletes the circuit. To add two-bit numbers, we will divide the numbers into groups
and run an adder for each group. The bits are divided gngooups ofm bits each,

n = gm. The first group may have a different size thanm, since it will be faster, but
for the moment we assume they are the same. The carry-sdtsat far a single group
we will call CSLA.

VBE-Based Adder

Figure[6.8 shows a three-bit carry-select adder, CSLA, plugxample MUX. This
generates two possible results, assuming that the carnyllirbevzero or one. All
of the outputs without labels are ancillae to be garbageectdtl. The circuit shown
here is based on the Vedral-Barenco-Ekert (VBE) carryleipplder described in Sec-
tion[3.4.2. As drawn, a full carry-select circuit requifea — 1 qubits to speculatively
add twom-bit numbers. The MUX can be implementing using the optitareof the
Fredkin gate shown in Figute2.3 on pdagé 36.

A larger m-bit carry-select adder can be constructed so that itsnatetelay, as
in a normal carry-ripple adder, is one additiogalNOT for each bit, although the total
number of gates increases (because we are essentiallypgum@ additions at the same
time) and the distance between gate operands increaseslat€hey for the CSLA
block is

tes = (m; 2; 0). (6.5)

Note that this is not a “clean” adder; we still have ancillaedturn to the initial state.
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Figure 6.8: Three-bit carry-select adder (CSLA) with muléker (MUX). a; andb; are
addends. The control-SWAP gates in the MUX select eitheqthuts marked:;, = 1
or ¢;, = 0 depending on the state of the carry in qubjt s; qubits are the output sum
andk; are internal carries.

CDKM-Based Adder

It is possible that a design optimized for space could rediieanumber of qubits re-
quired, perhaps by utilizing the Cuccaro-Draper-KutintNton (CDKM) carry-ripple
adder (Section3.4.2), which is more space-efficient. Th&KIRdder uses onlgn+2
bits to add twa:-bit numbers (including the carry out). By simply fanning alcopy”
of both theA and B input registers and running separate adders in parallisl eidsy
to reduce thém — 1 qubits required above tomn, a noticeable savings in space. Fig-
ure[®.9 outlines one approach to performing the demultiptei place; this approach
results inveryfast availability of the result, but the ancillae garbagkeation is slow.
The circuit in the figure is general; applying it to carryesgladdition,A and B are
almost identical, but disentangling the carry in signatsvsl down the total circuit. |
am still in the process of designing this adder, and expeport on its performance
at a later date.



6.3. NEW ADDER TYPES 135

S) O—e—D— |S)
0) %—@— 10)

0) +1B |R)

Figure 6.9: In-place circuit and MUX to post-select eitlier= A|0) or R = B|0),
based on the select signal
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Figure 6.10: Block-level diagram of four-group carry-s¢tladder. a; andb; are ad-
dends and; is the sum. Additional ancillae not shown.

6.3.2 O(y/n) Carry-Select Adder

The right-hand portion of Figule 8.8 is the MUX which selettts output to use; it is
constructed from Fredkin gates using the carry in as thealdit. Notice that the carry
in is not used until after all of the adder blocks have congulef his feature allows the
parallelism that makes the carry-select adder structste @ne CSLA for each of the
g groups is used; all of the CSLAs are executed concurretigy) the output MUXes
are cascaded, as shown in Figureb.10.

The most difficult implementation problem will be creatingefficient MUX. Fig-
urel6.T0D makes it clear that the total carry-select addetjsfaster than the carry-ripple
adder if the latency of MUX is substantially less than thetat of the full carry-ripple
adder. The delay of the initial part of the VBE adder for a grofim qubits would be
(m;0;0). If the carry out from the MUX requires less thanccNOT times, it may be
faster. The carry out can be generated in a constant numbare$teps by prioritizing
the last bit in the addition as the first to be MUXed out. Theral of the carry ripple
from MUX to MUX (not qubit to qubit) can be arranged to give aaioMUX cost of
(49 + 2m — 6;0;2g — 2).
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Within the block, it is certainly easy to see how the MUX cam® @asfanout tree
consisting of more ancillae ar@NOT gates to distribute the carry in signal, as suggested
by Moore [23%], allowing all MUX Fredkin gates to be executamhcurrently. A full
fanout requires an extra qubits in each adder. For intermediate valueswpive will
use a fanout of 4, reducing the MUX latency(ty + m /2 — 6;2; 2g — 2) in exchange
for 3 extra qubits in each group. The space used for the fety; VBE-based adder is
(6m — 1)(g — 1) + 3f + 49 when using a fanout of 4.

The total latency of the CSLA, MUX, and the CSLA undo is

tsem = 2tcs +tuux
= (49 +5m/2 —6; 6; 29 — 2). (6.6)

Optimizing, based on equatiénb.6, the delay will be the mum whenm ~ /8n/5,
giving asymptotic performana@(/n).

6.3.3 O(logn) Conditional Sum Adder

To reachO(logn) performance, we must add a multi-level MUX to our carry-stle
adder. This structure is called a conditional sum adderchvinie will label CSUM.
Rather than repeatedly choosing bits at each level of the MAdXwill create a multi-
level distribution of MUX select signals, then apply thenterat the end. Figuie 6J11
shows only the carry signals for eight CSLA groups. Eh&ignals in the figure are
our effective swap control signals. They are combined withray in signal to control
the actual swap of variables. In a full circuit, a ninth grotige first group, will be a
carry-ripple adder and will create the carry in to the resbaf tree; that carry in will
be distributed concurrently in a separate tree.
The total adder latency will be

tesum = 2los +
(2[logy(g — 1) = 1) x (25 0; 2)
+(4; 0; 4)
= (2m+4[logy(g — 1)] +2; 4;
4flogy(9 — 1) +2) (6.7)

where[z] indicates the smallest integer not smaller than
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Figure 6.11:0(log n) MUX for conditional-sum adder, foj = 9 (the first group is not
shown). Only the; ; carry out lines from eachr-qubit block are shown, whetés the
block number ang is the carry in value. At each stage, the span of correct tafeec
swap control lines; ; doubles. After using the swap control lines, all but the rasst
be cleaned by reversing the circuit. Unlabeled lines ardlaado be cleaned.
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For largen, this generally reaches a minimum for small which gives asymptotic
behavior~ 41log, n, the same as the carry-lookahead adder from Selciion 3.83MC
is noticeably faster for smadl, but requires more space. The MUX u$gg—1)/2]—2
qubits in addition to the internal carries and the tree fapdrsing the carry in. Our
space used for the full, clean addefés: — 1)(¢ — 1) +3f + [3(¢ —1)/2 =2+ (n —
f)/2] ~ 6n. Sectior &} details the tradeoffs in overall system des@rsed by the
extra space required.

Maslov et al. have recently improved on the performanceiefdUX by reducing
the pair ofcCNOTs to onecCNOT and twoCNOTs, using the breakdown of the Fredkin
gate from Figuré&2]1.

6.3.4 Summary

Carry-select addition speculatively executes two addim parallel, one assuming a
carry in of zero, and one assuming a carry in of one. After detigm of the addition,
when the input carry becomes available, one result is chasdrthe other discarded,
in direct analog to the speculative execution of instruttim modern microprocessors.
The basic concept of a carry-select addition process is tléeftamework allowing
different choices of group size, inner adder type, and ipleler structure. This struc-
ture can even, in theory, be applied to other operationglbssiddition, by using the
general circuit in Figur€®l9. The adders | have designee ketency ofO(logn) or
O(y/n) to add twon-bit numbers, when evaluated for the abstrecarchitecture. We
turn next to the mapping of these and other algorithms toipsets of hardware con-
straints, primarily restrictions on the distance of gaterapds on theTcC architecture.

6.4 Performance of Shor’s Algorithm on a Monolithic
Quantum Computer

In ChaptefB, particularly Figufe—3.2 and Secfion3.5.1, mteduced the performance
of factoring on classical machines and quantum computensleft that analysis in-
complete. We know that Shor’s algorithm is polynomial in teegth of the number
being factored, which will be a straight line on a log-log tplbut where should it
fall on the graph? We were missing a key piece of informatimamely, the logical
clock speed of the quantum system, as discussed in S&clio&omparison of the
execution time to factor a number on classical and quantumpaters is shown in
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Figure 6.12: Scaling of number field sieve (NFS) on classicahputers and Shor’s
algorithm for factoring on a quantum computer, using BCDRluatar exponentiation
with various clock rates. Both horizontal and vertical aaeslog scale. The horizontal
axis is the size of the number being factored, in bits.

Figure[&IP. It compares the performance of Shor’s algaritim a quantum computer
using the Beckman-Chari-Devabhaktuni-Preskill (BCDP)dolar exponentiation al-
gorithm [35] to classical computers running the general Nenf-ield Sieve. The steep
curves are for NFS on a set of classical computers. The stallcurves on the figure
are predictions of the performance of a quantum computaringnShor’s algorithm,
using the BCDP modular exponentiation routine, which usegqubits to factor am-
bit number, requiringv 54n® gate times to run the algorithm on large numbers. The
four curves are for different logical clock rates from 1 HZAt&Hz. The performance
scales linearly with clock speed. Factoring a 576-bit nunitbene month of calendar
time requires a clock rate of 4 kHz. A 1 MHz clock will solve theoblem in about
three hours. If the clock rate is only 1 Hz, the same factopraplem will take more
than three hundred years.

The execution time shown in Figure 8112 can be improved byersidnding that
relationship of architecture and algorithm. The perforoeanf the VBE and BCDP
carry-ripple adders, and by extension their entire mode#ponentiation algorithms, is
almost independent of architecture. Carry-ripple addensch use only nearby qubits
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during their execution, do not take advantage of long-distagates even when the ar-
chitecture supports them, so any architectural analysisdsolely on these algorithms
is likely to conclude that long-distance gates are not usefowever, the performance

of most polynomial-time algorithms, including other typefsadder, varies noticeably

depending on the system architecture.

6.4.1 Mapping Adders to Architectures

Figured3.B anfi3.6 on paded 69 73 showed two types ofwpatder circuits,
the Vedral-Barenco-Ekert (VBE) carry-ripple adder[348{lahe Draper-Kutin-Rains-
Svore carry-lookahead addér [103]. The first, most obvidtferdnce between the
two is how “busy” the diagrams appear. The carry-ripple adti@ws that most of the
qubits sit idle during most of the computation, waiting foetcarry to ripple across the
circuit (and back, as a cleanup operation). The carry-lbekd adder is much denser,
accomplishing its work in fewer time steps by executing ngates in parallel.

The second most prominent visual difference is the spaneo#ttes (vertical line
segments). Carry-ripple adders operate only on qubitsatieahearby, while the carry-
lookahead adder leapfrogs long distances. This gives timg-gpple adderO(n) la-
tency, compared t®(logn) for the carry-lookahead — if long-distance gates are sup-
ported.

Figure[6.IB shows a fully optimized, concurrent, but othseunmodified version
of the VBE ADDER for three bits on a neighbor-only maching ¢ architecture). The
latency is

thDS = (20m — 15; 0)#(2; 3n + 1) (6.8)

or 45 gate times for the three-bit adder. A 128-bit adderhéite a latency of2545; 0).
The diagram shows a concurrency level of three, but simglesadent of execution
time slots can limit that to two for any, with no latency penalty.

Table[&1 lists recommendations for adders that match waitiechnologies. For
example, the Fourier adder[102] uses oflyspace, compared to tt3e of standard
carry-ripple adders [342, 85]. Unfortunately, it requiresoncurrent gates to achieve
the O(n) time bound when performing the quantum Fourier transforfTjQequired
to move numbers into and out of the Fourier representatiompared to concurrency
of 2 for carry-ripple. The Fourier adder also requires @ecbtations similar to those
in the QFT, which may be hard to implement accurately. Thelypeesigned CDKM
carry-ripple adder (Sectidn-3.4.2) uses oblyspace and small concurrency, making it
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Figure 6.13: Optimized, concurrent three bit VBE ADDER fbetTC architecture.
Numbers across the bottom are time steps.

technology adder conc. | latency
SiNMR carry-ripple 2 O(n)
solution NMR carry-ripple 2 O(n)
1-D quantum dot carry-ripple,| 2 orn O(n)
Fourier
1-D JJ charge | carry-ripple,| 2orn O(n)
Fourier
1-D Kane model| carry-ripple,| 2 orn O(n)
Fourier
scalable ion trap| carry- nor2n | O(logn)
lookahead,
conditional-
sum

Oskin lattice carry- nor2n | O(y/n)
lookahead,
conditional-
sum
all-optical carry- nor2n | O(logn)
lookahead,
conditional-
sum

Table 6.1: Qubit technologies and recommended choice oéraddonc., required
application-level concurrency
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now the preferred choice in many cades [88].

Likewise, some entries recommend both the conditional-anchcarry-lookahead
adders, which have almost identica(logn) latencies. A conditional-sum adder re-
guires more space and concurrency than carry-lookaheaseVso, it has different
locality characteristics which might make it map bettertiaraeegular architecture.

Irregular architectures, or those with regular but more glemlayouts, complicate
the analysis. In particular, the scalable ion trap has échitoncurrency, but the dis-
tance an ion must move may have a factor of two or more perfocsanpact, making
locality desirable. Although the design of such a systenoisyet advanced enough
to definitively choose between the two proposed types of sdddnaker et al. have
begun analyzing the performance of the carry-lookaheaéragia one proposed sys-
tem [324]. In their analysis, the carry-lookahead addemmnitéd in performance by
available application-level concurrency, leading us tggast that the CDKM carry-
ripple adder may provide similar performance while usingegequbits. For the two-
dimensional layout of the Kane lattice, an idéallogn) adder can reach latency of
only O(y/n) due to the communications cost of moving qubits.

For the Josephson-junction qubits, we recommend usingdistgnce inductive or
capacitive transfer structures only if concurrent operatican be preserved for at least
some qubits. Alternating cycles of a single long-distamteraction and many nearest-
neighbor interactions would be adequate. Designs in whitih some of the qubits
can transfer long distances while others execute condureamest-neighbor operations
seem physically plausible, and would result in intermedrformance, possibly us-
ing a carry-select or conditional-sum adder. Concreteoperdnce analysis will depend
on the details of such a heterogeneous architecture. Metidnas done some analysis
on such a structuré[341].

The common format of circuit diagram abstracts away theighykyout of qubits,
and for any layout other than linear nearest neighbor, givesvrong impression of
“nearby”. Therefore, we have begun animating the actionoofies circuits for more

complex topologies [331].

6.4.2 Acceleration

This section presents an engineering tradeoff analysiaraflelizing the multiplication
steps, an improved modulo arithmetic method, and a brietyaisaof the indirection
method of Sectioh @2, in the context of Shor’s algorithm.
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Concurrent Exponentiation

In Section:3.b, we discussed Cleve and Watrous’ method fi@lplzing multiplica-
tion, as shown in FigureZ3.7 on pdgd 78. kanultipliers,s < n, each multiplier must
combiner = |(2n + 1)/s] or r + 1 numbers, using — 1 or » multiplications (the
first number being simply set into the running product regjstwhere|z | indicates
the largest integer not larger than The intermediate results from the multipliers are
combined usinglog, s| quantum-quantum multiplication steps.

