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Abstract 
 

Inefficient case retrieval is a major problem in many 
case-based reasoning systems, especially when case 
matching is expensive and the case-base is large. In 
this paper, we present a two-phase approach where an 
inexpensive feature-based method is used to find a set 
of potential matches and a more expensive and 
accurate case matching method is used to make the 
final selection. This approach has been successfully 
employed in TEXTAL™, a system that retrieves 
previously solved 3D patterns of electron density from 
a database to determine the structure of proteins. 
Electron density patterns are characterized by numeric 
features and an appropriate distance measure is used 
to efficiently filter good matches through an exhaustive 
search of the database. These matches are then 
examined using a computationally expensive density 
correlation procedure based on finding an optimal 
superposition between 3D patterns. We provide an 
empirical and theoretical analysis of some of the keys 
issues related to this method. In particular, we define a 
model for estimating how approximate various feature-
based similarity measures are (relative to an objective 
matching metric), and determine its relation to the 
number of cases that should be filtered from a given 
database to make the approach effective. 
 
 
1. Introduction 
 

 Case-based reasoning [14, 16] is a form of instance-
based learning [1], which is model free or non-
parametric [5] since prediction is done directly from 
the data without producing any explicit model of the 
problem domain. One of the essential steps in case-
based reasoning algorithms is case retrieval, where 

most similar cases are recalled from a case-base by 
performing case matching. There are compelling 
reasons for having large case-bases: extensive problem 
coverage and better quality of solutions. But a large 
case-base generally induces a degradation in system 
efficiency, especially if the case matching is expensive 
[17].  

 The approach we use is based on employing a 
computationally  fast,  feature-based   similarity   
measure (which we can afford to run over the whole 
case-base) to filter out a set of potential matches, given 
a query case. This similarity metric is expected to 
approximate a correct, objective, and usually expensive 
matching method; the latter can then make the final 
selection. This two-phase method for case retrieval has 
been previously proposed, in different flavors and 
application domains.  For example, in [7]  MAC/FAC 
(for “many are called but few are chosen”) is proposed 
as a general strategy for efficient, similarity-based 
retrieval. In [3], similar stratified or hierarchical case-
based reasoning methods are suggested in the planning 
domain.  Other notable related work include [4, 20]. 
 In our approach, a feature-based method is used to 
filter a reasonably small number of cases, say k, using 
the nearest neighbor rule [6]. Similarity between cases 
can be determined using a suitable, efficient feature-
based distance metric e.g. geometric measures (like 
Hamming, Manhattan, Euclidean, etc.), or probabilistic 
measures [2, 15].  
 There are several questions related to this approach 
that have received considerable attention [18]: What 
should be the size and composition of the case-base? 
At what point does the case-base become “saturated,” 
beyond which there is no gain in performance? How 
many cases should we filter? How good should 
features be in capturing relevant information about 



cases? Should the features used to measure distance 
between cases be weighted equally? If not, how are the 
weights chosen? What is the most appropriate 
similarity metric?     
 Some of these issues have been addressed in the 
context of TEXTAL™, a case-base reasoning system 
that automatically determines protein structures using 
X-ray crystallography methods [13, 11, 9, 10]. In this 
paper, we empirically and theoretically discuss how the 
proposed approach helps in the efficient and effective 
retrieval of density patterns in TEXTAL™. In 
particular, we examine how the choice of k influences 
the effectiveness of retrieval for various similarity 
measures, given a database. We also provide a method 
for determining a suitable k, based on a loss function 
that quantifies the extent to which the inexpensive 
feature-based similarity measure approximates a 
correct, objective metric. More specifically we try to 
represent how well the approximate measure ranks  
patterns in the case-base according to similarity to 
query cases. This method bears some resemblance with 
PAC learning [19]; here we try to find out how many 
cases we should look at to obtain probably 
approximately correct matches.   
 The rest of the paper is organized as follows: the X-
ray protein crystallography domain and TEXTAL™ 
are described in the next section. We then provide a 
general theoretical framework for the proposed case 
retrieval strategy. Next, we empirically analyze the 
effectiveness of the proposed approach in retrieving 
patterns of electron density in TEXTAL™, using 
various measures of similarity. The results are 
discussed, and compared to theoretically expected 
ones. We conclude by a general discussion, and 
describe current work to extend and complement the 
proposed approach.  
 
