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Abstract

X-ray crystallography is the most widely used method
for determining the three-dimensional structures of
proteins and other macromolecules. One of the most
difficult steps in crystallography is interpreting the
electron density map to build the final model. This is
often done manually by crystallographers and is very
time-consuming and error-prone. In this paper, we
introduce a new automated system called TEXTAL
for interpreting electron density maps using pattern
recognition. Given a map to be modeled, TEXTAL
divides the map into small regions and then finds re-
gions with a similar pattern of density in a database of
maps for proteins whose structures have already been
solved. When a match is found, the coordinates of
atoms in the region are inferred by analogy. The key
to making the database lookup efficient is to extract
numeric features that represent the patterns in each
region and to compare feature values using a weighted
Euclidean distance metric. It is crucial that the fea-
tures be rotation-invariant, since regions with similar
patterns of density can be oriented in any arbitrary
way. This pattern-recognition approach can take ad-
vantage of data accumulated in large crystallographic
databases to effectively learn the association between
electron density and molecular structure by example.

Introduction

Interpreting electron density maps is one of the most
challenging and time-consuming aspects of X-ray crys-
tallography. There are several steps in solving the
structure of a protein or other macromolecule by crys-
tallography (Stout & Jensen 1989). First, the molecule
must be purified and crystallized. Then X-rays are
passed through the crystal, and diffraction patterns are
collected at various angles. The diffraction patterns
represent the Fourier transform of the electron density
in the unit cell, so, in principle, the inverse Fourier
transform of the diffraction pattern could be used to re-
construct the electron density pattern. However, this
is complicated by two facts. First, the quality of the
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data (number of reflections, amount of noise) can limit
the resolution of the reconstructed density. Second,
the diffraction patterns themselves only provide am-
plitudes; phases are also needed for the inverse Fourier
transform, but cannot be directly measured. Hence
a number of experimental techniques such as MIR,
MAD, and molecular replacement, along with recent
advances in computationally-intensive direct methods
(Chang et al. 1997), have been devised to make initial
inferences of approximate phases. Phases are usually
also iteratively refined to improve the fit of a model to
the data (Briinger, Kuriyan, & Karplus 1987).

Once an electron density map is generated, it must
be interpreted to produce a molecular model with
atomic coordinates. This procedure is often done man-
vally with 3D visualization software on a graphics
workstation (Jones et al. 1991), and relies heavily on
the knowledge and expertise of the crystallographer.
It can take up to several months and may not even
be feasible for very large structures. While in general
the electron density should fall along the structure of
a molecule, there are a number of sources of distur-
bances that can make the density appear less repre-
sentative. Errors in phases can cause density to ap-
pear or disappear in random places; highly mobile side-
chains or backbones can result in weak density; and the
density in low resolution maps is naturally more dis-
persed. As a result of these effects, crystallographers
often make mistakes in structure determination (Jones
& Kjelgaard 1997).

Because interpreting electron density maps is such
a time-consuming and error-prone process, there is
a great need to automate the process. Several ap-
proaches have been proposed for automating the in-
terpretation of electron density maps. One class of
approaches focuses on trying to identify likely posi-
tions of atoms within a map. One of the earliest
examples is Greer’s (1985) skeletonization algorithm.
A more recent method, called critical-point analysis
(Fortier et al. 1997), examines the gradient of the
density to estimate the locations of atoms. Another
class of approaches generally uses skeleton atoms (or
even manually-picked C, atoms) as a starting point



and tries to build the rest of the structure from them.
Fragment-fitting (Jones & Thirup 1986) uses a se-
quence of several consecutive C,’s to look up candidate
structures, including side-chain atoms, in a database
to add to the model. Holm and Sander (1991) and
Levitt (1992) each extend this idea with more sophis-
ticated search and conflict-resolution strategies. Glas-
gow, Fortier, and co-workers have proposed an ap-
proach called Molecular Scene Analysis, in which com-
putational imagery routines would be used to match
geometric patterns of density to a database of proto-
types (Fortier et al. 1993). Finally, CRYSALIS (1983)
is an expert system that takes into account a variety of
knowledge sources and constraints, such as the amino
acid sequence (if known), the preference for hydropho-
bic residues in the core of the protein, etc., in order
to construct a plausible model from an initial set of
pseudo-atoms.