For a parallel version of VBE, the exact latency, includiages wheres # 2n+1,

Ry = 2r+1+[logy([(s —2n—1+rs)/4]
+2n+1—rs)] (6.9)

times the latency of our multiplier. For smallthis isO(n); for largers,

lim O(n/s + logs) = O(logn) (6.10)

S—n

Reducing the Cost of Modulo Operations

The VBE algorithm does a trial subtraction&fin each modulo addition block; if that
underflows,V is added back in to the total. This accounts for two of the fl@DER
blocks and much of the extra logic to compose a modulo adder |ast two of the five
blocks are required to undo the overflow bit.

Figure[@ 14 shows a more efficient modulo adder than VBE,bpaely on ideas
from BCDP and Gossett. It requires only three adder bloaksypared to five for VBE,
to do one modulo addition. The first adder addso our running sum. The second
conditionally add®" — 27 — N or 2" — 27, depending on the value of the overflow
bit, withoutaffecting the overflow bit, arranging it so that the third idd of 27 will
overflow and clear the overflow bit if necessary. The blockisfeal to by arrows are
the addend register, whose value is set depending on theotlmes. Figurd 6.714 uses
n fewer bits than VBE’s modulo arithmetic, as it does not regai register to holdv.

In a slightly different fashion, we can improve the perfonoa of VBE by adding
a number of qubitsy, to our result register, and postponing the modulo opearatidil
later. This works as long as we don’t allow the result registeoverflow; we have a
redundant representation of modwbovalues, but that is not a problem at this stage of



144 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

x>

10> 5 £ 5

°© e} °

kel I ke

[sum> 5] ©
loverflow>

Figure 6.14: More efficient modulo adder. The blocks withoars set the register
contents based on the value of the control line. The positidime black block indicates
the running sum in our output.

the computation.

The largest number that doesn’t overflow foextra qubits i2"*? — 1; the largest
number that doesn’t result in subtractior2is?~! — 1. We want to guarantee that we
always clear that high-order bit, so if we subtradt, the most iterations we can go be-
fore the next subtraction is The largest multiple ofV we can subtract ig2" 7! /N |.
Since2" ! < N < 27, the largesb we can allow is, in genera?~!. To performb
modular additions requirezh + 1 ADDER calls. For example, adding three qubits,
p = 3, allowsb = 4, reducing the 20 ADDER calls VBE uses for four additions to 9
ADDER calls, a 55% performance improvement.

We must us&p adder calls at the end of the calculation to perform our finadlato
operation. A grows larger, the cost of the adjustment at the end of theaulzdion
also grows and the additional gains are small. Calculatsoiggiest thap of up to 10
or 11 continues to improve in speed.

This approach almost eliminates the penalty for doing mmdtthmetic instead of
ordinary integer arithmetic. The number of calls to our adideck necessary to make
ann-bit modulo multiplier is reduced from the: in VBE to 3n using Figurd .14 to

RM == n(Zb + 1)/b (611)
for the overflow approach described in these last few paphgrahis last expression is

only slightly above two adder calls per modulo addition agsonable values 6f

Indirection

Adapting equatiof 819 to both indirection and concurrenitiplication, we have a total
latency for our circuit, in multiplier calls, of

Rr=2r+1+[logy([(s —2n—1+4+rs)/4] +2n+ 1 —rs)] (6.12)
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algo. adder modulo | indirect| s | space concurrency
cVBE VBE VBE N/A | 1 897 2
D CSUM(m =4) | p=11,b=1024 | w=2| 12| 11969| 126 x 12 = 1512
E QCLA | p=10,b=512 | w=2|16] 12657 | 128 x 16 = 2048
F CDKM | p=10,b=512 | w=4 20| 11077 20 x 2 =40
G CDKM fig 14| w=4| 1 660 2

Table 6.2: Parameters for our algorithms, chosen for 128 hihumber of independent
multiplier units.

wherer = |[(2n + 1)/w]/s].

6.4.3 Example: Exponentiating a 128-bit Number

In this section, we combine these techniques into complgteithms and examine the
performance of modular exponentiation of a 128-bit numb¥e. assume the primary
engineering constraint is the available number of qubitsSéctiol6.4]2 we showed
that using twice as much space can almost double our speshtiedly linearly until
the log term begins to kick in. Thus, in managing space trislethis will be our
standard: any technique that raises performance by moneatfector ofc in exchange
for ¢ times as much space will be used preferentially to paralldtiplication. Carry-
select adders (Selc._6.B.1) easily meet this criterion,gopérhaps six times faster for
less than twice the space.

Because we are interested in systems with some realisiitations, in this section
we have chosen to limit the space availablel®n qubits. This is a large enough
number to see the effects of parallelism, but small enouglonstrain the behavior of
the algorithm somewhat. In later sections, we will relaxs thpace restriction t&n?
qubits, the maximum number we have found to be useful.

Algorithm D uses100n space and our conditional-sum addesU M. Algorithm
E uses100n space and the carry-lookahead ad@erLA. AlgorithmsF andG use
the Cuccaro adder arid0» and minimal space, respectively. Parameters for these al-
gorithms are shown in Table®.2. We have included detailedons for concurrent
VBE andD below, and numeric results for all of the algorithms in T4BI&; the de-
tailed equations for the other algorithms are easily ddrivea similar fashion. The
performance ratios are based only on ¢t@\oOT gate count forac, and only on the
CNOT gate count foNTC.
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algo. AC NTC

gates| perf. gates| perf.
CVBE | (1.25 x 10%; 8.27 x 107; 0.00 x 10Y) 1.0 (8.32 x 108%; 0.00 x 10°) 1.0
D (2.19 x 10%; 2.57 x 10%; 1.67 x 10%) | 570 N/A | N/A
E (1.71 x 10%; 1.96 x 10%; 2.93 x 10%) | 727 N/A | N/A
F (7.84 x 10%; 1.30 x 10%; 4.10 x 10*) | 159 (4.11 x 10°%; 4.10 x 10%) | 203
G (1.50 x 107; 2.48 x 10%; 7.93 x 10°) | 8.3 (7.87 x 107; 7.93 x 10°) | 10.6

Table 6.3: Latency to factor a 128-bit number for varioushaectures and choices of
algorithm. Ac, abstract concurrent architectursTc neighbor-only, two-qubit gate,
concurrent architecture. perf, performance relative ta&\dBgorithm for that architec-
ture, based ocCcNOTs forAcandCNOTS for NTC.

Concurrent VBE

OnAc, the concurrent VBE ADDER i§3n — 3; 2n — 3; 0) = (381;253; 0) for 128 bits.
This is the value we use in the concurrent VBE line in Tablé &8s will serve as our
best baseline time for comparing the effectiveness of mastit algorithmic surgery.

The unmodified full VBE modular exponentiation algorithnonsists of20n? —
5n = 327040 ADDER calls plus minor additional logic. A 128-bit VBE addé&mom
Equatior6.B, will have a latency ¢2545; 0). This gives a total latency of

thTC = (20n* — 5n)th LS

= (400n® — 400n* + 75n; 0) (6.13)

for VBE.

Algorithm D

The overall structure of algorithd is similar to VBE, with our conditional-sum adders
instead of the VBE carry-ripple, and our improvements inrection and modulo. As
we do not consider CSUM to be a good candidate for an algofitihmtc, we evaluate
only for Ac. Algorithm D is the fastest algorithm for = 8 andn = 16. The total
latency is

tp = RiRy
X(tcsum + tara)

+3ptesum (6.14)
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Expanding the terms in this equation and letting= |[(2n + 1)/w]/s]|, the latency
and space requirements for algoritibrare

t5¢ = 2r + 1+ [logy([(s — 2n — 1 + rs) /4]
+2n+1—rs)|n(20+1)/b
x((2m + 4[logy(g — )] + 2 4;
4flogy(g — 1)1 +2) + (4 0; 4))
+3p(2m + 4[logy(g — 1)] + 2; 4;
4[logy(g — 1)] + 2) (6.15)

and

Sp = s(Scsum
42U 4 1+p+n)+2n+1
= s(Tn—=3m—-g+2"+p
+[3(g—1)/2 =2+ (n—m)/2])
+2n + 1. (6.16)

Algorithm E

Algorithm E uses the carry-lookahead adder QCLA in place of the comditisum
adder CSUM. Although CSUM is slightly faster than QCLA, itgrgficantly larger
space consumption means that in ®00» fixed-space analysis, we can fit in 16 mul-
tipliers using QCLA, compared to only 12 using CSUM, as lisie Table[6.2. This
allows the overall algorithri to be 28% faster thab for 128 bits.

Algorithms F and G

The CDKM carry-rippler adder has a latency(a@fn + 5; 0) for NTC. This is twice as
fast as the VBE adder. We use this in our algoritiirendG. Algorithm F usesl00n
space, whilds is our attempt to produce the fastest algorithm possibleemtinimum
amount of space.
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Figure 6.15: Execution time for our algorithms for spa6én on theAc architecture,
for varying value ofn.

Smaller n and Different Space

Figure[&Ib shows the execution times of our three fastgstighms forn from eight
to 128 bits. AlgorithmD, using CSUM, is the fastest for eight and 16 bits, wikle
using QCLA, is fastest for larger values. The latency of 1fof2, = 8 bits is 32 times
faster than concurrent VBE, achieved wiibv. = 480 qubits of space.

Figure[&1Ib shows the execution times for= 128 bits for various amounts of
available space. All of our algorithms have reached a minirby 240n space (roughly
1.9n2).

6.4.4 Asymptotic Behavior

The focus of this dissertation is the constant factors inuhardexponentiation for im-
portant problem sizes (up to a thousand bits or so) and aatbial characteristics.
However, let us look briefly at the asymptotic behavior of oircuit depth, which
will tell us about the behavior of systems on very large peoid. As we have men-
tioned before, the arbitrary-distanse model is not physically realistic for very large
systems; likewise, no one would propose carryWrig to its extreme and building a
one-dimensional line of a million or more qubits. Therefdlese expressions should
be treated as “not to exceed” upper and lower bounds.
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Figure 6.16: Execution time for our algorithms for 128 bitstbeAc architecture, for
varying multiples ofn space available.

In Sectiof &4, we showed that the latency of our complgtrighm is
O(n/s + log s) x (latency of multiplication) (6.17)

as we parallelize the multiplication usirgnmultiplier blocks. Our multiplication algo-
rithm is still
O(n) x (latency of addition) (6.18)

AlgorithmsD andE both use arO(log n)-depth adder. Combining equatidns®.17
and&.IB with the adder cost, we have asymptotic circuittdept

tA¢ = 4% = O((nlogn)(n/s + log s)) (6.19)

for algorithmsD andE. As s — n, these approact(nlog® n) and space consumed
approache® (n?).
Algorithm F uses arO(n) adder, whose asymptotic behavior is the same on both

AC andNTc, giving

t2¢ = t8T¢ = O((n®)(n/s + log s)) (6.20)
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approaching)(n?log n) as space consumed approactiés?).

These results compare favorably to the asymptotic behafic?(n*) for VBE,
BCDP, and algorithnt, each of which use®(n) space. The asymptotic behavior of
these three algorithms is independent of whether the authite isAC or NTC.

The ultimate limit of performance foxc will be achieved using a Gossett carry-
save multiplier and large. The carry-save multiplier consumésn?) space. Gossett
has shown that the latency of a carry-save multiplier will(b@ogn), using a tree
structure to combine partial results, and the latency oétitee modular exponentiation
algorithm will beO(n log n). Parallelizing the multiplication raises the space cornstdim
to O(n*) and reduces the latency @(log® ). The requirement fon? qubits quickly
moves into the billions as nears one thousand, and into the trillionsnasears ten
thousand; none of the proposed technologies we know oflaety lio reach such levels
of scalability, though it is possible that nanotechnologlyf @ventually reach levels in
which large numbers of individual atoms in bulk materiaks eontrollable.

For physically realizable systems, as we noted in Se€fid@3an adder will ulti-
mately be limited ta)(/n) whenO(n) qubits are packed in three-dimensional space,
because all signal propagation methods are limited to katim distance, and are
subject to the final limit of the speed of light. The completedular exponentiation al-
gorithm, usingD(n?) adders calls, is therefore limited @(n?¢/n) = O(n"/?) latency
when usingO(n) qubits and a nominally)(logn) adder. When using@(n?) qubits,
the performance limit i€)(n°/?). When usingO(n?) qubits, the distance across the
entire ensemble i©(n), and this turns out to be the limit of our performance, too.

Thus, we can say that modular exponentiation is ultimateiitéd toO(n) perfor-
mance, where is limited only by the size (and age) of the Universe and ttaéialvility
of matter (or energy) to implement the qubits.

6.4.5 Results

In this section, we extend our results by expanding the qggate available, and, at
last, bringing clock speed into the picture. On fwearchitecture, our algorithms have
shown a speed-up factor ranging from 4,000 times for factpa 576-bit number to
nearly one million for a 100,000-bit number, when usiri§n space. This is about
fifteen times the space consumption of the original VBE atgor, at7n, and twenty
times the space of BCDP, &t. Using BCDP as our baseline, we compare Ehand

F algorithms, withD being the fastest algorithm axt andF being the fastest orTC.



6.4. MONOLITHIC SHOR PERFORMANCE 151

-1 billion years

-1 million years

-1 thousand years
-100 years
r10years

oneyear .-
one month-~

-one day
-one hour

Time to Factor an n-bit Number

-100 S(a_ggnds"""- .

[onesecond /

100 1000 10000 100000
n (bits)

Figure 6.17: Scaling of number field sieve (NFS) and Shogewthms for factoring,
using faster modular exponentiation algorithms anéispace.

The values reported here for both algorithms are calculasauy2n? qubits of storage
to exponentiate an-bit number, the largest number of qubits our algorithms efan
fectively use. AlgorithnD with 2n? qubits onAc is 13,000 times faster than BCDP at
factoring a 576-bit number, and one million times fasterdd;,000 bit number. Algo-
rithm F onNTC, by contrast, is only about 1,000 times faster than BCDPabfang a
6,000-bit number. For very large the latency oD is ~ 9n log3(n). The latency ofF

is ~ 20n? log,(n).

Figure[&1V updates the performance shown in Figurd 6.12age[3D, adding
our fastest algorithms. We have kept the 1 Hz and 1 MHz line8@DP, and added
matching lines for our fastest algorithms on the andNTC architectures at the same
clock speeds. These speeds are, of course, logical cloeklspafter accounting for the
overhead of fault tolerance and QEC. The clock speed is fibolfgates for BCDP and
D, and for two-qubit gates fdf. For Ac, our algorithmD requires a clock rate of only
about 0.3 Hz to factor a 576-bit number in one month. ¥oc, using our algorithnt-,

a clock rate of around 27 Hz is necessary.
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adder K Q KQ
VBE carry-ripple | 3n 3n 9n?
CDKM carry-ripple | 2n 2n 4n?

conditional-sum 6n | 4logyn | 24nlogyn
carry-lookahead | 4n | 4log,n | 16nlog, n

Table 6.4: Approximate{ () to add twon-qubit numbers using some different adder
circuits, in units of qubit-Toffoli times.

6.4.6 Error Correction Needs

We saw in SectiofRZ.3.1 that we can estimate the requiredgitr@f error correction,
roughly, by calculating< ), whereK is the number of qubits an@ is the number of
time steps K Q) represents the number of QEC cycles that must be performedgh-
out the entire system during the course of the complete ctatipo. This approach is
predicated on the observation that QEC consumes such agargentage of the total
operations in the system that the effects of the logicalggate unimportant for this
analysis. Steane’s analysis tre&t§) somewhat abstractly; here we show thavaries
over the course of the execution of an algorithm308].