2. Protein crystallography & TEXTAL™  
 
Determining the 3D structure of a protein is a 
significant and challenging endeavor – it enables 
understanding of how the protein functions e.g. how 
protein enzymes work, which atoms are essential for 
catalysis, why one protein binds to a specific DNA 
sequence and not another. Furthermore, drug design 
can be based on the structure of proteins – for instance, 
if the active site of an enzyme is known, molecules can 
be designed to inhibit the enzyme. X-ray 
crystallography is the most commonly used method to 
determine the structure of proteins. One of the main 
steps in X-ray crystallography is to interpret an 
electron density map, which is obtained by the Fourier 
transformation of patterns that result from the 

diffraction of X-rays by the protein crystal. An electron 
density map shows how electrons are distributed over 
the macromolecule (Figure 1). Solving the structure 
essentially means fitting various known molecular 
structures (or amino acids) into the density (there are 
20 types of amino acids; proteins are essentially unique 
linear sequences of typically 100-1000 amino acids, 
which have several degrees of freedom and thus can 
take various angular conformations). The way in which 
the protein “folds” will largely determine its properties 
and functions. Fitting amino acids into the density is 
done by crystallographers, with the help of molecular 
visualization programs, drawing from experience on 
how to visualize 3D density patterns and other 
knowledge of the domain. The process is usually 
tedious and time-consuming, especially if the electron 
density data is noisy. TEXTAL™ automates this 
process of structure determination by first finding the 
positions of central carbon atoms in amino acids called 
Cα’s. This is done by a component of TEXTAL™ 
called CAPRA, or C-Alpha Pattern Recognition 
Algorithm [12]. TEXTAL™ then breaks down the 
electron density map into small spherical regions (with 
5Å radius, where 1Å = 10-10m) around the Cα’s 
determined by CAPRA, and for each region, searches a 
database for similar patterns of structures that are 
already solved (i.e. atoms and their coordinates are 
known). The fragments of solved   structures are 
assembled together, followed by stereo-chemical 
refinements and alignment with the known sequence of 
amino acids to produce a final model. The TEXTAL™ 
system is much larger in scope; for more details, refer 
to [13, 12, 11, 8] and  http://textal.tamu.edu:12321. 
 In this paper, we focus on one central problem in 
TEXTAL™: how to efficiently retrieve matching 
patterns of electron density from the case-base. One 
alternative is to use a metric called density correlation, 
which involves optimal 3D rotation and superposition 
between the two regions [10]. Since the number of 
possible rotations that need to be considered is very 
large, this method is expensive. The problem becomes 
practically intractable if we run this expensive metric 
on each of the ~50,000 regions of the database that we 
use. In fact, TEXTAL™ may take more than a day to 
solve a medium-sized protein structure. To speed up 
the process, we use an inexpensive, approximate metric 
to filter a relatively small number of cases (say k = 
500) on which we can afford to run the density 
correlation measure. This filtering enables reducing the 
computation time to a few hours. The inexpensive 
similarity methods that we use are based on finding 
differences between vectors of numeric features. These 
features are expected to characterize the relevant 
aspects of the spherical regions of density – example 



features include statistics of local density distribution, 
moments of inertia, distance to center of mass, etc. In 
TEXTAL™, we use 76 features; [10] provides more 
details about how features were defined and weighted. 
 It should be noted that there are pragmatic benefits 
in trying to keep k as low as possible – the quicker 
structures can be solved, the more flexibility it gives 
the crystallographer to try “what if” situations, 
especially in an interactive setting.  
 

 
 

Figure 1. Example of electron density around a 
fragment of a protein from Yeast called 1HQZ. 
The fragment consists of 9 amino acids. This 
stereo view has been made with Spock, a 
molecular graphics program written by Dr. J. 
Christopher (http://quorum.tamu.edu/spock). 
 
3. Framework for efficient case retrieval 
 

The filtering approach employed by TEXTAL™ is 
general and potentially useful for many case-based 
reasoning applications, especially those characterized 
by large case-bases, expensive matching methods, and 
noisy data. The general strategy can be stated as 
follows: given a query case q, N stored cases, our goal 
of finding the best match can  be met  if we  could use  
an objective  matching metric (called obj) to rank all N 
cases according to similarity  with q. Since this might 
be too expensive, we use an approximate similarity 
measure (called sim) to select k cases, and use obj for 
the final ranking of the k cases.  

In most applications, we may not be adamant about 
retrieving the very best batch, but content with 
something close enough. This notion of a “reasonably 
good” match is formalized by specifying a tolerance δ, 
based on which any one of the λ top matches of q is 
deemed good enough if: 

 
  [obj(q, m1)  -   obj(q,mλ)]/ obj(q, m1)  <  δ               (1)       

where mi is the ith best match according to the objective 
metric obj (we assume that obj and sim are positive and 
increase with similarity). 