Many of these approaches have been demonstrated
to work well on small proteins with high resolution
maps. However, new methods are needed for gener-
ating more accurate models for larger proteins with
medium- to low-resolution maps. Speeding up the in-
terpretation of electron density maps with automated
systems will be especially important to various large-
scale Structural Genomics efforts that have recently
been discussed (Gaasterland 1998), which aim to solve
a wide range of protein structures to quickly increase
our knowledge of fold-space, essentially by brute force.

In this paper, we describe a new system, called
TEXTAL, for automating the interpretation of elec-
tron density maps. TEXTAL is based on pattern recog-
nition. Isolated regions (e.g. spheres of 5A radius) in
a map are matched against a database of regions in
other maps whose structures have already been solved.
When a match is found, the local structure is inferred
by translation and rotation of atomic coordinates from
the matched region of the known protein. Hence,
the non-trivial relationship between electron density
and molecular structure can be learned from exam-
ples. What is unique about our approach is using the
electron density itself as a basis for the matching. To
accomplish this, we extract rotation-invariant features
of the density in a region and use these features to look
for candidate regions with similar patterns of density.
In the remainder of this paper, we give an overview of
the TEXTAL system, and we describe some results of
using it to construct models for both artificial and real
electron density maps to demonstrate the effectiveness
of this pattern-matching approach.

Methods
Outline of the TEXTAL Program

In the TEXTAL program, an electron density map is
treated as a series of overlapping spheres of density
containing information about regions of the protein
structure. The size of the spheres is chosen to be 5A

to exploit the significant amount of repetition in pro-
tein structures at this scale. For example, a 5A sphere
can usually cover about one side-chain and some adja-
cent backbone. While there is great diversity among
protein structures, individual side-chains often adopt
one of a few canonical conformations (rotamers), and
backbone angles are often restricted to a small set of
predictable combinations, depending on the local sec-
ondary structure.

In order to efficiently search a large database of
spherical regions for similar patterns of density, we ex-
tract characteristic features and use them for pattern
matching. Because matched regions in other proteins
can be positioned in any arbitrary orientation, use-
ful features of the electron density must be rotation-
invariant (i.e. constant, even if the density in the re-
gion is rotated around the center) to detect similar-
ities. We developed fifteen rotation-invariant numeri-
cal features that characterize aspects of the patterns in
electron density. The features were capable of associat-
ing similar regions of electron density among different
maps.

The overall method of TEXTAL involves the follow-
ing steps for modeling a region in an unknown map: 1)
feature matching between unknown regions and regions
in the database, 2) evaluating the candidate matches
by calculating density correlation, and 3) building the
model (see Figure 1). The input information required
for TEXTAL is an “unknown” electron density map
and a database of feature-extracted maps. TEXTAL
first extracts the features of the region under investiga-
tion in the unknown map, and this region is compared
with all of the regions in the database in terms of the
feature values alone. We evaluate how similar two re-
gions are in terms of features by measuring the differ-
ence in the feature values for the two regions using a
weighted Euclidean distance formula,

d(R1, R2) = \/Z w; (F;(R1) — Fi(Ry))* (1)

where F;(R;) and F;(R;) are the features values for
the unknown region and a region in the database, re-
spectively. This step is implemented as a simple look-
up procedure through the database. Similar regions
should have low differences between the feature values.