A carry-ripple adder to add twe-qubit numbers, whether VBE or CDKM, uses
O(n) qubits and take®(n) time steps, giving & Q = O(n?). The carry-lookahead
and conditional-sum adders likewise usén) qubits, but run inO(logn) time steps,
for KQ = O(nlogn). Table[&2 shows approximate valuesrof) for the different
adders. Fom = 1,024, K@ is about four million for the CDKM adder, but only
160,000 for the conditional-sum adder, a factor of twentg faetter. Of course, this
analysis assumes th architecture’s support for long-distance gates. Thus, eee s
that not only doesc have a better error threshold, but the demands of the afiphca
are lower. This factor will result in higher-fidelity cal@tlons, or possibly even a
reduction in the necessary strength of QEC, saving spacgraad

In all of our proposed algorithms, modular multiplicatioonsists ofO(n) calls to
the adder routine, giving(@Q = O(n?) for a multiplication when using carry-ripple
adders and<Q = O(n?logn) when using log-depth adders. We have also proposed
parallelizing multiplication using the Cleve-Watrous ima&d. In its broadest form, as
in Figure[&IB, it uses multiplier units and require®g, n steps. This may appear
to result in K@ beingn log, n times theK () of a multiplication, which would be an
increase of a factdog, n over a simple linear string of multiplications. Howevereth
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Figure 6.18: Cleve-Watrous parallel multiplication (et ninety degrees relative to
other graphs, with time flowing bottom to top). Gray areagesent disentangled,
unused qubits.

gray areas in the figure adésentangled from the running computation. They do not af-
fect the results, and should not be counted inih@ for the overall computation. (The
unused resources ideally shouldn’t go to waste, but thadiéferent problem.) Thus,
regardless of the arrangement of the multipliers, the t&@lfor modular exponentia-
tion is 2n times the cost of a multiplier, or, when using the indirectid Section§6.412
and[&2,2] = 2[n/w] times the cost of a multiplier. The one minor complication is
that our parallel multiplications keep only a single copy«f rather than one for each
multiplier unit. For algorithm®, E, F, andG, we ignore the cost of thi) register
in the table, it being small compared to the overall size efdfistem; for small values
of s this approximation is not good, but the result is still witki0% or so at worst.
Recognizing from Equatidn 6111 that even for modest valfiésthe number of adder
calls Ry, to make a modulo multiplier is- 2n, we can simplify our expressions for
K@ and arrive at the values in Tallle16.5. The terms in the exjpres the table are,
in order, number of modulo multiplier calls; number of manlatder calls per modulo
multiplier; adder calls per modulo adder; adder depth; arsttdrder term in number
of qubits. Our algorithn© is an order of magnitude better than VBE, dhd almost
two orders of magnitude better, on tR@c architecture. Fonc, we can usé and
E for further gains. The asymptotic growth is substantialbner; numerically, for
n = 1,024, for VBE KQ ~ 2 x 10!, andE is ~ 2.4 x 10!, almost three orders of
magnitude better. All of these values are for indirectioadf®n[6.2) usingy = 2 to
w = 4, as shown in TableZ8.2; an additional factor of 4 or more seguite plausi-
ble, as shown in Figulle 8.7 on pagell31, when error correbgomes an overriding
concern.

Steane calculated that, for a physical gate error rate ®6—° and a memory error
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algorithm KQ

cVBE 2n x n x5 x 3n x Tn = 210n?
algo.D | 21 x n x 2 x 4logyn X 5n = 40n3log, n
algo.E 20 x n x 2 x 4logyn x 3n =~ 24n3log, n
algo.F 2l x n X 2 X 2n x 3n ~ 6n*
algo.G 2l X n X 3 X 2n X 6n ~ 18n*

Table 6.5: Approximatés () for our complete modular exponentiation circuits, in units
of qubit-Toffoli times.

rate of~ 10~¢ on anAc-like architecture X Q of 10> can be achieved using only about
a factor of twelve increase in storage, via the BCH [[12718],code [3083.

6.5 Summary

This chapter opened with a discussion of the performancehof’'Salgorithm on a
quantum computer, showing in Figure d.12 that logical clspked has an important
impact on the utility of a quantum computer, despite the eguagains in computa-
tional class compared to classical computers. This factt&ainder-appreciated by
physicists, who tend to assume that the gain in class willgpd®cisive.

It is possible to significantly accelerate quantum modulgoo@entiation using a
stable of techniques, culminating in the much-improvedquarance shown in Fig-
ure[@&TF. | have provided exact gate counts, rather than @syim behavior, for the
n = 128 case, showing algorithms that are faster by a factor of 20 depending
on architectural features, whean0n qubits of storage are available. For= 1024,
this advantage grows to more than a factor of 5,000 for noghi®r machinesAc).
Neighbor-only {TCc) machines can run algorithms such as additio®{m) time at
best, when non-neighbor machines) can achievé) (logn) performance.

Our contribution has focused on parallelizing executiothef arithmetic through
improved adders, concurrent gate execution, and ovegati#thmic structure. We have
also made improvements that resulted in the reduction ofeazperations, and traded
some classical for quantum computation to reduce the nuoflsgrantum operations.
It seems likely that further improvements can be found ina¥erall structure and by
more closely examining the construction of multipliersnir@adders[[109]. We also
intend to pursue multipliers built from hybrid carry-saddars.

2Steane uses extra ancillae for measurement and fault hokeraesulting in a total consumption of
~ 4n physical qubits to storg logical qubits in an [f,k,d]] code.



6.5. SUMMARY 155

The three factors which most heavily influence performarfaaadular exponen-
tiation are, in order, concurrency, the availability ojamumbers of application-level
gubits, and the topology of the interconnection betweentguhlVithout concurrency,
it is of course impossible to parallelize the execution of algorithm. Our algorithms
can use up tev 2n? application-level qubits to execute the multiplicationspiaral-
lel, executingO(n) multiplications inO(logn) time steps. Finally, if any two qubits
can be operands to a quantum gate, regardless of locat@prapagation of informa-
tion about the carry allows an addition to be complete®{ivg n) time steps instead
of O(n). We expect that these three factors will influence the perémrce of other
algorithms in similar fashion.

As we alluded to in Section 6.4.1, not all physically redieaarchitectures map
cleanly to one of our models. A full two-dimensional mesh;tsas neutral atoms in
an optical lattice[[56], and a loose trellis topolo@y [256ppably fall betweemc and
NTC. The behavior of the scalable ion trap [170] is not immedyatéear, but will be
controlled by ion movement times and realizable concugrenc

In this chapter, we have analyzed the performance of the fapdxponentiation
step of Shor’s factoring algorithm for some abstract aetitral models, and shown
how to dramatically improve that performance. Dependingh@npost-quantum error
correction, application-level effective clock rate for @esific technology, choice of
exponentiation algorithm may be the difference betweerrdiofi computation time
and weeks, or between seconds and hours. This differenteninfeeds back into the
system requirements for the necessary strength of errcgatan and coherence time.
The next chapter will develop a design for a machine we agllantum multicomputer
designed to run Shor’s algorithm in a distributed fashiom show optimized forms of
arithmetic to run on it.



Chapter 7

The Quantum Multicomputer

7.1 System Overview

The scientist describes what is; the engineer creates what never
was.

Theodore Von K arman

Music is your own experience, your own thoughts, your wisdom.
If you don't live it, it won’t come out of your horn. They teach you
there’s a boundary line to music. But, man, there’s no boundary line
to art.

Charlie Parker

Plan to throw one away. You will do that, anyway. Your only
choice is whether to try to sell the throwaway to customers.

Frederick P. Brooks

At long last, we reach the objective of our pilgrimage: theige and analysis of a
distributed quantum computer, quantum multicomputerA multicomputer is a con-
strained form of distributed systerm [24]. It is composed ofies, each of which is
an independent quantum computer, and an interconnect netfdinks connecting
the nodes. As we noted in Sectibn212.7, distributed quartomputation requires
shared entanglement; in Yepez’'s terminology, our quanturtticomputer is a type |
system|[356]. The network is used to create EPR pairs shat@kebn pairs of nodes,

156
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and those EPR pairs are then used to teleport qubits (ta)ediatjuantum gates (tele-
gate). Our goal with such a system is to increase botlstin@geandperformanceof
the total system well beyond what a single, monolithic quantomputer is capable
of; we want our multicomputer to b&calable This chapter provides an overview of
the entire system, including the node and network hardwadesaftware. The first
section will justify our decision to explore distributedaguum computer architectures.
Succeeding sections will go into more detail on the impacfuzintum error correction
and finally a performance analysis of adder circuits run arsgstem.

7.2 An Engineer’s Definition of Scalability

What will constrain our ability to build a quantum computs)gstem as large as we care
to attempt? In this section, we discuss the practical aspecicaling up the size (in
qubits) of a quantum computer. We also reason that techiwalldgnitations on most
proposed technologies make it necessary to plan to useateuttiachines to solve large
problems, laying the foundation for our quantum multiconepwork.

Chuang has defined scalability to mean that the combinafitauti tolerant meth-
ods and a particular technology, including its base errt#, nameet the threshold cri-
terion. Combinations that meet this criterion are scalatblese that do not, are not.
However, the term “scalable” has different meanings inedlédht contexts. | am in-
terested in building a complete, practical quantum conmgusiystem. In this context,
Chuang’s definition is a necessary, but not sufficient, domdi Instead, | offer the
following, broader but less formal, definition.

Above all, it must be possible, physically and economigatlygrow
the systenthrough the region of interest. Addition of physical resms
must raise the performance of the system by a useful amaural{(impor-
tant metrics of performance, such as calculation speedragt capacity),
without excessive increases in negative features (eidarobability).

This definition refers to several important criteria, sumiziag our taxonomy from
Chaptei}. It also points out that scalability is never indediin the real world; there
are always limits, and we must begin by deciding what thosédiare. No one would
say that a system that costs a hundred thousand dollars p#raguhat covers an
optical lab bench for each gate is scalable in any practe@de. Thus, good engineers
say, “This scales to...” and name a level, metric, and whidtgfahe system constrains
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the scalability. (Better engineers tell you why, and grewgieeers find a way around
the limitations.) In this section, we provide a qualitativek at some of these issues.

7.2.1 Economics

My estimate of the price at which the first production quanttomputer will be sold
is four hundred U.S. dollars per qubit. The definition of “guation” in this case is a
machine that is bought and installed for the purpose of sglweal problems. That is,
it has to solve a problem for which there is not a comparalalssital solution.

To arrive at this estimate, | assume that the machine will li& t run Shor’s
factoring algorithm on a 1,024-bit number. That takes afivetkilobits of application-
level qubit space; we will multiply by fifty to support two lels of QEC. This gives a
total requirement of a quarter of a million physical qubits.

One hundred million U.S. dollars is a reasonable price foraghime with unique
capabilities. The U.S. government clearly spends that nonatluster supercomputers
today. BlueGene, for example, built by IBM, has 131,072 pssors (65,536 dual-core
chips). Counting packaging, power, cooling, memory, gferaand networking, the
price of such a system undoubtedly exceeds a thousand gipkarprocessor (all of
these prices are ignoring physical plant, including thédbog).

Our price point, then, i§100M /250K qubits = $400/qubit. This estimate might
easily be one or two orders of magnitude high or low; othetiegfions, such as phys-
ical simulations, may require fewer qubits for a productioachine (indeed, one esti-
mate is that as few as 30 qubits might be enough to be usef)| (#3a high error rate
may demand more error correction and more physical qubits.

The dollar cost is a real-world constraint that must be Batisa large system will
not get built until it justifies itself economically.

7.2.2 Infrastructure Needs

Each technology has its own physical infrastructure regnents. Packaging, cool-
ing, and housing a semiconductor-based quantum computebeaon-trivial. Even
though a quantum computer manipulates individual quah&space, power, thermal,
and helium budgets for such a system are large. In SECTioB, 4v& discussed the size
and cooling capacity of dilution refrigerators; this wikk lone limit on the number of
gubits we can support in each such dil fridge. For our quamtwiticomputer, we plan
to connect many dil fridges together into a complete systéfa.will call a setup of
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a dil fridge and the electronics to support the qubits insidpod”. We will examine
what constitutes a “node” in our multicomputer in Secfiaf. 7.

Thermal engineering and packaging are serious problengedtio_Z.31R, we will
discuss this issue; here we assert that this issue will lisiib only a few logical qubits
per pod, which in turn requires us to have a large number of pedr the moment, we
assume one node per pod, and again set our target at a mamhiaetdéring a 1,024-bit
number. We must have clearance around the dil fridge foratpes and rack-mount
equipment to move equipment down the aisles. Quite a bitatesgpower, and money
are required for each such setup. If each pod requires antfaemmeters square, we
need an area approximately 100 meters by 100 meters for@aimachine, a large but
certainly achievable amount of floor space. However, grgvan order of magnitude
beyond this size seems impractical.

With dilution refrigerator prices of about $100,000 per pode thousand dil fridges
would consume our entire budget, leaving no money for supglectronics or the
qubits themselves. This clearly shows that thermal engimgeand packaging will
be key issues in building large-scale production systensedan quantum dot or
Josephson-junction devices; we need to fit more than oneintmleach pod, or more
gubits into each node.

This linear extrapolation from the current state of reseascunlikely to be the
way production systems will really be bufit However, this brief discussion should
illustrate the problems that must be solved. Without sohgj we do not have a system
that scales to reach our desired performance target.

7.2.3 Performance

We introduced performance as an issue in quantum compugiok in Chaptefl3. A
system running a®(n?) algorithm that requires a year to solve a problem of size
is unlikely to be considered a viable choice to solve a proldé size10n, even if the
hardware can be scaled to an appropriate level, as therewrsdiutions for which
funders and researchers are willing to wait 1,000 years.

Lt's also worth noting that NMR, ion trap, optical latticenchatom chip systems would require a
completely different analysis.
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7.2.4 Single-Device Physical Limitations

Before accepting the need to build a quantum multicompwershould look at the
scalability of a single, large, monolithic machine. Tha&eal. estimated the size of an
ion trap system to factor a 1,024-bit number to be about & tefra square meter of ion
traps [324]; a single device of this scale is difficult to cioast and operate, suggesting
that smaller devices interconnected via teleportatiomobks will be required.

We are most interested in VLSI-based qubits. In particlgais look at the super-
conducting Josephson-junction flux qubit from Dr. Sembedsig at NTT [194]. Their
qubitis aloop about L@m square. This area is determined by the desired physics of th
device, not limited by achievable VLSI feature size; thesizthe loop determines the
size of the flux quantum, which in turn determines contrajjfrencies and gate speed.
Dr. Semba’s group is working on connecting qubits via an LElagor which includes
an on-chip capacitof[160].