Our aim can now be stated as follows: given a good 
enough match m for a query case q, we have to ensure 
that sim “catches” m within the k (say 500) filtered 
cases with probability ϕ (say 0.95) or higher (here we 
make the pragmatic choice of having a single value of 
k, independent of q) i.e. 
 
P(rank(q,m,sim) < k  |  rank(q,m,obj) < λ)  >  ϕ        (2) 

 
where rank(query, case, metric) is the rank of case 
according to similarity with query  using similarity 
measure metric (rank decreases with similarity i.e. the 
best match has rank = 1).                                                                                      
 We now use the following loss function Q as an 
estimate of the error related to the approximate 
measure sim in the ranking of the good enough match 
m of q. 

 
                    1 
  Q(q,m,sim)  =                                                           (3) 
                                 (1   +    e[k - rank(q,m,sim)]/τ) 
 

This function is chosen because it attributes loss 
close to zero if rank < k, and loss close to 1 if rank > k, 
with τ > 0 (Figure 2). In the limit (as τ approaches 
zero), it becomes the Heaviside step function (Figure 
2), which maximally penalizes any ranking (of a 
match) above k, and exonerates any ranking below k. 
But to realistically capture the loss (on the average) in 
ranking effectiveness of a similarity measure, the loss 
function is smoothened out, with a more gradual 
increase or decrease in loss as rank departs from  k.  

We can use this loss function to represent the 
probability of getting a match m of an arbitrary q 
within the top k as follows: 

                    
P(rank(q,m,sim) < k | rank(q,m,obj) < λ) 

            
                          =   1 – Q(q,m,sim)                            (4) 
 

Since rank(q,m,sim) for a match m (i.e. 
rank(q,m,obj) < λ) is not known (unless we compute 
obj exhaustively), we substitute it by r*, the average 
rank(q,m,sim) for a large test set of diverse q’s and 
their matches m’s. It should be noted that the 
computation of r* is expensive since it involves 
running the objective matching function on all 
members of the case-base, for each test case.   

Substituting rank(q,m,sim) by r*, we derive the 
following inequality from equations 2, 3 and 4: 

 



                                        1 
       1      -                                                      >     ϕ 
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Figure 2. Loss function Q to assess a 
similarity measure. If the latter ranks a match 
above k,  the loss is high (i.e. the similarity 
measure is not very good), whereas a ranking 
below k implies lower loss. In the limit (as ττττ 
approaches zero), we obtain the Heaviside 
step function, as shown on the right.  
 

The value of τ reflects how lenient we are in 
assessing the ability of the approximate method to 
appropriately rank a match (i.e. below k). The limiting 
cases are: (1) τ = 0, which attributes maximum 
(minimum) loss to any ranking immediately above 
(below) k (2) when τ approaches infinity which gives 
constant loss Q = 0.5; this corresponds to the fact that 
all ranks are equally acceptable, or all cases in the 
database are equally good matches, which occur when  
λ = N i.e. any value of k � N will catch the “match”. 
Solving for k, we get: 

 
                 k    >   r*  +   τ ln (ϕ/(1-ϕ)                         (5) 
 
4. Results 
 

We now empirically evaluate the effectiveness of the 
filtering approach in retrieving electron density 
patterns in TEXTAL™, using different approximate 
similarity measures. We also empirically determine r*, 
the average rank of matches (against all other cases in 
the database, based on the objective metric) for a set of 
query instances. r* is computed for various levels of 
tolerance, and we use (5) to estimate the appropriate 
minimum value of k for each similarity measure for 
various values of δ and ϕ, and analyze consistency 
with empirical results. 

As discussed earlier, the objective similarity measure 
obj used is density correlation between spherical 
electron density patterns. We experiment with three 

approximate similarity measures, given here in 
decreasing order of accuracy, relative to the objective 
metric: 

 
(1) a probabilistic metric, where, given a query 
instance vector q, we compute the similarity likelihood 
ratio r(di) for each case ci in the database, where di = ci 
– q. The higher the ratio, the more similar is the pattern 
ci to q. The similarity likelihood ratio r(di) is given by: 
 

r(di)  =  (di-µD)T ΣD
-1(di-µD) - (di-µS)

T ΣS
-1(di-µS) 

 
where S and D are classes of known pairs of similar 
and different regions respectively, with mean feature 
difference µS and µD, and covariance matrices ΣS and 
ΣD respectively. For more details, refer to [2, 9]. 
 