The program then retains the top K matching re-
gions by feature comparison, where K is a user-
selectable parameter. These K regions are further ana-
lyzed for similarity by calculating a density correlation
coeflicient. The correlation coeflicient measures how
similar two regions are in terms of their patterns of
electron density. Since electron density maps are a dis-
crete representation of a continuous 3D function, sam-
pled at a finite number of evenly-spaced lattice points,
the density correlation can be calculated by:
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Figure 1: Architecture of TEXTAL.

where z is the density value in one region that is com-
pared with the density value in another region y over
all lattice points z, and = and y are the average densities
in each region. However, since the similarity between
two regions is required to be independent of orienta-
tion, the true measure is the mazimum density cor-
relation over all possible superpositions between two
regions. Because an exhaustive search could require
evaluating thousands of candidate rotations, we use a
heuristic procedure called peak-matching to find the ap-
proximately optimal rotation. This method picks the
top n peaks or lattice points with the highest densities
that are at least 1A apart in each sphere and superim-
poses them in all reasonable combinations. Nine peaks
(n = 9) were found to be sufficient for our experi-
ment, allowing the optimal rotation to be identified
to within about 6°. Typically, evaluation of only a
few hundred candidate rotations (based on peak com-
binations) were required to find the maximum density
correlation. Other, more efficient, methods for finding
the optimal rotation and calculating the density corre-
lation are being developed. We observed that regions
with a density correlation of 0.7 or higher often ap-
peared to have highly similar patterns, and often had
similar local structures as well. Hence we used a cutoff
of cc > 0.7 as the definition of a match between regions,
though a more quantitative analysis is on-going.

Database of Electron Density Maps

To accumulate a sufficient number of maps for the ini-
tial development and evaluation of TEXTAL, we used
a database of artificial maps generated from 38 pro-
teins in the PDB, spanning a wide range of a and
3 fold classes. These maps were created by placing
a Gaussian distribution of density around each atom
(using Spock, http://quorum.tamu.edu/spock), scaled
such that the density was 1.0 at the van der Waals ra-
dius. The resulting maps have a uniform scaling, with
an average density of around 2.0 and a standard devi-
ation of around 0.9. All of our maps were created in
the Py space group (with orthogonal axes).

Table 1: Feature types and descriptions and number.

Feature Type Description N

Basic characteristics | 1. average density 2
of spheres of density | 2. distance from center of
sphere to center of mass

Moments of inertia magnitude of primary, sec,, 6
and tertiary moments; ratios

among moments

Statistical properties | standard deviation 3
of density skewness, kurtosis
Spokes of density min, mid, max, and sum of 4

within spheres angles between 3 spokes

These maps are ideal in that they contain the most
accurate representation of density for each amino acid,
without any noise. Still, the maps in our database
represent a wide range of structures within real pro-
teins, and thus contain a great diversity of demsity
patterns with which to match unknown regions. The
unknown maps we modeled were prepared in the same
way, which is important to ensure that the database is
representative and contains relevant matches.

Feature Extraction

All of the maps in the database are interpolated onto
an orthogonal 1A-spaced grid to facilitate the feature
calculations. The maps for all of the proteins in the
database were feature extracted by calculating the val-
ues of various features over a sample of spherical re-
gions. Currently there are four major types of fea-
tures (see Table 1) and these are further differentiated
to make a total of fifteen. All of these features are
rotation-invariant. A brief description of the feature
types follows; a more detailed description of the calcu-
lation of the features can be found elsewhere (Ioerger,
Holton, Christopher, and Sacchettini; manuscript in
review).

We use two features to express basic characteristics
of the patterns of density in each extracted region. The
first is the average density of the region, and the second
is the distance from the center of the sphere to the
center of mass. If two regions of density are similar
in overall pattern, their average densities should be
similar. Also, the center of mass for a region of density
should be at a similar distance to the center of the
sphere for a region with a similar pattern of density,
and this does not depend on orientation.

The second set of features is based on the moments
of inertia in a region. The moments of inertia for a
region characterize the distribution of density in three
dimensions. Each pattern of density has unique mo-
ments that describe its symmetry around its center of
mass. Moments of inertia are calculated by construct-
ing the inertia matrix (various density sums, weighted
by lattice-point coordinates). The eigenvectors of the
matrix define the inertial axes. So the matrix is diago-
nalized to obtain the eigenvalues, which are the corre-




sponding moments of inertia. The ratios of these mo-
ments provide additional information about the shapes
of the density (spherical, ellipsoidal, etc.) and are in-
cluded as three more features.