Once they have demonstrated interconnection among neutjibits connected to
the bus, will that meet DiVincenzo’s criterion for a scakabkt of qubits? In this case,
we are looking for up to a quarter of a million physical qubitat first glance, it
would seem easy to fit that many qubits on a chip. Even a smaihi@quare chip
would fit a million 10-micron square structures. Howeveagtthstimate ignores the
need for 1/0O pads. Equally important, the capacitor in thecirCuit is huge compared
to a qubit (though only one of those is required per bus thaheots a modest-sized
group of qubits, and it may be possible to build the capagitasome more space-
efficient manner, or maybe even put it off-chip). Still moneportant, these qubits
are magnetic, not charge; place them too close togethertramydl interfere. The
strength of the interaction could be a problem if the qubiésanly a micron apart, but
at 1Qum spacing, the interaction drops to order of kHz, low enougtiteworry about
much [293]. Control is achieved with a microwave line runtghs qubit; obviously,
this line cannot run that too close to other qubits. Thusietl®a lot of physics to be
done even before the mundane engineering of floor-plan#ibgve, we discussed the
need for control lines to move into/out of the dil fridge, sstng the thermal boundary.
The 1/0O requirement applies directly to the chip, as wellymee need roughly a pin per
qubit. Without major advances in integration or some forrmadtiplexing of control,
we are probably limited to about a thousand qubits per chipply because of the
required pin count, and each pin will conduct heat into thip,caffecting our overall
thermal budget.
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With an estimated limit to the number of qubits of two ordersnagnitude or more
below our total system requirements, we see the need to cormétiple nodes to-
gether into a quantum multicomputer. We need to create amgleid state that crosses
node boundaries. The quantum I/O mechanisms discussedaipt&hll therefore be-
come critical. Having a quantum I/0O mechanism allows usittuchvent one entire set
of scalability constraints. The governing constraintsliey to be overall ability to
suppress errors, performance, or cost.

7.3 System Overview

7.3.1 Hardware Overview

We constrain all parts of the system to be geographicallipcated. Short travel dis-
tances (up to a few tens of meters) between nodes reduceyasamplify coordinated
control of the system, and increase signal fidelity and redasses, freeing us from
the need to consider placing quantum repeatfers [57] in theonke. We may wish,
however, to use hardware proposed for quantum repeaters &scal node and inter-
connect technologies [71].

Figure[I.2 on page10 showed the quantum multicomputertaothie at a high
level. Here we deal only with the quantum network and the sbifeeraction with
it. We choose a regular network topology, assume a dedicegdork environment,
and set a goal of scalability to thousands of nodes. The deimetwork assumption
allows us to ignore security and contention for resourcg®ibe the instructions we
schedule, and to assume in-order delivery of data. The fimdgbe directly connected
between a pair of nodes, connected to a shared network mediswitched at some
lower physical level. Although the QEP protocol in theorypgarts EPR pair creation
over many kilometers, our design goal is a scalable quantmpater in one location
(such as a single lab). We consider a 10 nanosecond classioahunication latency,
corresponding roughly to 2 meters’ distance between notles.performance figures
found are insensitive to this number. The links in the moktiputer are serial; Sec-
tion[Z.4 shows that parallel links would have only a modegtdot on performance and
reliability, so we choose to avoid the additional comphgxit

We concentrate on a homogeneous node technology basedidsstadé qubits,
with a qubus interconnect, though our results apply to dégdnany choice of node
and interconnect technologies, such as ion-trap nodesiagt photon-based qubit
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transfer interconnect§ [31d, 346, 222]. Each node has mabigsqwhich are private
to the node, and a few transceiver qubits that can commenva#t the outside world.
Node size is limited by the number of elements that can maltyi be built into a
single device, considering control structures, exterigalaing, packaging, cooling,
and shielding constraints.

One or more nodes will be placed inside a dilution refrigaradr dil fridge. Var-
ious rack-mount signal generators and measurement deciessical computing and
control equipment, etc. must accompany each node. We Wlibeeh a setup a “pod”.
For the moment, we assume one node per pod. The exact numbeded and qubits
that can be placed in a pod will depend on volume, heat extracand the cabling
that must cross temperature boundaries. This is pertmaggimary driver of system
economics. A dil fridge includes multiple temperature sg@nd different parts of the
system will be held at different levels. The innermost, ikeéllvin fridge can dissipate
only a few hundred microwatts. Unless the extraction ratthefdil fridge is raised
substantially, each transmission line crossing the irgraperature boundary is limited
to about a microwatt of thermal load, even if the device ftdmsipates no energy.

Finally, economics must be considered. To be able to scalsyhtem to 1,024
nodes, we cannot exceed about US$100,000 per node, alrhofkivdiich will be con-
sumed by the dil fridge if we have only one node per pod. Bogt and floor space can
be reduced if more than one node can be fit into a pod, but daybtiquadrupling the
number of coaxes and the heat budget is a daunting propositian already extremely
aggressive engineering challenge. However, some resgarichve begun working on
these problems and expect to make dramatic improvementswilMgee in this and
succeeding sections that such progress is necessary tatneaggstem viable.

These assumptions of a regular network topology and honemgesmodes will cer-
tainly hold for the first, small-scale systems that will beltoiHowever, as the size of
systems and our experience with them grow, it is quite likieit a multi-stage network
composed of heterogeneous nodes will come to be the comracngpted architec-
ture.

7.3.2 Node Architecture

The basic architectural principles described in this dissien are largely independent
of the technology on which the nodes are built. A node builasemiconducting or
superconducting base technology serves as a useful modeldtuating performance.
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Technology-Independent Characteristics

First, let us examine the roles each node must fulfill, relgasdof the implementation:

e Each node mustinclude enough physical qubits to represeeta logical qubits,
once error correction is taken into account (we will vary expectation of the
exact number in later section). The qubits must meet Di\iimoés criteria, in-
cluding adequately fast and accurate gates and measugement

e Each node must support one or mor@nsceiver qubitshat can connect to the
qubus. Because links are serial, only one transceiver gebiink is required.

e Qubus operations must be fast enough, relative to memorygatedtimes, and
high enough fidelity that state transfer of logical qubitp@ssible, and basic
performance constraints are met.

e The technology and node implementation, including suppgequipment, must
meet the physical, economic and operational constraiattiited in Sectiof 7]12.

Expanding on the first criterion, if we assume, for the momémit each node
contains three application-level qubits per node, and w®us level of Steane [[7,1,3]]
code and one level of [[23,1,7]] code, then each node mugacoabout 500 physical
qubits?.

Hardware Constraints

Solid-state qubits, including both semiconducting quantiot and superconducting
Josephson junction-based devices, are operationalliedgatg due to the millikelvin
temperatures required and the large number of sources ohdesnce. However, they
are very attractive for two reasons: among experimentaiyaaced technologies, they
are the fastest, with gate times in the low nanoseconds,evsiad decades’ collective
experience with semiconductor design and fabrication akpossible that physi-
cal scalability will come more easily to these technologiem some others, once the
fundamental hurdles of coherence and manipulation areéetdlealosephson junction-
based devices may also support node-internal intercasinesing various forms of

2This estimate ignores Steane’s multiplier for multiplencorrent QEC syndrome extraction, which
would raise the number by a factor of four or so. This factqratels on the cycle time of a measurement
device, which will be different for solid-state systemsrtlian traps.



164 CHAPTER 7. THE QUANTUM MULTICOMPUTER

resonators, that will transfer qubits long distances ankieniaem algorithmically more
efficient.

In general, a node will be a single chip, with off-chip quantcommunication per-
formed using the qubus protocol and teleportation. Moreipedy, a node consists of
the set of qubits that are under unified control and clockargl that can interact di-
rectly either as neighbors or using resonator-based mreexts. If the communication
between two qubits must be mediated by an EPR pair created tie qubus protocol,
those two qubits will be said to be in different nodes. Sonre\ware implementations
may make the boundary of a node fuzzier, using teleportati@mnally [324)255] or
other methods externally, but we will use these simplify@sgumptions.

Each qubit requires certain control structures and linesegally, two to five signals
each, including bias voltage, gate signals, measuremefitade and qubit-qubit or
gubit-resonator coupling control. Some of these signatsbeashared among a small
group of qubits, potentially allowing an average of one to tsignals per qubit. If
the control structures remain off-chip, as is common to@agh signal requires an
I/O pad and a line to the outside. For the chip package, ballayray packages of
more than 2,000 pins exist, and the maximum number of packaggeis predicted
to reach 7,000 by the year 2016 ]110]. At 250 qubits per cliipnf we may not be
pin-limited, though the I/O pads will still demand substahdlie space. For a thousand
gubits or more, once system demands such as ground plarareimet, it seems likely
that packaging constraints will come into play. The engimgechallenges of a bus
consisting of several thousand microcoaxial cables seitalyeach external equipment
are also large. These pedestrian engineering issues stigaEew-level qubit control
must reside inside the dil fridge. A node may consist of saveice in a multi-chip
module, or the control structures may be integrated dirdotb the chip. On-chip
demultiplexers may reduce the width of the bus to the outsided, at the price of
leaving qubits to fend for themselves for long periods oftias control is multiplexed
among a group of qubits.

This linear extrapolation from the current state of redegnmtotypes should be
viewed as a strawman proposal demonstrating the range shipramplementation
problems that must be solved to build production systenmberghan an actual pro-
posal to implement. It is clear that, in addition to eleattiand VLSI engineers for the
chip itself, packaging, thermal, and cabling engineersiaesled to create a production
system.
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7.3.3 Network Topologies

For our proposed multicomputer, we have analyzed five nétvogologies, as shown
in Figure[Z1 and described in Talfle]l7.1, where the “labeltimm corresponds to the
label in the figure. The bus, line, and fully connected togae were shown in Sec-
tion[5.3. To these we have added the 2bus and 2fully topdotyiehe 2bus and 2fully
topologies, each node is connected to two separate netwdtks set of topologies
explores whether the bottleneck in performance is the nétvtself, or the ability to
move data into and out of the nodes. The network switchingeitgs are integrated di-
rectly into the computational nodes, except for the poksilaif physical-layer switch-
ing in the fully-connected networks. There are no storefandard routers or other
intelligent elements in the network.

For the shared bus, all nodes are connected to a single byswAmodes may use
the bus to communicate, but it supports only a single trdisaat a time. In the line
topology, each node uses two transceiver qubits, one tceobhmits left-hand neighbor
and one to connect to its right-hand neighbor. Each link agesrindependently, and
all links can be utilized at the same time, depending on tgerahm. For the fully-
connected network, a full set of links creating a true fudgnnected network would
requiren — 1 transceiver qubits at each node; obviously this number psactical. We
assume that each node has only a single transceiver quibihanit can connect to any
other node without penalty via some form of classical, swgttnetwork such as a mi-
cromirror devicel[16]. Each transceiver qubit can be inedlin only one transaction at
a time. 2bus and 2fully utilize two transceiver qubits ped@dor concurrent transfers.

The effective topology may be different from the physicaddtogy, depending on
the details of a bus transaction. For example, even if theiphl/topology is a bus,
the system may behave as if it is fully connected if the astiaternal to a node to
complete a bus transaction are much longer than the aetiati the bus itself, allowing
the bus to be reallocated quickly to another transactiome3echnologies may support
frequency division multiplexing on the bus, allowing mpl& concurrent transactions.

7.3.4 Software

Previous chapters have discussed the entire quantum medplanentiation that forms
the most computationally intensive portion of Shor’s faictg algorithm, but here we
will concentrate on the adder algorithms that are the catbraetic routines. Sec-
tion[Z3 evaluates the VBE (S&€c.3]4/2)[B42] and CDKM caipyple adders (SeE_3.3.2)
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Figure 7.1: The five physical topologies analyzed in thisite

label | name | degree| diameter| avg. dist. | bisection total

a bus 1 1 1 1 1

b 2bus 2 1 1 2 2

c line 2 n—1 | (n+1)/3 1 n—1

d fully 1 1 1 n—1 | nn-1)/2
e 2fully 2 1 1 2(n—1) | n(n—1)

Table 7.1: Characteristics of our five network topologies.
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Node hardware: ~ 500 physical qubits
2 transceiver qubits

QEC: [[23,1,7]]+[[7,1,3]]°
logical capacity: 3 qubits
Network: Linear

serial links

adder algorithm: CDKM carry-ripple

Table 7.2: Summary of the strawman system proposal.

[88], and the carry-lookahead adder (§ec.3.4.3)I[103].

As in general-purpose classical multicomputers, distidioLof software functional-
ity and synchronization primitives are important for botmrectness and performance.
In the quantum multicomputer, the distribution of functdity is at the level of a few
gates, simplifying the synchronization problem; we neetlaomcern ourselves with
interrupt handlers and packet headers and the like. Alth@agh node executes in-
structions (gates) independently on its qubits, overafirdmation requires that the
nodes are in sync to within a fraction of a gate, or on the oofierfew nanoseconds.
This level of synchronization can only be achieved throughreal-time classical net-
work. Small amounts of asynchrony must be tolerated as gedjman delays between
nodes are significant compared to the clock cycle time farviddal gates.

Finally, although only application algorithms are preselitere, it is interesting to
note that Magniez et al. have already discussed a boot-tiraetgm self-test[217].

7.3.5 Summary

We have already tipped our hand on one critical archite¢tsge: the choice of serial
links. This decision will be justified in the next sectionpmd) with analysis showing
that the [[23,1,7]] Steane code is the preferred bottoretlguantum error correction
code. The following chapter will show that CDKM is the pretst adder circuit, and
that two-transceiver nodes with about 500 physical qulnitsalinear network will be
adequate to scale systems up to hundreds of nodes.[TablenTi2asizes our strawman
system proposal. Details of clock speed and the node-@iténterconnect are not
specified because they are subject to technological dewelop

The theme of the next two sections is the optimization of dilgms that require
qubits stored in separate nodes to interact. The engirgeehioice of performing gates
via teleportation, as discussed in 9ec. %.2.2, or telampdata first, then executing the
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desired gates locally (Sdc.5P.1), is examined. We willtkatteledata generally out-
performs telegate for both QEC (in Sectlonl7.4) and adder#hgns (in Sectio 715).

7.4 Distributed QEC and Bus Design

We now take up the question of how to perform quantum errarection (QEC) in
our quantum multicomputer. We show that it is possible tacate QEC on a logical
state where the physical qubits that make up a QEC code blecttistributed across
multiple nodes. We must also determine how to utilize QECdst Iprotect logical
states as they are teleported from one node to another, astiowethat the simplest
approach is best.

The performance of error correction influences an importantiware design de-
cision: should our network links be serial or parallel? \Wguar that the difference
in both reliability and performance is likely to be smallsaming that the reliability
of teleportation is less than that of quantum memory andteiaportation times are
reasonable compared to the cycle time of locally-execute@ Q

Teleportation, as we saw in Chapfér 5, is composed of EPRcpaation, local
gates, measurements, and classical communication, andiserequires high-fidelity
memory. Until we take up the issue of link design in Secfiahd,.we will assume that
local gates, memory, and measurements are perfect, orsatnteech better than EPR
pair creation. Therefore, when we talk about limits on thkifa rate of teleportation,
we are really referring to the quality of the EPR pair. Thelqpaan be improved via
purification, which has a cost logarithmic in the startin@hity; in this dissertation, we
will not pursue further the best way to achieve EPR pairs efrtecessary quality. We
denote the failure probability of a single teleportatiorpas

First, let us briefly consider the failure probability assngno error correction on
our qubits. The probability of success of the entire comjparta then, rests on the
success ofll of the individual teleportation operations. dfis the total number of
teleportations we must execute for the complete computatior success probability

ps = (1 —pt)t =1- (i)pt + (;) (_pt)2 el —ipy (7.1)

for smallp;. Our failure probability grows linearly with the number @leportations
we must execute, requiring. < 1/t. Obviously, we need to do better than that,
so we quickly conclude that error correction on the logi¢ates being transferred is
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length | teleportationst)
16 14000-125000
128 8 x 10°-108
1024 | 4 x 10°—6 x 10

Table 7.3: Number of teleportations necessary to execettuthmodular exponentia-
tion for different problem sizes.

necessary.

The argument here falls much along the lines of the threstigdment for quan-
tum computation in general, as discussed in Sedfionl2.3etalse we are dealing
with a small number of levels of concatenation and a finite patation, we are less
interested in the threshold itself than a specific calooitatf the success probability
for a chosen arrangement. A detailed estimate would diffightty because we have
three separate error sources in memory, local gates, agqbtéhtion, along the lines
of Steane’s simulation5[3D8]; here we restrict ourseleessimple analysis. TableT.3
shows rough teleportation counts for the complete modwipomrentiation for Shor’s
factoring algorithm, based on Talilel6.2 (pagel 145) and thddea entries of Tab[e1.6
(page18b). The number of multiplier blocks has no signifi¢ganpact on the number
of teleportations we must execute. The choice of node sideadder are important;
the carry-lookahead adder requires ten to fifteen times ay teéeportations (for 16 to
1,024 bits), but may be faster under some circumstances aslvghow in Sectiofi 715;
this accounts for the range of values in Tdbld 7.3.

7.4.1 Distributed Logical Zeroes

In Equatio2Z4B ({131) and FigureR.7 [pl 52), we showeddbiedl zero state](;,))
for the Steane [[7,1,3]] quantum error correcting code anptait to create the state.
This state is used in the fault-tolerant construction ofrquen error correction. In the
multicomputer, we may need to perform QEC on states that spafor more) nodes,
when moving data between nodes in a quantum multicomputesingply trying to
maintain the integrity of a static state that spans multigdes. Thus, we must find a
way to either

1. create a distributed, ) state;

2. do four-qubit parity (error syndrome) measurement usinlg weak nonlinearity
on four qubits; or
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3. find some other way to do syndrome measurement withoututhedfstributed
|0,) state.

Of these three options, we have chosen the first. We haveralested some effort
in looking for a way to calculate the parity af qubits using the weak nonlinearity,
but all of the schemes we have found so far for more than thubésyscale poorly in
terms of noise; Yamaguchi et al. have designed a method thisvior three qubits
but not more[[353]. Bacon has developed a new method foriogeaelf-correcting
memories, using the original Shor [[9,1,3]] code, that maynequire the creation of
logical zeroes; its implications for actual implementatare exciting but still poorly
understood 28, 324]. Thuf),) states must be created, and this chapter discusses the
performance and error characteristics of the creationgssc

The logical|0,) can be created using the same two methods as any otherwtisttib
guantum computation: we can directly create the state irstilolited fashion, using
teleported gates (telegate), or we can create the stateaitsingle node and teleport
several of the qubits to the remote node before using the stadur QEC (teledata).
First, consider the use of teleported gates to creat®tfestate. Figur€712 shows that
splitting the|0,) state across two nodes, as at the line labeled “c”, forcesxeeution
of four teleported CNOTSs, consuming four EPR pairs; bregildah“d” would require
only three. In the figure, the subscripts again represenbitheumber in the QEC
block; the qubits have been reordered compared to Hgufeefficiency. Our second
alternative is to teleport portions of a locally-creatéd) state. If enough qubits and
computational resources are available at both nodes, wieesrd¢o create the state in
either location and teleport some of the qubits; thus, thremmam number of qubits that
must be teleported is:/2], or 3 for the 7-bit Steane code. Tablel7.4 shows the number
of gate or data teleportations necessary, depending omeba&down of qubits to nodes,
showing that teledata requires the same or fewer EPR panisais preferred.

7.4.2 Distributed Data
Static Distributed States

If a logical data qubitiy; ) is split between nodes A and B in the same fashion as Fig-
ure[Z.2, we will use thé,) states to calculate the syndromes for the error correction.
Each syndrome calculation consumes @hg state, first executing some gates to en-
tangle it with the logical data qubit, then measuring theztate. The [[7,1,3]] code
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Figure 7.2: Distributed circuit to create thi,) state for the Steane [[7,1,3]] code.

breakpoint| telegate| teledata
1(B— A)
2(B— A
3(B—A)
3(A— B)
2(A— B)
1(A— B)

- DO QO O T QO
NWWwWhhwN

Table 7.4: Breakpoints (corresponding to Figuré 7.2) ard:tst of telegate v. teledata
to create a logical zero state for the Steane [[7,1,3]] codePR pairs consumed. Also
shown is the direction qubits must be teleported.

requires six syndrome measurements (three value and these) and Steane recom-
mends measuring each syndrome at least twice, so each QEeCcoyrsumes at least
a dozen logical zero states. With, ) divided at the “d” point, eacl0;,) requires three
teleportations, for a total of x 12 = 36 EPR pairs destroyed to execute a single, full
cycle of QEC.

The split described here allows a single logical qubit ptasQEC ancillae, a total
of fourteen physical qubits, to be split between two nodé® Jame principles apply to
states split among a larger number of nodes, potentialbyatlg significantly smaller
nodes to be useful, or allowing larger logical encoding kédo used, spread out among
small, fixed-size nodes. More importantly for our immedipteposes, this analysis
serves as a basis for considering the movement of logidaisskaom node to node.

States in Motion

When considering the teleportation of logical qubits aneirtlerror correction needs,
two general approaches are possible:

1. Transfer the entire QEC block, then perform QEC locallthatdestination; or
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Figure 7.3: Teleporting logical state using local QEC only,intermediate QEC. The
box holding a “T” is the teleportation circuit. Each line repents a qubit variable,
independent of its location, so that the teleportation af@n does not explicitly show
the movement of the qubit from one node to another.

2. use one of the methods described above for distributed l6gReerthe telepor-
tations of the component qubits.

The first approach is conceptually simpler; does the sectiadany advantages in
either performance or failure probability?

We will examine one-level QEC and two-level concatenatedCQ&eane prefers
the [[23,1,7]] code as the lowest layer of a multi-layer cfgl#]. This code can defend
against three errors, so we are interested in the probatiliour errors. All of the one-
and two-layer combinations of [[7,1,3]] and [[23,1,7]] aeamined.

The first approach, illustrated in Figurel7.3, obviouslysummes seven EPR pairs
to transfer the seven-qubit code word from one node to therotAssume, for the
moment, that local gates and quantum memory are perfedbas@tir only source of
errors is teleportation. As we saw in Chaiiel 2.3, for an{[/]]-qubit error correction
code, we use physical qubits to hold logical qubits, and can correct up@— 1) /2
errors. Ifp, is the probability of an error occurring during the teleptidn of a single
qubit, then the probability of. errors occurring is

putnom) = ()= (2 ) 7.2

for smallp,. Forp; < 1, most failures will occur in the lowest failure modgd —
1)/2) +1 = (d+ 1)/2 errors. We will approximate our total failure probability the
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probability of (d + 1)/2 errors occurring.
If p, is the failure probability of our total algorithm ands the total number of
logical qubit teleportations we use in the computation, then

t
pa:1_<1_pe)t%<

1)pe ~ 1. (7.3)

For the [[7,1,3]] code,

pe(7,2) = (;) (1 —p,)°p? ~ 21p? (7.4)

is the probability of two errors occurring in our block of semgubits. Two qubit errors,
of course, is more than the [[7,1,3]] code can correct. Oobability of algorithm
failure becomes

Pa = tpe = 21p}. (7.5)

Thus, we can say that, to have a reasonable probability afess¢c we should have
p < 1/4/21t. This is a significant improvement over the case with no ezoorection
seen at the beginning of this chapter.

Using a two-level concatenated code, the picture is less.dfor two levels of the
[[7,1,3]] code, our total encoding will consist of sevendks of seven qubits each, and
the computation will fail only iftwo or more of those blocks fail.

Of course, the two codes need not be the same. Adapting &teameinology and
notation, will refer to the physical-level code as the “inheode, and the code built
on top of that as the “outer” cod&1308]. nf[k*,d']] or [[n,k,d]]* is the inner code,
and [[n°,k°,d°]] or [[n,k,d]]° is the outer code. Approximating the error probability
according to Equatioris1.2 ahdl7.3, we have

(2 (())

wherem' = (d' + 1)/2 and likewise form?.

Table[Zb shows the estimates for the teleportation fajwobability p, that will
give us atotal algorithm failure probability pf < 0.1. Although [[23,1,71]+[[7,1,3]]°
and [[7,1,3]]+[[23,1,7]F are different, by coincidence, their failure probabiktiare
almost identical, so they are listed together. Note tha,[[Z]] offers essentially the
same error protection as [[7,1,3]]+[[7,1,3]], despitengshalf the number of qubits and

being conceptually simpler.
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error-correcting code scale-up| teleportations p for p, < 0.1
(none) 1 10° 0.1/t =107°
108 0.1/t =107
10t 0.1/t =10"12
[[7,1,3]] 7 10° 1/vV21t =7x 1074
108 1/V21t =2 x 107
101! 1/V21t =7x 1077
[[23,1,7]] 23 10° 1/(17tY%) ~ 3 x 1073
108 1/(17tY%) ~ 6 x 1074
10t 1/(17tY%) ~ 1 x 1074
[[7,1,3]'+[[7,1,3]]° 49 10° /(174 ~ 3 x 1073
108 1/(17tY%) ~ 6 x 1074
10t 1/(17tY%) ~ 1 x 1074
[[23,1,7]F+[[7,1,3]]° 161 10° 1/(19tY%) ~ 0.012
and [[7,1,3]]+[[23,1,7]F 108 1/(19tY/8) =~ 5 x 1073
10t 1(19t/%) =~ 2 x 1073
[[23,1,7]]+[[23,1,7]F 529 10° 1/(20tY/16) ~ 0.025
108 1/(20t'/16) =~ 0.016
101 1/(20t'/16) =~ 0.010

Table 7.5: An estimate of the necessary error rate of telaepon (p;) to achieve a
specific number of logical teleportations with 90% probiépibf success, for different
error-correction schemes.
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Figure 7.4: Teleporting logical state using intermeditgksdata distributed QEC.

The second approach described above, doing error comeatier serially send-
ing each qubit, is shown in Figute¥.4. Using this approach,attempt to reduce
the overall error probability by incrementally correctitige logical state as it is tele-
ported; to teleport the seven-bit state we perform local Qiefre beginning, then
do distributed QEC after each of the first six teleportatjahen local QEC again af-
ter the seventh teleportation. Each distributed QEC (DQBEGgk performs twelve
distributed syndrome measurements. We can again choesgtelor teledata for the
|0.) state creation; the figure illustrates teledata. Usingyteks we would need the
sum of the telegate column in Talfle]7.4,204- 3 + 4 + 3 + 3 + 2 = 17, inter-node
gates, for each syndrome that must be measured. To perfoeiaetvneasurements
we consume a total df2 x 17 = 204 EPR pairs. Using teledata, we would need only
14243+3+2+1= 12 per syndrome, or 144 EPR pairs for the full twelve syndromes
in a cycle. The worst-case DQEC blockdsx 12 = 36 teleportations. Obviously,
the probability of error is higher for 36 teleportationsrfar seven. Therefore, un-
less someone develops a means of measuring syndromes tvitiog the|0, ) states,
this second approach does not achieve its goal of reducentpthl error probability.
Performance-wise, the penalty for doing step-wise QECss sliff; we conclude that
this approach is not useful.

7.4.3 Implications for Link Design

Figure[Z.B shows a [[7,1,3]] state being transferred in lfgrand Figurd Zb shows
the serial equivalent. In these diagrams, each line reptesequbit that is a member
of a code block, essentially following the variable ratheart the storage locations; at
aT block, representing teleportation, of course the qubit@sdvom one node to the
other. If the transfer is done serially, the waitstartthe QEC sequence is seven times
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Figure 7.5: Local QEC only, no intermediate QEC, serialriiaiee.

as long, but theotal time for transfer plus QEC (that is, time from the start of one
QEC cycle to the next, from the firgt; ) to the point marked “b” in the figures) won't
grow by nearly as large a factor if local QEC requires sigaifictime compared to a
teleportation. Thus, we need to determine if the increaseaim time caused by the
lengthening of the interval the point marked “a” to the poidrked “b” in Figure§713
andZb has an unacceptably large impact on our overaltéailite.

The gray areas in the serial figure indicate increased waé for the qubits. Each
gubit spends one cycle teleporting, and six waiting for ttileepoteleportations. 1p,,
is the probability of error for a single qubit during the tineeexecute a single tele-
portation, then the probability of no error on one bit durthgt time is(1 — p,,)° for
a [[7,1,3]] code. For an {[,k,d]] code, the failure probability of that qubit during the
serial transfer waiting time ig/, = 1 — (1 — p,,)""'. The probability ofmx memory
errors is

pu(n,m) = (n)p;nm(l —p )T (n)p;nm ~ (;) (n—1)pm. (7.7)

m m

Combining Equations™.7 ad¥ .2, we need the two error sedogether to gener-
ate less tham = (d + 1)/2 errors. We will constrain the final combined memory and
teleportation error ratg, for the serial link to be similar to the teleportation erréos
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the parallel link,

m

pr(n,m) = ZpM(n, i)pe(n,m — i) ~ pe(n,m). (7.8)
=0

For the error codes we are considering, [[7,1,3]] and [[Z3].Lnumeric evaluation
for p,, = p;/10(n — 1) gives 25% and 50% increase in failure probability compared
to thep,, = 0 (perfect memory) case. Thus, we can say, very roughly, timaéi-
ory failure probability two orders of magnitude less thae failure probability of the
teleportation operation will mean that the choice of serigdarallel buses has minimal
impact on the overall system error rate.

Although this section has focused on reliability rathemntparformance, the choice
of serial or parallel links also affects performance. Itasyeto see that choosing a serial
link does not result in a factor of degradation in system performance when QEC is
taken into account. L&t be our teleportation time, anggz- be the time to perform
local error correction, is related to the qubus detector time andgc is related to
the local qubit measurement time.

If nt, < trorc, then in accordance with Amdahl’s Law the choice also has min
imal impact on our overall performande [18]. Of course, & tliesources available at
each node are large enough, teleportation and error clamezzn be pipelined, but the
growth in resources is significanttif z¢ is large and the performance gains are small
if tLorc is small. In addition, as we will see in the next section hemietic algorithms
rarely have enough data waiting for teleportation that lpypeg will be effective, so
pipelining here would be a second-order effect on overaitesy performance. There-
fore, we recommend using serial links without pipelinirfighe qubus detector time is
reasonable.

7.4.4 Summary

| originally believed that the issues of serial v. paralletiantermediate QEC v. block
transfer were tied together. However, it is now clear thatto are separate issues, and
that, unless a better method for creating logical zeroesusd or Bacon’s method of
calculating syndromes without using logical zeroes préwdse practical, intermediate
QEC offers no benefit. | therefore recommend block-wisereroorection, shipping
the entire QEC block from source to destination before periog QEC.
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The results in TablEZA.5 show that a teleportation error (r&@ily, EPR pair infi-
delity) of ~ 1% will allow computations as large as the factoring of a 1,0&4umber
to proceed with a high probability of success. This estinmfer a data encoding of
[[23,1,7]+[[23,1,7]F on the link and a memory error rate in the time it takes to perfo
a teleportation at least two orders of magnitude better theaieleportation failure rate.
Our analysis, though somewhat simpler than Steane’s, stgipie recommendation of
the [[23,1,7]] code. Replacing one level with the [[7,1,8¢(de still allows an error rate
of one part in a thousand or better, with a noticeable savimgtorage requirements.
Of course, we do not have to compute or store data using the saooded states that
we use during data transpdrt[324]. In this dissertationsiimplicity, we have assumed
that the system uses only a single choice of encoding.