Statistical properties of the distribution of density
within each sphere are used as features as well. The
standard deviation describes the variation in the values
of densities for each candidate sphere. The third and
fourth moments of the distribution of data (skewness
and kurtosis) are also features. Skewness is a measure
of the asymmetry in the distribution. Only a perfect
Gaussian distribution has a skewness of 0.0; all others
are either skewed positively or negatively. The Kurto-
sis describes the “peakedness.” The distributions that
are sharply peaked will have less representation at the
limits of the distribution while broad peaks may be
over-represented. If two regions have a similar overall
pattern of density, the statistical measurements of the
distribution of density values should also be similar,
regardless of orientation.

The last category of features attempts to describe
the geometry of the density within each sphere. Given
a sphere of density centered at an alpha carbon, for
example, we expect that there should be three ma-
jor “tubes” of density (like spokes on a wheel) pro-
jecting out from this point: one for the side chain
and two for either direction of the main chain. The
spokes are representations of these tubes of density
and are calculated by computing sums over the density,
weighted by proximity to directional vectors originat-
ing at the center of the sphere, and taking the three
strongest vectors at least 75° apart. By measuring
the angles between these spokes, we are able to ex-
tract orientation-independent information about the
arrangement of tubes of density within each sphere.
There are expected to be similar angles between the
spokes in similar regions of density. Also, the sum of
the angles is an approximate indicator of the planarity
of the three spokes and should be similar to other re-
gions that have similar patterns of density.

The extraction of features from the database of maps
is done separately (offline) from the model-building
process. Since our experiments focused on building
models for regions centered on C, atoms, we extracted
features for all regions around all C,’s in our database
of 38 proteins. Each of the features was calculated for
each region over four different radii: 3, 4, 5, and 6A.
This expanded the feature set to 60, allowing for the
possibility that different features might be more effec-
tive when calculated over different radii (for example,
to increase stability by covering a larger area, or to
reduce sensitivity to noise by covering a smaller area).
We leave the choice of radius for each feature up to the
feature-weighting algorithm, described below.

During model-building, the features are extracted
from a new region in an unknown map, and the feature
comparison is performed to each region in the database
using the pre-calculated feature values. Given the sim-

plistic nature of the current features, feature values
may occasionally be spuriously similar between an un-
known region and a database region, even when the
actual density patterns are dissimilar. However, the
true measure of similarity is the density correlation.
Therefore, we use regions ranked highly by small fea-
ture differences to determine a list of candidate regions
for the computationally more expensive but more ac-
curate density correlation.

Feature Weighting

Because some features may be more useful than oth-
ers for distinguishing patterns of electron density, a
weight was applied to each feature. The determination
of weights was made using the Slider algorithm, which
is described in detail elsewhere (Ioerger; submitted to
IEEE Transactions on Pattern Analysis and Machine
Intelligence). The core algorithm involves finding the
optimal mixture of two features at a time that max-
imizes relative rankings of a set of matches against a
set of non-matches in a database of examples. Estima-
tions of changes in rankings are made by solving sim-
ple linear equations. The method is extended to larger
combinations of features by optimizing each against
the rest in random order. We used pairwise matches
(with ec > 0.7) among 263 C,-regions in an electron
density map for leny (enoyl acyl carrier protein re-
ductase, InhA), to optimize the weights (and radii)
of the features with Slider. For example, the four
most highly weighted features were: ratio of first to
third moments of inertia over 4A (w=0.158), distance
to center of mass over 4A (w=0.148), average density
over 5A (w=0.145), and minimum spoke angle over 4A
(w=0.118). These weights only need to be computed
once for a given set of rotation-invariant features, and
were then incorporated as the w;’s in Eq. 1 to calculate
distance scores for looking up matches in the database
for each new region.