This section has argued that the difference in both perfoomand reliability be-
tween serial and parallel network links will be small for agenable set of assumptions.
Serial links will dramatically simplify our hardware desi@py reducing the number of
required transceiver qubits in each node, and eliminatorgerns such as jitter and
skew between pairs of conductors or wave guides. Moredwee do choose to have
multiple transceiver qubits in each node, system perfoomam some workloads may
be boosted more by creating a richer node-to-node intesszirtapology than by cre-
ating parallel channels between pairs of nodes in a simppeiogy, as we will see in
the next section.

7.5 Distributed Form of Shor’s Algorithm

This section evaluates the performance of quantum arifbmlgiorithms run on a quan-
tum multicomputer. We vary the node capacity and 1/0O capigs| and the network
topology. The tradeoff of choosing between telegate aretlégh is examined. We
show that the teledata approach performs better, and thatrijpple adders perform

well when the teleportation block is decomposed so that #yeduantum operations
can be parallelized. A node size of only a few logical qubég@ms adequately, pro-
vided that the nodes have two transceiver qubits. A linetwork topology performs

acceptably for a broad range of system sizes and perforn@araeneters. We there-
fore recommend pursuing small, high-I/O bandwidth nodesasimple network, as
described at the end of Sectionl7.1.
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The first question in considering a multicomputer is whetner system perfor-
mance will be acceptabléthe implementation problems can be solved. Chdpter 6 pro-
vided the tools and algorithms for this analysis; here theyagplied. Our evaluation
criterion is the latency to complete one addition. The gsedbiachieve “reasonable”
performance for Shor’s factoring algorithm for numbers amtthousand bits. This
analysis is done attempting to minimize the required nurobgubits in a node while
retaining reasonable performance; we investigate nods sizone to five logical qubits
per node.

This section shows that:

e teleportation of data is better than teleportation of gates

e decomposition of teleportation into a series of smalleragpens brings big ben-
efits in performance, making a carry-ripple adder effectiven for large prob-
lems;

e alinear topology is an adequate network for the foresedahlee; and

e small nodes (only a few logical qubits) perform acceptatly,|/O bandwidth is
critical.

A multicomputer built around these principles and basedtid-state qubit technology
will perform well on Shor’s algorithm. These results cotleely represent a large step
in the design and performance analysis of distributed guamiomputation.

Next, we discuss the mapping of arithmetic algorithms to system. The bulk
of this section progressively refines performance estispateluding decomposing the
teleportation operation to make the performance of cappie adders competitive with
the carry-lookahead adder, with a simpler network and snatdes.

7.5.1 Algorithm

We evaluate three different addition algorithms: the Ve@aenco-Ekert (VBE) style
of carry-ripple adder (Se€_3.%4.2) [342], the faster, saraluccaro-Draper-Kutin-
Moulton (CDKM) carry-ripple adder (SeE._3.%.2) [88], ane ttarry-lookahead adder
(Sec[3:41B) [[103]. In this section, we discuss the addetsowt regard to the network
topology; the following section presents numeric valuasdifferent topologies and
gate timings.



180 CHAPTER 7. THE QUANTUM MULTICOMPUTER

time

[t1>
|cOcopy>

lal>
|b1>
|c1>

|a0>
|b0>
|cO>

lal>
|b1>
lc1>

Figure 7.6: Details of a distributed 2-qubit VBE adder. Toye tircuit is the distributed
form using the teledata method; the bottom circuit is the ofidnic equivalent. The
solid box (QEP) is the qubus EPR pair generator; the cirdnitdashed boxes are
standard quantum teleportation circuits. Graphical murnads in FigCZ1B on pade136.

Carry-Ripple Adders

Figure[Z® shows a two-qubit VBE carry-ripple adder in itsnoiithic (bottom) and
distributed (top) forms. The QEP block creates an EPR paiguhe qubus entan-
glement protocol described in S&C15.1. The dashed boxewxdtd the teleportation
circuit (which is assumed to be perfect) that moves the gtibitom node A to node
B. ¢0 is used in computation at node B, then moved back to node A simdar tele-
portation to complete the computation. The two qutiitandt1 are used as transceiver
gubits, and are reinitialized as part of the QEP sub-circuit

Figure[Z¥ shows a larger VBE adder circuit and illustrateésaal method for com-
paring telegate and teledata. For telegate, we can draw adioss the circuit, with the
number of gates (vertical line segments) crossed showingasi. For teledata, the line
mustnot cross gates, instead crossing the qubit lines. The numiserobf crossings is
the number of teleportations required. This approach wwedkfor analyzing the VBE
and CDKM adders, but care must be taken with the carry-loekdtadder, because it
uses long-distance gates that may be between e.g. nodes3l and

The VBE adder latency to add twequbit numbers on am-node machine using
the teledata method &mn — 2 teleportations plus the circuit cost. For the telegate
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Figure 7.7: Visual approach to determining relative coset#porting data versus tele-
porting gates for a VBE adder. The upper, dashed (red) lio@/skhe division between
two nodes (A and B) using data teleportation. The circlesvsiwbere the algorithm
will need to teleport data. The lower, dotted line (blue)wbldhe division using gate
teleportation (nodes B and C). The circles show where teledagates must occur.
Note that two of these three are CCNOT gates, which may emtaiiple two-qubit
gates in actual implementation. The numbers at the top aok clycles.

approach, using the five-gate breakdown for CCNOT built fidAi gates and CNOTS,
as in Figurd 611 on pade123, would require three telepoweeubit gates to form a
CCNOT. Therefore, implementing telegate, the latencynis— 7 gate teleportations,
or 3.5x the cost.

For the CDKM carry-ripple adder, which more aggressivelyses data space, tele-
data requires a minimum of six movements, whereas teleggtgres two CCNOTs and
three CNQOTSs, or a total of nine two-qubit gates, as shown r&’_8. The CDKM
adder pipelines extremely well, so the actual latency pggh@l more than two nodes is
only 2m + 2 data teleportations, @ gate teleportations, when there is no contention
for the inter-node links, as in our line and fully-connectepologies. The bus topology
performance is limited by contention for access to the aaenect.

Carry Lookahead

Analyzing the carry-lookahead adder is more complex, astitecture is not regular,
but grows more intertwined toward the middle bits. Gate dalirg is also variable,
and the required concurrency level is high. The latenay (&g n), making it one of
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Figure 7.8: Visual approach to determining relative cosetdporting data versus tele-
porting gates for a CDKM adder. The upper, dashed (red) lhmvs the division
between two nodes using data teleportation. The circles stere the algorithm will
need to teleport data. The lower, dotted line (blue) showglthision using gate tele-
portation. The circles show where teleported gates mustroddote that two of these
five are CCNOT gates, which may entail multiple two-qubitsgain actual implemen-
tation.

the fastest forms of adder for large numbérs [103] 334, 109].

Let us look at the performance in a monolithic quantum compdior» a power of
two. Based on table 1 from Draper et al. [L03], foe= 2%, the circuit depth oftk + 3
Toffoli gatesis 19, 31, and 43 Toffoli gates, for 16, 128, &r@P4 bits, respectively. We
assume a straightforward mapping of the circuit to the ithsted architecture. Most
nodes are assigned four logical qubits,(B;, C;, and one temporary qubit used as part
of the carry propagation). In the next subsection, we seehledransceiver qubits are
the bottleneck; we cannot actually achieve thiist+ 3 latency.

7.5.2 Performance

The modular exponentiation to run Shor’s factoring aldmiton a 1,024-bit number
requires approximately 2.1 million calls to the integer ed[834]. With a 100usec
adder, one run of the algorithm will require less than fiveutws; with a 1 msec adder,
it will take just over half an hour, allowing about twelve hilrad “runs” per month.
Even a system two to three orders of magnitude slower thamihihave attractive per-
formance, provided that error correction can sustain tiséegy state for that long, and
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that the system can be built and operated economically. Seugon presents numeri-
cal estimates of performance which show that this criteisaasily met by a quantum
multicomputer under a variety of assumptions about logip&iration times, providing
plenty of headroom for quantum error correction.

Initial Estimate

Our initial results are shown in tab[e¥.6. Units are in numiifecomplete teleporta-
tions, treating teleportation and EPR pair generation daglesblock, and assuming
zero cost for local gates. In the following subsectionsélessumptions are revisited.
We show three approaches (baseline, telegate, and telegatéhree adder algorithms
(VBE, CDKM, carry-lookahead) for five networks (bus, 2busgl| fully, 2fully) and
three problem sizes (16, 128, and 1024 bits). In the basetise, each node contains
only a single logical qubit; gates are therefore executadguihe telegate approach.
For the telegate and teledata columns, we chose node sigag tbe algorithms: two,
three, and four qubits per node for the CDKM, VBE, and caogkiahead adders, re-
spectively, when using telegate, and three, four and fivétgjulinen using teledata.

The VBE adder, although larger than CDKM and slower on a mitrolcom-
puter, is faster in a distributed environment. The VBE adalédribits a large (3.5x)
performance gain by using the teledata method instead ejdet. For teledata, the
performance is independent of the network topology, bezansy a single operation
is required at a time, moving a qubit to a neighboring nodee TIWDKM adder also
communicates only with nearest neighbors, but performsenransfers. The single
bus configuration is almost 3x slower than the line topold@wn a line, in most time
slots, three concurrent transfers are conducted (e.gveletnodes — 2,3 — 2, and
3 — 4).

An unanticipated but intuitive result is that the perforroamwf the carry-lookahead
adder is better in the baseline case than the telegate cagbeffully-connected net-
work. This is due to the limitation of having a single tranigeequbit per node. Putting
more qubits in a node increases contention for the transicgubit, and reduces perfor-
mance even though the absolute number of gates that mustbated via teleportation
has been reduced. Our numbers also show that the carryHea#laadder is not a good
match for a bus architecture, despite the favorable lostgdce transport, again be-
cause of excessive contention for the bus.



184 CHAPTER 7. THE QUANTUM MULTICOMPUTER

The carry-lookahead adder is easily seen to be inapprefoathe line architec-
ture, since the carry-lookahead requires long-distantesga propagate carry infor-
mation quickly. Using the linear network naturally degextes to linear cost to share
data over a long distance. Using nested purification tect@sigas with quantum re-
peaters[[71,57], it might be possible to reduce the lineaetio O(logn) time, but
even the factor of ten introduced for a 1,024-bit number milke the carry-lookahead
adder slower than the carry-ripple adders. If the requiesburces on the line are
spatially overlapping, the penalty might actually exceex times, exacerbating the
problem. Therefore, we have ruled out using the carry-lbeka adder on a linear
network, and do not analyze it further.

For telegate, performing some adjustments to eliminat@4inbde gates, we find
8n — 9k — 8 total Toffoli gates that need arguments that are originstilyed on three
separate nodes, plus— 2 two-node CNOTSs. For the bus case, which allows no con-
currency, this is our final cost. For the fully-connectedwaek, we find a depth of
8k — 10 three-node CCNOTSs, 8 two-node CCNOTSs, and 1 CNOT. These exsniust
be multiplied by the appropriate CCNOT breakdown. For theda@ta fully-connected
case, each three-node Toffoli gate requires four teleponts (in and out for each of
two variables). For the 2fully network, the latency of thesirnode Toffolis is halved,
but the two-node Toffolis do not benefit, giving us a final aofsslightly over half the
fully network cost.



algo.| size Baseline Telegate Teledata

bus line | fully bus| 2bus| line | fully | 2fully bus| 2bus| line | fully | 2fully
VBE 16 360 305 182 105 105| 105| 105| 105 30 30 30 30 30
128 | 3048| 2545| 1526 889 889| 889| 889| 889 254 | 254| 254| 254| 254
1024 | 24552| 20465| 12278| 7161| 7161| 7161| 7161| 7161| 2046| 2046| 2046| 2046| 2046
CDKM 16 232 160 160 138 96 96 97 96 90 60 34 90 34
128 1912| 1280| 1280| 1146| 768| 768| 768| 768 762 508 | 258| 762| 258
1024 | 15352| 10240| 10240|| 9210| 6144| 6144| 6145| 6144| 6138| 4092| 2050| 6138| 2050
Carry- 16 644 | N/A 99 444 | 222| N/A| 136| 135 260 178 | N/A 96 56
look- | 128| 6557 N/A 159| 4901| 2451| N/A | 256| 255| 3176| 2028| N/A | 192| 104
ahead| 1024 || 54806 N/A 219 41502| 20751 N/A | 376| 375| 27260| 17206| N/A | 288| 152

Table 7.6: Estimate of latency necessary to execute vaeddsr circuits on different topologies of quantum multigarer, assuming
monolithic teleportation blocks (SEc._75.2). Units ar@mimmber of teleportation blocks, including EPR pair creafjbus transaction),
local gates and classical communication. Size, lengtheohtimbers to be added, in bits. Lower numbers are fastee(pett
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Improved Performance

The analysis in SectionZ.%.2 assumed that a teleportaperation is a monolithic
unit. However, Figur€ZZ16 makes it clear that a telepontatictually consists of several
phases. The first portion is the creation of the entangled E&Rvia the qubus. The
second portion is local computation and measurement aetigirsy node, followed by
classical communication between nodes, then local opait the receiving node.
The EPR pair creation is not data-dependent; it can be doadvance, as resources
(bus time slots, qubits) become available, for both tekegaid teledata. With these
assumptions, we are free to reduce the entire performanbégpn to making all needed
EPR pairs as quickly as possible.

Our initial execution time model treats local gates andsitad communication
as zero cost, assuming that EPR pair creation is the mosnhsxgeportion of the
computation. For example, for the teledata VBE adder onealimopology, all of the
EPR pairs needed can be created in two time steps at the begyofrthe computation.
The execution time would therefore be 2, constant fomadindm. Table[Z¥ shows
the performance under this assumption. The performandeafarry-lookahead adder
does not change compared to the initial estimate, as thiebetk link is busy full-time
creating EPR pairs.

This model gives a misleading picture of performance oncB BR&ir creation is
decoupled from the teleportation sequence. When the castedfeleportation itself
or of local gates exceeds 1/n of the cost of the EPR pair generation, the simplistic
model breaks down; in the next subsection, we examine tHerpgnce with a more
realistic model.



algo.| size Baseline Telegate Teledata
bus| line | fully bus| 2bus| line | fully | 2fully bus| 2bus| line | fully | 2fully

VBE 16 360 16 16 105 53 7 14 7 30 15 2 4 2
128 || 3048| 16 16 889 445 7 14 7 254 127 2 4 2

1024 || 24552| 16 16| 7161 3581 7 14 7| 2046| 1023 2 4 2

CDKM 16 232 21 19 135 68| 11 18 9 90 60 6 12 6
128 1912 21 19 || 1146 573| 11 18 9 762 508 6 12 6

1024 15352 21 19| 9210, 4605| 11 18 9| 6138 4092 6 12 6

Carry- 16 644 | N/A 99 444 222 | N/A 89 45 260 178 | N/A 96 56
look- | 128 6557 N/A | 159| 4901| 2451| N/A | 149 75| 3176| 2028| N/A | 192 104
ahead| 1024 || 54806| N/A | 219 41502| 20751| N/A | 209 105 | 27260| 17206 N/A | 288| 152

Table 7.7: Estimated latency to execute various addersftametit topologies, for decomposed teleportation blosks[Z.5P), assuming
classical communication and local gates have zero costsdre in EPR pair creation times. Size, length of the numtiodoe added, in
bits. Lower numbers are faster (better).
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Detailed Estimate

To create Figurels 4[0-7]11, we make assumptions about doeion time of various
operations. Classical communication between nodes isetOn& CCNOT (Toffoli)
gate on encoded qubits takes 50nsec, CNOT 10nsec, and N@€. Tisese numbers
can be considered realistic but optimistic for a technolagiyh physical gate times
in the low nanoseconds. For quantum error correction-eset@blid-state systems,
the bottleneck is likely to be the time for qubit initializat or reliable single-shot
measurement, which is still being designed, so actual pegnce may be one to two
orders of magnitude slower.