Modeling Experiments

To evaulate the potential of pattern matching for in-
terpreting electron density maps, we used TEXTAL to
build a model for an “unknown” protein, ludi (uracil-
DNA glycosylase). 1udi is a medium-sized protein
with 244 residues (only 227 with coordinates defined),
containing both a-helices and (3-sheets. An artificial
electron density map was generated for 1udi using the
Gaussian-density procedure described above. The goal
of this experiment was to model the local structure (de-
termine the atoms and their coordinates) around each
of the C, atoms in 1udi using TEXTAL, and then com-
pare these predictions to the known structure.

The database for this experiment consisted of the 60
feature values extracted for 8,055 regions centered on
all C, atoms in the 38 proteins in our database (com-
puted offline). Then, for each region in the unknown
(1udi), the following steps were taken:



1. Extract its 60 feature values.

2. Calculate the feature-based distance to each of the
regions in the database, using Eq. 1 with the feature
weights determined by Slider.

3. Rank the regions and keep the top K = 50 candi-
dates.

4. Compute the density correlation to each of the can-
didate regions, using the peak-matching routine to
determine the optimal rotation.

5. Identify the best match, with maximum density cor-
relation.

6. Retrieve the coordinates for the backbone and side-
chain atoms from the original protein in the database
for the best match.

7. Translate the atoms to the origin and rotate them
by multiplying their coordinates by the optimal ro-
tation matrix found in calculating the density corre-
lation (Step 4).

8. Translate the atoms into the new model, superim-
posing the C, atom on the center of the region in
the unknown.

This procedure was carried out on all 227 C, positions
in the map for ludi. The resulting set of atomic coordi-
nates were concatenated to construct the model. Both
the identities of the matched residues and the simi-
larities in atomic coordinates were compared to the
original structure for ludi.

Results

TEXTAL was able to identify high correlation matches
for almost all of the regions in ludi. The average den-
sity correlation for the top match to each region was
0.701, which is consistent with our informal observa-
tions of regions with visually similar patterns of den-
sity. Thus: 1) the database in this simplified context is
large enough to contain adequate examples for finding
matches for unknown regions, and 2) the feature-based
lookup process is effective in filtering those matches to
the top so they can be identified more quickly by eval-
uating density correlations. Not all of the residues had
matches of equally high quality. Table 2 shows a break-
down of the average density correlations by residue
type. Residues such as alanine, proline, and isoleucine
had the highest correlation matches (¢¢ > 0.73), while
cysteines had the lowest quality matches on average
(c¢ = 0.59). These trends are probably a combination
of the effects of: 1) relative frequency of the individ-
ual residues in the overall database (e.g. cysteines are
more rare), and 2) flexibility of side-chains in a pro-
tein context (e.g. alanine and valine are small and
hydrophobic, with few degrees of freedom, increasing
the structural similarity among instances, and hence
providing a higher frequency of common density pat-
terns).

Table 2: Average correlation coefficient of the best
matches for residues of each type in ludi.

Ala Ser Gly Leu Lys Val Thr
0.730 | 0.692 | 0.670 | 0.704 | 0.726 | 0.716 | 0.698
Pro Glu Asp Asn Ile Gln Arg
0.732 | 0.723 | 0.722 | 0.702 | 0.746 | 0.682 | 0.701
Phe Tyr Cys His Met Trp
0.655 | 0.676 | 0.587 | 0.670 | 0.707 | 0.641
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Figure 2: Alignment of the sequence for the model built
by TEXTAL (bottom) in comparison to the original
sequence for ludi (top). Exact matches are indicated
with vertical bars, and structurally similar matches are
indicated with a colon. Structural similarity was based
on the following partition of the amino acids: A, G, CS,
P, TVI, LDN, EQ, KRM, FWYH.

Even though matches with high density correlation
were found for most of the regions in ludi, the match-
ing region was not constrained to have the same residue
type. Nonetheless, identical residues were retrieved al-
most 42% of the time. Figure 2 shows an alignment
of the sequence of the model built by TEXTAL to
the original sequence for 1udi. There are many places
where TEXTAL was able to recognize the exact amino
acid based only on similarity in local electron density
patterns. When a different amino acid was retrieved
by TEXTAL, it often had at least a similar structure
(61% of the time). This is reasonable, since residues
such as glutamate and glutamine or valine and threo-
nine are essentially indistinguishable based on density
patterns, and residues such as valine and isoleucine or
phenylalanine and histidine look so much alike that
occasional mismatches are inevitable. In fact, the den-
sity patterns of all of the aromatic residues - His, Phe,
Tyr, and Trp - generally differ only beyond the bound-
aries of the 5A surface. Table 3 shows the number of



Table 3: Matches in 1udi by residue type. The first row
gives the total number of occurrences of each residue
in ludi, the second row give the number of those that
were matched by an identical residue in the model, the
third row gives the number that were matched by a
residue with a similar structure, and the last row gives
the percentage of structurally-similar matches.

Ala | Cys | Asp | Glu | Phe | Gly | His

# in 1ludi 19 6 10 10 9 13 10
# ident. 12 0 1 2 3 12 4
# similar 12 1 5 3 8 12 6
% similar 63 17 50 30 89 92 60

Ile | Lys | Leu | Met | Asn | Pro | Gln

# in ludi 8 5 22 3 8 20 5
# ident. 2 1 13 0 1 17 0
# similar 6 1 17 1 6 17 0
% similar 75 20 77 33 75 85 0

Arg | Ser | Thr | Val | Trp | Tyr

# in 1ludi 23 12 12 20 7 5
# ident. 4 5 6 7 2 3
# similar 9 5 7 13 5 4
% similar 39 42 58 65 71 80

residues of each type in ludi that were exactly identi-
fied by TEXTAL, and the number that were matched
to a residue with a similar structure. We note that a
post-processing procedure that exploits knowledge of
the sequence of the unknown protein might be able to
resolve ambiguities of amino acid identity, and in al-
most all cases, a residue of the right type was found
within the top 50 matches with only slightly lower den-
sity correlation.

In addition to correctly identifying many amino
acids, TEXTAL often retrieved matches that had a
similar molecular configuration. For example, residues
in the model often had similar chi-angles in the side-
chains and phi/psi-angles in the backbone. Figure 3
shows a striking example of the ability of TEXTAL to
create a reasonable model for a segment of six residues
in ludi. Notice how Pro-43 is matched by another Pro,
and how Glu-39 is matched by an almost identical ro-
tamer of Gln. Generally speaking, TEXTAL correctly
re-oriented the matched regions so that the atoms in
the side-chain mapped onto the position of the side-
chain in the unknown, and the backbone mapped onto
the backbone. The orientation of the backbone was oc-
casionally reversed (“flipped”). However, this occurred
in only 11 out of 227 residues, and could also poten-
tially be addressed using a post-processing routine.

To quantitatively assess the ability of TEXTAL to
predict atomic coordinates, we measured the root-
mean-square (RMS) distance between various subsets
of atoms in the model and the original structure. The
RMS for backbone atoms between ludi and the model
built by TEXTAL (excluding C, atoms, which are
guaranteed to have 0.0 RMS by the procedure) was
0.42A (this calculation did not include the 11 residues

.
GLU39:GLN

NEv%
ASN42:ASP

Figure 3: Comparison of a fragment in ludi with the
model built by TEXTAL. Amino acid positions 38 -
43 are shown. ludi is shown in the darker shade, and
the model is shown in the lighter shade. The density
surface is a 1o contour of the Gaussian map. (Image
created using MolScript, P.J. Kraulis, 1991.)

with reversed backbones). Much of the variance in
backbone coordinates was due to the carbonyl oxygens
(RMS=0.74), which are notoriously difficult to place in
density. The RMS for backbone nitrogens was 0.30A.
Comparing atoms in side-chains was more difficult be-
cause the matched residues did not always have the
same structure. However, by heuristically pairing-up
nearest neighbors (atoms within at least 3A of an atom
in the other region), the RMS among side-chain atoms
was found to be 0.64A, with over 89% of the atoms
assigned to a partner.