We vary the EPR pair creation time from 10nsec to 1280nseis.cFlation process
is influenced by the choice of parallel or serial bus and thdecfime of an optical
homodyne detector, as discussed in the last section. Rétetidrs may be inherently
fast, but their performance is limited by surrounding elecics [271.[315]. Final per-
formance may be faster or slower than our model, but the rahgalues we have
analyzed is broad enough to demonstrate clearly the impdriends.

FiguredZ.P an7.1 0 show, top to bottom, the fully, 2fullyddine networks for the
telegate and teledata methods. The graphs plot adder timmesadgcPR pair creation
time and the length of the numbers to be added. The left hartdshbws the shape
of the surfaces, with the axis being latency to complete the addition. The right hand
plot, with the same: andy axes, shows the region in which each type of adder is the
fastest.

These figures show that the teledata method is faster thegetel They also show
that the carry-lookahead adder is very dependent on EPRcpeation time, while
neither type of carry-ripple adder is. In Figure4.11 we slibis in more detail. For
fast (10nsec) EPR pair creation, the carry-lookahead aiddister for all problem
sizes. For slow (1280nsec) EPR pair creation time, camwidbead is not faster until
we reach 512 bits.

Although | have not includes graphs, we have also varied ithe for classical
communication and the other types of gates. The performahea adder is fairly
insensitive to these changes; it is dominated by the relship between CCNOT and
EPR pair creation times.
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Figure 7.9: (Telegate) Performance of different adderdogetdifferent networks, one
fully-connected with a single link and one with two links pexde (2fully), and one line
configuration. In this graph, we vary the latency to creategh-quality EPR pair and
the length of the numbers we are adding. Classical commtimicéme is assumed to
be 10nsec, Toffoli gate time 50nsec, CNOT gate time 10nshe.|dft hand graph of
each pair plots adder execution time (vertical axis) ag&RR pair creation time and
number length. In the right hand graph of each pair, the leakcld area indicates areas
where carry-lookahead is the fastest, the diagonally lgreeén area indicates CDKM
carry-ripple, and solid blue indicates VBE carry-ripplénelperformance of the carry-
lookahead adder is very sensitive to the EPR pair creatioe.tilf EPR pair creation
time is low, the carry-lookahead adder is very fast; if dggatime is high, the adder is
very slow.
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Figure 7.10: (Teledata) Performance of different addettigge different networks, one
fully-connected with a single link and one with two links pexde (2fully), and one line

configuration. In this graph, we vary the latency to createga-quality EPR pair and

the length of the numbers we are adding. Classical commtimicéme is assumed to
be 10nsec, Toffoli gate time 50nsec, CNOT gate time 10nsethd right hand graph
of each pair, the hatched red area indicates areas wheyelgakahead is the fastest,
the diagonally lined green indicates CDKM carry-rippledaolid blue indicates VBE

carry-ripple. The performance of the carry-lookahead atdeery sensitive to the EPR
pair creation time. If EPR pair creation time is low, the gdookahead adder is very
fast; if creation time is high, the adder is very slow.
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Figure 7.11: (Teledata) Comparison of CDKM on a line netwwitk carry-lookahead
on a 2fully network. These are the “front” and “back” crogstsons of figuréZ.10.

7.6 Summary

This chapter has covered the overall quantum multicompanghritecture, including
justifying the need for distributed quantum computatiomestigating distributed quan-
tum error correction and network link design, and ended layuating the performance
of arithmetic circuits on a quantum multicomputer for diéfet problem sizes, inter-
connect topologies, and gate timings. Although we haverasdithat the interconnect
is based on the qubus entanglement protocol creation of EIRR, pur analysis, espe-
cially Table[Z®, applies equally well to any two-level stiure with low-latency local
operations and high-latency long-distance operations.dgtails of the cost depend on
the interconnect topology, number of transceiver qubitd,the chosen breakdown for
CCNOT. Gate time ratios are more important than actual gaestfor this analysis.
The time values presented here are reasonable for sot&legthits under optimistic as-
sumptions about advances in the underlying technologylyipgpour results to slower
technologies (or the same technology using more layersanitgun error correction) is
a simple matter of scaling by the appropriate clock speedstordge requirements.

We found that the teledata method is faster than the telegetieod, that separating
the actual data teleportation from the necessary EPR pation allows a carry-ripple
adder to be efficient for large problems, and that a lineavokt topology is adequate
for up to a hundred nodes or more, depending on the cost faE&R pair creation to
local gates. For very large systems, switching intercotsp&dich are well understood
in the optical domain[172, 218, 319], may become necestaoygh we recommend
deferring adding switching due to the complexity and theneht signal loss; switching
time in such systems also must be considered.
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These results show that node size, interconnect topolaglyitaited gate approach
(teledata v. telegate), and choice of adder affect oveeafbpmance in sometimes un-
expected ways. Increasing the number of logical qubits pdenfor example, reduces
the total number of interconnect transfers but concergridiiem in fewer places, caus-
ing contention for access. Therefore, increasing nodeisiaet favorablainless node
I/O bandwidth increases proportionajlyve recommend keeping the node size small
and fixed for the foreseeable future.

This data presents a clear path forward. | recommend psuimode architec-
ture consisting of only a few logical qubits and initiallyawransceiver (quantum 1/O)
qubits. This will allow construction of a linear network, iwh will perform adequately
with a carry-ripple adder up to moderately large systemsgirtgering emphasis should
be placed on supporting more transceiver qubits in each,alieh can be used to
parallelize transfers, decrease the network diameterpemdde fault tolerance. Sig-
nificant effort is warranted on minimizing the key parameteEPR pair creation time.
Only once these avenues have been exhausted should thein@de sncreased and
a switched optical network introduced. This approach shtedd to the design of a
viable quantum multicomputer.



Chapter 8
Conclusion

Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill, November 1942

This dissertation has described the architecture of a guamiulticomputer and
the structure of the algorithms to run on it. Shor’s factgralgorithm has served as a
convenient, concrete benchmark, but the overall architecbuilding blocks and anal-
ysis methods are general. Although small-scale quantunpuatars exist, prospects
for large-scale ones remain uncertain. The physicists hauey problems to solve,
of course, including decoherence time and gate qualityy bbtvhich are affected by
many physical sources. The engineers, as well, have mamyepns to solve. At the
highest levels, the process of balancing performancelriéty, physical feasibility and
system cost has just begun. Utilization of heterogeneaouststes, continued progress
in error management, and further optimization of applaraglgorithms for particular
architectures continue to be promising areas of researttower levels, integration
of system components, thermal engineering, and packagimgin issues. Once these
problems are solved, a quantum multicomputer built on maders based on solid-
state qubits is a viable, highly scalable, high-perfornesarchitecture.

The creation of the quantum multicomputer began with théapation of quan-
tum modular exponentiation for Shor’s factoring algorithfinst in an architecture-
independent fashion, then considering two specific arctutal modelsac andNTC.
The primary difference is thatc allows two qubits anywhere in the system to interact
without penalty, whilenTc allows only nearest neighbors in a line topology to inter-
act. Both models are somewhat simplistic, but serve as luggher and lower bounds.

193
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Classical computation can be traded for quantum; incrgahim classical computation
by a factor oR2* allows a factor ofv decrease in quantum, a good trade for small values
of w. Two new adder algorithms, the carry-select and conditisnen adders, were de-
veloped. The carry-select adder rungify/n) time to add twaz-bit numbers, and the
conditional-sum adder, which is similar but uses a more dexngiemultiplexer, runsin
O(logn) time. These techniques, as well as the fast, efficient CDKiWyedpple adder,
the O(log n)-depth carry-lookahead adder, Cleve-Watrous paralletipligation, and
some original optimizations, are used to create compleutao exponentiation algo-
rithms. The algorithms presented here will reduce waltklbme by a factor of one
million for a six-thousand bit number on thae architecture, or a factor of 13,000 on
NTC. These circuits ar®(nlog®n) andO(n?logn) in circuit depth, respectively, and
demonstrate the paramount importance of architecture wlagming for performance.
The primary architectural features of interest are theitghid execute multiple gates
concurrently, the number of application-level qubits &tale, and the interconnection
network of qubits.

The quantum multicomputer transcends the physical limitatof an individual
guantum computer by combining the power of multiple quantamputers, in direct
analogy to classical, distributed-memory multicomputdtss obvious that a multi-
computer can store more data than any individual quantunpaten what was less
certain before this research was done was the performarsgchfa system. Extract-
ing performance improvements, as in classical distribatetiems, depends on finding
parallelism in the algorithms and on minimizing the costsofmmunication. This
research has shown that application-level parallelisnheistiful, and that the commu-
nication costs are reasonable. A linear network of nodes) eantaining just a few
logical qubits and two transceiver qubits for the quantumkdj performs well up to
several hundred nodes. Subdividing quantum teleportatidhe data into the EPR
pair creation and the later teleportation act allows higklof parallelism in the EPR
pair creation to be used, and a simple carry-ripple adddopas well. As the prob-
lem size approaches a thousand bits, the linear costs oathgripple adder begin to
dominate, and the logarithmic depth carry-lookahead atldeomes attractive. Effi-
cient implementation of distributed carry-lookahead reggia more complex network.
Increasing the size of individual nodes risks turning I/@ithe system bottleneck,
making it necessary to increase the number of transceiN®tsogs node size grows.

With this summary, the detailed technical work of this tkettiaws to a close. The
remainder of this final chapter of the dissertation is moezajative: first, some rough
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length | adder calls tot. teleportationst]
16 481 14000-125000
128 32544 8 x 10°-108
1024| 2.1 x 106 4 x 10°—6 x 100

Table 8.1: Number of teleportations and adder calls necgss@xecute the full mod-
ular exponentiation for different problem sizes.

estimates of the wall clock time that will actually be requirto execute modular ex-
ponentiation on the quantum multicomputer are presented, future work and some
thoughts on the prospects for quantum computation, and ifsertation ends with
some final, personal comments.

8.1 Complete Performance Estimates

Table[B1 shows the number of adder calls for the completeutaoéxponentiation.
These values assume that= 4 and thatp is large enough for the modulo arithmetic
to have no impact, giving a requir@d? calls to the adder routine. These numbers are
combined with the data presented in the previous chapterette total teleportation
counts; the range of numbers is due to the difference betwaewy-ripple and carry-
lookahead adders, with the carry-lookahead adder being mxgensive. These total
numbers were used in Sectibnl7.4 to derive the necessaapitiji of teleportation
operations.

Because of the manner in which EPR pair creation and the lagdies are com-
posed, it is now no longer possible to talk about performastigetly in units of “gate
times”; we must now talk in terms of clock time for certain ogtégons. Tabl€8]2 shows
performance estimates derived from the figures and extasgabfor the complete algo-
rithm.

These EPR pair creation times are for enough high-qualit® BR&irs to transfer
an entire logical qubit. Using the [[23,1,A][7,1,3]]° error correction code, we must
transfer 161 physical qubits for a single logical qubit. hdsa serial link, perform-
ing 161 transfers in 1280nsec (the upper end of the graphgrghrequires a physical
EPR pair creation time of about 8nsec. Although this timeastdr than what has
been achieved experimentally, much of the time in adaptoraddyne measurements
is spent on (classical digital) calculations, usually ieafrout on FPGAs[[315,"21].
The qubus measurement time therefore seems amenable ifecaigrimprovement as
technology advances.



196

CHAPTER 8. CONCLUSION

length CDKM, linear Lookahead, 2fully
10nsec| 160nsec 1280nseqg| 10nsec| 160nsec 1280nseaq
16 || 960usec| 1.4msec| 4.6msec|| 1.0msec| 2.5msec, 1l4msec
128 || 500msec¢ 530msec, 750msec| 125msec| 290msec 1.5sec
1024 260sec| 260sec| 270sec 12sec 26sec 130sec

Table 8.2: Estimated time to complete a single run of distad modular exponenti-
ation. The data are for the CDKM adder on a linear network andrey-lookahead
adder on a 2fully network, each for three differéogical EPR pair creation times, 10,
160, and 1280nsec. Other gate times as described in text.

Likewise, the gate times we have chosen, such as 50nsec foifai Gate, must
be seen in the light of fault tolerance and error correctaghhiques; the [[23,1,7]]
code requires about three dozen time steps to measure aedtcarhile using signifi-
cant concurrent gate execution [808]. The exact performarien combined with the
upper-layer [[7,1,3]] code is unclear, and the implemeatedf both codes is very dif-
ferent forac andNTC, but the total performance penalty is likely around two oscdef
magnitude. A 50nsec logical Toffoli gate would thereforguiee physical gates well
under a nanosecond, significantly faster than current palysnplementations.

Thus, it is likely that the absolute performance numbergHeradder circuits pre-
sented in Sectiof 4.5 are one to two orders of magnitude tomigpic. However, the
basic analysis depends primarily on the ratio of gate tirmésleportation and commu-
nication times, so the qualitative results are valid andchtimabers need only scaling by
the appropriate factors, which remain unclear.

Moreover, the numbers presented here are feinglerun of the algorithm. For a
perfect quantum computer, it is known that the probabilitguccess with Shor’s al-
gorithm is> 40%, independent of;, meaning that a very small number of runs will
produce a good answer [298, 178]. However, for an imperfeantum computer, de-
coherence and the precision required in the gates for the(QEX*) for bit k) present
problems. The approximate QFT (AQFT) is a reduced-precifiom of the QFTI[[82],
which has been investigated by various researchers whopgradeiced differing es-
timates of the success probability, based on differing eesssumptions [31,_121].
Resolving this discrepancy for real-world conditions iseaywhigh priority issue.

One final factor throws a large uncertainty into the wallekldime estimates: the
number of concurrent multiplications)(we implement. We saw in Sectign 64.2 that
s = n units will allow us to complete the full modular exponernivatin log, n times
the latency for one multiplication. With the full= 1024 multiplier units, the modular



8.2. FUTURE WORK 197

exponentiation for a 1,024-bit number would run one huntireds as fast as for= 1.
For this approach to be economically and physically vialoiesgration must increase
one hundred fold over that proposed in Chafpiel 7.1, to ab@@0® physical qubits
per pod, whether in one node or multiple nodes, or the cosflaodspace per dilution
refrigerator must decline by a similar amount.

8.2 Future Work

The pursuit of performance in computing systems is nevdirgn In classical comput-
ing systems, we have half a century of experience; in quactunputing, the race has
just begun. It could be said that, at the moment, answeringymaestions about quan-
tum computer architecture requires a great deal of insigtitamly moderate amounts

of sweat. In the classical world, deep insight is also remjibeginning with an un-
derstanding of where the bottlenecks in existing systee#iwever, in a mature field
such as classical architecture, acting on that insight digsonstrating that your insight

is useful in limited circumstances, then achieving wideead adoption, often requires
an enormousamount of effort!. Over the next decade or so, as quantum computer
architecture matures, this will no doubt become true infikld as well.