Preliminary Results on Real Maps

To evaluate the potential of the approach described
in this paper for solving real structures in a labo-
ratory, we used TEXTAL to build models from two
experimentally-derived electron density maps. These
maps were constructed from the original structure fac-
tors for these proteins deposited in the PDB by us-
ing X-PLOR to take the inverse Fourier transform of
| Fops|, with phases calculated from the model, ¢.qic-
Thus, these maps have all the noise associated with
poorly defined atoms in real proteins, though minimal
phase error.

In order to construct reasonable models for these
maps, we had to make several modifications to the
TEXTAL program. First, the initial database con-
tained maps constructed from Gaussian densities,
which are not necessarily representative of the pat-
terns of electron density found in real maps. There-
fore, we constructed a new database of maps by gen-
erating structure factors from the atomic coordinates
of the original protein structures directly (i.e. |Feaic|),
and then back-transformed those for 50 proteins in the
PDB. We also used several additional features based
on simple geometric concepts, and we increased K to



Table 4: Results on using TEXTAL to solve real maps,
and comparison to other methods. SMM = Segment
Match Modeling (Levitt, 1992). MaxSprout (Holm and
Sander, 1991). “all-a”=all-atom; “ma-chn”=main-
chain; “si-chn” =side-chain.

all-a | ma-chn | si-chn
method protein RMS | RMS RMS
TEXTAL crambin 2.21 1.88 2.80
flavodoxin | 2.5 1.9 3.2
SMM crambin 1.51 0.64 2.17
flavodoxin | 1.71 0.54 2.39
MaxSprout | crambin 2.12
flavodoxin | 1.57 0.48 2.19

400 to improve the quality of the matching.

Maps for crambin (1abl, 46 residues) and flavodoxin
(1ag9, 198 residues) were constructed at a (fairly low)
resolution of 2.8A, with a 1A grid-spacing, as were
the maps in the database. Table 4 shows the results
of modeling these two proteins. Between the mod-
els built by TEXTAL and the original structures, the
RMS scores for all atoms are 2.2A for crambin and
2.5A for flavodoxin. By comparison, Levitt (1992) got
around 1.5A for crambin and 1.7A for flavodoxin us-
ing Segment Match Modeling, and Holm and Sander
(1991) got 1.6A for flavodoxin using MaxSprout (all-
atom RMS for crambin not reported).! Both of these
other methods assume prior knowledge of the C, po-
sitions, as we do, but they also assume the identity
of each residue is known before modeling. Therefore,
to make a fair comparison, we filtered the regions re-
trieved from the database by TEXTAL down to only
those identical to the residue being modeled (which
was not done in the experiments described in previous
sections). Since our models are guaranteed to have the
same sequence as the original structures, we can calcu-
late the RMS in the standard way (without having to
match-up neighboring atoms), and these are the scores
reported in the table.

The overall RMS scores produced by TEXTAL are
not quite as good as for other methods. However, the
feature types and weights have not been optimized for
pattern-matching in this database yet. When these
RMS scores are broken down into their components,
it can be observed that the RMS is slightly better
for main-chain than for side-chain, as is commonly
observed in other methods. The difference between
main-chain and side-chain RMS is slightly lower than

1t should be noted that comparable results are not
available from the Fortier and Glasgow group, since their
electron-density map interpretation approach based on crit-
ical point analysis is aimed at main-chain tracing. Their re-
sults are hard to compare to ours since: a) we assume the
C. positions are known a priori, and b) they do not report
RMS scores for side-chains, which is one of the priorities

for modeling in TEXTAL.

Table 5: Results for real maps, without filtering out
non-identical matches. The RMS calculation pairs up
neighboring atoms and takes the average distance be-
tween such pairs.

all-atom | main-chain
protein RMS(A) | RMS(A)
crambin 0.92 0.95
flavodoxin | 0.95 0.92

reported in (Levitt 1992) and (Holm & Sander 1991).
Our unusually high main-chain RMS could be due to
the occurrence of flipped residues in the model, which
we did not repair in this experiment (but could be re-
moved via a post-processing routine). We have not
yet added this or any other post-processing routines,
such as energy minimization, which could improve the
accuracy of our models in the future.

This experiment was conducted to compare models
built for real maps by TEXTAL to results reported in
the literature for other methods. However, it does not
adequately reflect the accuracy of TEXTAL as it was
intended to be used. In particular, we feel that requir-
ing matches selected from the database to have the
same identity as the residue being modeled biases our
results negatively. For example, there might be a good
match of a Gln to an Asp with high density correlation
that would be rejected in favor of the best Asp in the
database, which might have a much lower correlation.
Therefore, in Table 5 we show results for constructing
models for the real maps of crambin and flavodoxin
as we intended for TEXTAL. The models constructed
now do not have the same amino acid sequences as the
original structures. Hence, the RMS scores we report
are for the method of matching-up nearest-neighbor
atoms and calculating the average distance between
them, regardless of atom type. This is much less sensi-
tive to main-chain flips, and also gives good scores for
different side-chains superimposed in the same confor-
mation in space. The all-atom RMS’s using this meth-
ods are 0.92A for crambin and 0.95A for flavodoxin
- much more representative of the quality of models
that can be constructed by TEXTAL. Interestingly,
the main-chain RMS scores are almost identical to the
all-atom scores, and hence the side-chain RMS’s too.
This reflects the fact that the pattern recognition pro-
cess in TEXTAL treats all local atoms around a C,
equally, and does not give special attention to main-
chain atoms, as other methods do.

Discussion

Pattern recognition has proven quite effective in our
initial experiments, and has the potential to make the
automatic interpretation of electron density maps both
fast and accurate. The modeling experiment we ran
only took a few minutes per region being modeled (on
an SGI O2 computer workstation, without any effort



to optimize), and most of the time was spent in com-
puting the density correlations for the top 50 matches.
This illustrates the importance of extracting features
and using them to rank the large database of candi-
dates.

Before extending the method to more realistic set-
tings, one of the main limitations that we must address
is how to eliminate the need to know C, positions a
priori, which are usually not available in a true un-
known map. We could use a skeletonization algorithm
as a pre-processing step to identify likely locations of
C, atoms. Alternatively, we could use pattern recogni-
tion itself to locate these positions, perhaps by training
a neural network to learn to discriminate between C,
and non-C, positions based on the rotation-invariant
features. An important question would be how sen-
sitive the pattern matching is to having the spheres
centered exactly on a C,.

There are several ways in which we could potentially
improve TEXTAL. First, the performance of matching
in TEXTAL could be enhanced by introducing new
rotation-invariant features. There are many possible
sources for new features, for example based on geo-
metric shape analysis, arrangement of pseudo atoms
in regions, contour surface areas, spherical harmon-
ics, etc. Another possible improvement is to try to
make more intelligent decisions based on the observa-
tion that some residues are easier to match than others
(e.g. due to high prevalence or structural rigidity). If
the best match for an unknown region is to a residue
type that matches frequently, we might be more conser-
vative and explore other candidates, perhaps by taking
a vote among the top 50 matches.

We could also improve TEXTAL significantly by
adding various post-processing routines to integrate
the local models into a consistent global model. The
prediction of residues with reversed main-chains could
be addressed by rejecting such matches when the
neighboring residues disagree. A similar constraint-
processing procedure could be used to help disam-
biguate the identity of the amino acid being matched,
given knowledge of the protein’s sequence. Finally, af-
ter the global model is built, energy minimization could
be applied to regularize the structure and hopefully re-
duce the atomic RMS.
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