The future work presented here blends smoothly from spetofic-level continu-
ations of the research in this dissertation to a researchdagir the larger quantum
computer architecture community. Further refinement ofogh@ntum multicomputer
design requires the selection of a node technology and wepment in the detail of
hardware design. Specifically, we must determine with soraeigion the number of
qubits that can fit on a single chip, investigate on-chip déplexers for external con-
trol signals, and move as much control as possible into thieeleHeterogeneous node
types and heterogeneous qubit types within a node need tovbstigated, as well
as multi-level interconnect architectures. QEC optimifmdion trap is progressing
rapidly; similar optimizations for solid state are desleabAnd, of course, supporting
experimental implementation of qubus and multi-qubit reoddl advance the archi-
tecture also.

Improving the accuracy of estimates for the number of rurShafr’s algorithm on
QEC-encoded states on machines with limited physical acguand the detailed cost

1For example, the TRIPS microprocessor team is over twemgyfdiculty, staff and students, and in
turn is only a small fraction of the size of a microprocessamt in a major semiconductor manufac-

turer [61].
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of high-precision operations on the encoded states, tapbsihof follow-on work on
algorithms. Continued algorithmic improvements in arigtim, such as the completion

of the smaller, faster conditional-sum adder mentionedeictiSn[6.31L, is necessary.
Optimizations fomnTC and more complex topologies and more work to balance quan-
tum and classical computation will also contribute to restlicun times for quantum
algorithms, with consequent improvements in reliabilitgl@aconomic benefits.

Can technologies with disparate characteristics be casalimo a hybrid, hetero-
geneous quantum computer, much as CPU, cache, RAM, and titadis&s are com-
bined into a classical computer? This will depend on develant of the ability to
transfer qubits from one technology to another and back,reiglear spin— electron
spin« photon [227[-159,41]. It will also require development ajaithms capable
of taking advantage of such an architectural feature, pnebly based on the classical
techniques of caching, virtual memory, and out-of-cor@atgms [171[186].

For all guantum computing technologies, we are enteringethaevhere automatic
and semi-automatic design tools are needed! [327,[316, 8frimary theme of ar-
chitecture research going forward will no doubt be crea#ing utilizing heterogeneity
in structures. Optimizing the choice of hardware strucptieeir layout and intercon-
nections, and the algorithms to be run on them is a complexg@mothat will require
powerful tools. Even for algorithms as simple and regulaa@thmetic, many map-
pings of qubits to nodes (and gates to bus time slots) arelpestdo not claim the
arrangements presented here are optimal. We are inva@stjgatther layouts using
evolutionary algorithms, and expect to report those resatlia future date. Other re-
searchers have been doing excellent work on tools for autorganeration of QEC
algorithms and structures, especially for ion traps; cadd improvement in these
tools holds the key to fast, accurate research into quantumpater architectures.

In the early 1980s, although chip layout was damea computer, it was mostly
doneby a human being — including much of the verification (at Caltettvas com-
mon to post a plot of a chip layout on the wall for visual ingp@t and correction
by passers-by). A decade later, engineers often mused thad ibecome impossible
to design a computer without using one; the layout and eajweeoialidation of the de-
sign, including design rule checking and simulation at bogical and electrical levels,
could only be done by computer, and designs were far too aanplget right without
the validation. Obviously, detailed simulation of a largeagtum computer requires a
guantum computer; the first large-scale quantum computess be built without data
from the most desirable simulations. When will a quantum goter first be used to
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design its successor, and when will it become indispengatile so?

8.3 Prospects

Few of the researchers working on implementations of guaistmputing will commit
to a timetable for delivering a machine large enough, rédignough, and fast enough
to solve classically intractable problems. Off the receame are optimistic that “step
functions” in total capabilities are on the horizon; othars pessimistic enough to say,
“I'm not sure we will have a useful quantum computer in mytiifiee.”

Personally, | am optimistic. | believe we are on the vergdepging onto a Moore’s
Law-like growth curve, with the number of qubits entangledisingle state growing
exponentially over a sustained period. lon trap systemganerating enormous ex-
citement, and the technical problems surrounding them sed® well on their way to
being solved; a Moore’s Law-like curve seems very plaudiiniehis technology. Sys-
tem architects have already begun making serious contritmiin this area. Solid-state
technologies such as quantum dot and Josephson junctidrase hurdles to clear for
individual qubits, including coherence time, gate quadihd fast, reliable single-shot
measurement. Once those problems are solved, it seem$lpdssit the number of
gubits on a chip can grow quite rapidly; when this step fuorctiappens, the need for
system-level architects will be immediate. All technokegyias integration levels grow,
will need improved control systems. The existing rack-maguipment will quickly
become prohibitive in both space and money.

Once any of these technologies becomes “turn-key” readihatosystem design,
fabrication and experimentation are available to lay systfolk rather than the initiates
of physics, interest in quantum computation will explode aystems will develop
rapidly. When the physical technology reaches the pointitidividual researchers
can create quantum computer designs and fabricate therowvitledicated facilities,
as the MOSIS project did more than two decades ago for VL®Ibtse of capable
researchers will broaden dramatically [B25,1267]. Puttimse systems in the hands of
hackers may also result in useful algorithms. We are, irceffe the time of Babbage
asking what Knuth, Lampson and Torvalds will do with the maehk we build.

The most prominent proposed use of quantum computers tedgtyar’s algorithm
for factoring large numbers, which has the potential to middeewidely used RSA
public-key cryptosystem and Diffie-Hellman key exchangetqeol insecure. The en-
crypting operations and the execution of Shor’s algoritmey aot coincidentally, both
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O(n?) for n-bit keys. The number of qubits we can build in a quantum sgs¢emuch
smaller than the number of classical bits we build in a systerd both manufacturing
and operating costs for qubits and quantum gates will remmainy orders of magni-
tude more expensive than classical bits and gates for tlesdernble future. Classical
systems can therefore afford to go to larger key lengths farereasily than a quan-
tum system, staying ahead in the cryptographic arms ratteo(ajh this cost must be
borne by all users, not those breaking the codes). Howdwerkriown existence (or
even imminent delivery) of even a single large quantum cderpmay prompt a shift
away from cryptosystems perceived to be vulnerdblhus, Shor’s algorithm alone is
unlikely to be adequate economic incentive for the develaprand purchase of more
than a handful of large quantum computers.

Whether or not a specific quantum computing technology ifulisepends on the
availability of important algorithms (e.g., Shor’s algbrm) and supporting algorithms
or subroutines (e.g., the modular exponentiation necgssaun Shor’s algorithm) that
map efficiently to a system built on the technology. Futuneettsoments in algorithms,
therefore, can make an architecture useful which had eadien dismissed due to lack
of interesting, practical applications.

The need for hardware/software co-design is very much idesde here. Because
guantum computation in general, and architecture in pdaicis immature as a field,
we start adrift on Lampson’s Sea. This thesis charts a caavezrd a particular goal,
and maps out some of the major shoals. Course correctiom®, s@jor, are inevitable,
but our sails are full and we have a guide star to follow. To beraplete system, many
subsystems must be developed. Indeed, not just the subsyttemselves, but the
developmentoolsmust be built. Chip layout tools must integrate smoothlynwvaibe or
more of the commercial successors to early VLSI tools sutheablagic toolkit [257].
We need to develop the quantum equivalent of classical deslgs [225], and may ul-
timately wish to use direct silicon compilation to physicatuits from programs[26].
Compilers that optimize a circuit are already being devethmew back ends to cre-
ate both hardware and software will allow better optimzatiat the expense of tool
complexity.

2We wish to point out here that quantum key distribution doassolve the problems that Shor's
algorithm create$1261].
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8.4 Final Words

When | began working on quantum computing three years ag@sl maive about a
great many of the technical aspects. | wanted to focus owaddtfor quantum com-
puters, and | was especially curious about how our claseieghanisms for resource
management (such as semaphores) and naming — two of therikejofs of an oper-
ating system — would translate into the quantum world. | glyicliscovered that the
structure of the machines themselves was not yet advanoedkeno work seriously on
such topics. Surveying the state of hardware proposalsctrne clear that there was
much room for jacks-of-all-system-trades like me to cdmite. Each time | opened
one door, | found another. Sometimes | found that someon@hladked the door be-
fore me, and | was happy to walk through on their work. Somesinh found the door
locked, and faced the task of picking the lock myself. | amapéal with what | have
accomplished, but not satisfied; | imagine many, many prixkigears yet pushing
beyond what we currently know, though it is not always obsgienactly what iis that
we don’t know.

| wish to close with two of my favorite quotes. “Life is eithardaring adventure or
nothing,” Heller Keller said. Even when things don’t workt@ecording to the original
plan, you accomplish something along the way, if you arelflexand work hard. You
must let the path teach you, as much as you choose the path.

Butter tea and wind pictures, the crystal mountain, and blue
sheep dancing on the snow — it’'s quite enough! Did you see the
snow leopard? No! Isn’t that wonderful?

Peter Matthiessen, The Snow Leopard
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Glossary

In such an interdisciplinary thesis, a glossary would seeiet essential. The math-
ematical terms are defined hesgtremelyinformally, for the benefit of newcomers to
the field.

ancilla (plural ancillae) Bits holding temporary variables usedimiy a reversible
computation that must be returned to their initial statdnatdnd of the com-
putation.

bisection In a network, the number of links that must be cut to dividerikévork in
half.

bra Dirac notation for a complex-conjugate row vectap|. See alsdet

cluster state computing
Also calledone-way computingr measurement-based computjéd@4,250].
Has nothing to do with classical computing clusters; thetelustate is a very
large entangled state which serves as a computing substrate

decoherence
The degradation of the state of a quantum system as it insendit its envi-
ronment in ways that are impossible to adequately chaiaet@auses errors
in qubits.

decoherence free subspace (DFS)
A form of error management in which logical states are endadé¢herela-

tive state of multiple qubits 206, 140, 205].
degree The number of links, or connections to the network, at eacteno
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density matrix

diameter

Describes the statistical state of a quantum system. Forgubit system, a
2" x 2™ matrix. Also called thalensity operatarand usually writterp. A
valid density matrix has tracér(p) = 1, and the diagonal elements are the
probability of finding the system in the corresponding stelten measured.

The largest number of hops through the network to get fronmaae to any
other.

entanglement

full-duplex

half-duplex

The property of two or more qubits in which operations on offecathe
state of the other. For pure states, corresponds roughhetqubits having
dependent probabilities for their stat&arami-tsukiin Japanese.

A type of link in which data can be transferred in both direot at the same
time. Telephones are generally full-duplex.

A type of link in which data can be transferred in either dil@t, but only in
one direction at a time. Many computer buses are half-duplesh-to-talk
walkie-talkies are half-duplex.

ket Dirac notation for a column vector). For ann-qubit system, consists of
2" entries. See alsora.

link A physical connection in a network between two nodes, or eermtt a
piece of dedicated networking equipment such as a routey. bdaerial or
parallel.

mixed state
A state which has partially decohered due to interactioh wstenvironment;
must be represented by a density matrixhich does not havér(p?) = 1

mux Multiplexer.

network In this dissertation, a collection of links that connect mjuan computer
nodes together. Often used in the quantum computing litexdb mean
circuit or program.

node A computational element attached to a network.
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probe beam
For the qubus, the high-intensity beam that interacts viaghcfubits.

pure state
A quantum state about which we have maximal knowledge; ibtsemtan-
gled with the environment. A pure state has- p*> andTr(p?) = 1. A pure
state can be written in state-vector form|as.

qubit A two-level quantum system that obeys DiVincenzo’s cragthe basic unit
of quantum information. A qubit may be in a superpositiontstwo states.
Qubits may be physical or logical.

qubus A system that uses a strong probe beam and weak nonlinsddtentangle
two or more qubits over a distance.

qubyte Eight qubits.

separable
Two quantum systems that are not entangled are separable.

simplex A unidirectional link.

superposition
Two or more solutions to Schrodinger’s equation addedttagyeto form a
single state, with their weights adjusted so that the to&ght is still one.
Kasane-awas& Japanese.

trace The sum of the diagonal of a matrix.

transceiver qubit
A physical qubit that connects to a qubus.

unitary transform
The most common mathematical representation of a quanttenfgaann-
qubit gate, 2" x 2™ unitary matrix that effects a rotation in the appropriate
space. A unitary transforiti satisfies the condition that'U = UUT = 1.
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List of Papers and Presentations

Peer-Reviewed Journals

1. R. Van Meter and M. Oskin. Architectural implications afaptum computing
technologiesACM J. Emerging Tech. in Comp. Sy&(1), Jan. 2006.

2. R. Van Meter and K. M. Itoh. Fast quantum modular expoméiom. Physical
Review A71(5):052320, May 2005.

International Conferences

1. R. Van Meter, W. J. Munro, K. Nemoto, and K. M. Itoh. Distribd arithmetic
on a quantum multicomputer. IAroc. Int. Symp. on Computer Architecture
(ISCA33) Jun. 2006.

2. R. Van Meter, K. M. Itoh, and T. D. Ladd. Architecture-dagent execution
time of Shor’s algorithm, IrfProc. Int. Symp. on Mesoscopic Superconductivity
and Spintronics (MS+S2008¥eb. 2006.

3. R. Van Meter. Trading classical for quantum computatisimg indirection. In
Realizing Controllable Quantum States: Proc. Int. SympMa&soscopic Super-
conductivity and Spintronics (MS+S200#&)ar. 2004.

National Conferences and Workshops

1. R.Van Meter. Communications topology and distributibthe quantum Fourier
transform. InProc. Tenth Symposium on Quantum Information Technology
(QIT10), pages 19-24, May 2004.
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APPENDIX B. LIST OF PAPERS AND PRESENTATIONS

Teaching

1.

Jun. 2005: WIDE Project School of Internet, “Introduatio Quantum Comput-
ing”, a 3-day intensive short course on quantum computifgred via satellite
and Internet. Attended by approximately fifty students fridepal, Indonesia,
Laos, Thailand, Japan, Malaysia, and Bangladesh.

Sept. 2004: U. Aizu, “Introduction to Quantum Computing”3-day intensive
short course on quantum computing offered to U. Aizu stuglntcredit.

Other Presentations

1.

10.

11.

“Fast Quantum Modular Exponentiation,” Caltech Workstom Classical and
Quantum Information Security (CQIS), Dec. 2005.

. “The Design of a Quantum Multicomputer,” USC/ISI, Dec030

“Fast Quantum Modular Exponentiation,” BBN, Aug. 2005.

“Quantum Computin@ystemsState of the Art, Summer 2005,” Carnegie Mel-
lon University, Aug. 2005.

“Fast Quantum Modular Exponentiation,” HP Labs, Brisfan. 2005.
“Fast Quantum Modular Exponentiation,” Oxford Univéysdan. 2005.
“Fast Quantum Modular Exponentiation,” MIT, Nov. 2004.

“Accelerating Shor’s Algorithm Using Fast Quantum MaaiuExponentiation,”
2004 Workshop on Information Security Research (invitéd)kuoka, Japan,
Oct. 2, 2004.

“Introduction to Quantum Computing,” Keio Shonan FujisaCampus, June 3,
2004 (in Japanese).

“Trading Classical for Quantum Computation Using Iedtion,” ERATO Kyoto,
April 15, 2004 (in Japanese).

“A Computer Systems Research Agenda for Quantum CongpuiNara Institute
of Science and Technology, April 16, 2004 (in Japanese).



12.

13.
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“Communications Topology and Distribution of the Quamt~ourier Transform,
National Institute of Informatics, April 22, 2004.

“A Computer Systems Research Agenda for Quantum CongputNTT Basic
Research Laboratory, October 7, 2003.
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