(2)  weighted Euclidean distance, L2, given by: 
 

L2  =   [Σwj(xj - yj)
2]1/2 

 
where x and y are feature vectors, and wj is                                                            
a measure of the relevance of feature j. The weights 
wj’s are determined by the SLIDER algorithm, 
described in [10]. 
 
(3) the cosine distance, where the distance between 
vectors x and y  is given by  1 - x.y/|x||y|. 

 
A test set of 200 query regions was generated in a 

way to evenly cover all types of amino acids, and for 
each query case, a database of  ~50,000 density pattern 
regions was exhaustively searched and ranked 
according to obj. The tolerable λ matches were 
determined using (1) with four values of tolerance δ. 
The mean λ (over the 200 test cases) is plotted against 
δ in Figure 3.  

The three similarity measures were then used to rank 
all cases in the database for each query case, and 
various statistics were computed. The value of k that 
would assure retrieval of a good match with probability 
ϕ = 0.95 and ϕ = 0.80 are computed using (5), by 
setting τ to 600. The results are given in Tables 1 and 2 
respectively.  

The predicted values of k can be observed to be 
reasonably consistent with what was empirically 
obtained for the probabilistic measure (Figure 4). We 
can also note that theoretically expected ranks are more 
conservative as compared to what are actually 
observed i.e. good matches are generally obtained with 
much lower k than theoretically predicted. More 
consistent results can probably be obtained by 
choosing a more appropriate loss function. 



Figure 5 shows the best ranked good enough match 
for various measures and tolerances. Figures 6 and 7 
show the probability of getting a match in the top k for 
different k’s and δ’s respectively. The probability 
values shown are, in fact, empirically observed 
P(rank(q,m,sim) < k |  rank(q,m,obj) < λ).  Figure 8 
shows the probability that a case retrieved in the top k 
is actually a good enough match i.e. P(rank(q,m,obj) < 
λ) | rank(q,m,sim) < k) for varying δ. 
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Figure 3. λλλλ is the number of true matches of a 
case,  for a given tolerance δδδδ. This graph 
shows how the average λλλλ (over a test set) 
varies with δδδδ. See equation 1.  

 
We make the following two main observations: (1) 

The different similarity measures are significantly 
effective in filtering out good cases. The probabilistic 
measure is particularly successful, and outperforms the 
commonly used Euclidean measure. In [9] we compare 
more distance measures, including Manhattan and 
other Minkowsky metrics, and like [1,7,6], we argue 
that probabilistic and statistical distance measures tend   
 

to outperform geometric measures. Geometric 
measures are too parametric and constrained, whereas 
the probabilistic measure defined earlier captures more 
information about pattern variations through the values 
of mean, variance and density estimates derived from 
objectively defined similar and different patterns. (2) 
There is reasonable consistency between the 
empirically determined values of k and theoretically 
expected ones (based on the loss function). That is, the 
theoretical model provides an informed way of setting 
k, if we wish to retrieve, on the average, approximate 
matches (as defined by δ and λ) with probability ϕ, or 
higher.  

We now further verify the consistency of empirical 
results with what are expected, based on rules of 
probability. We can see that the prior probabilities are:   

 
P(rank(q,m,sim) < k) = k/N, and 

P(rank(q,m,obj) < λ) =  λ/N 
 
Using Bayes’ rule, we obtain the following: 
 
     λ[P(rank(q,m,sim) < k  |  rank(q,m,obj) < λ)] 

        = k[P(rank(q,m,obj) < λ |  rank(q,m,sim) < k)]         
 

This can be re-written as: 
 

λ[P(rank(q,m,sim) < k  |  rank(q,m,obj) < λ)]/ 
  k[P(rank(q,m,obj) < λ  |  rank(q,m,sim) < k)] = 1    (6)    
 

The LHS of (6) was computed for all combinations 
of δ and k shown in Figures 5-8, using mean of the λ’s. 
The values ranged from roughly 1 to 3 (Figure 9). They 
are all fairly close to 1, as should ideally be the case. 
Nonetheless, the departure from 1 can be attributed to 
the high variance in λ.  

 
Table 1. Theoretically predicted values of k for ca tching a match with probability > .95

Similarity 
measure 

δδδδ=.01,  
λλλλ=6.9 

δδδδ=.02, 
λλλλ=23.1 

δδδδ=.03, 
λλλλ=53.8 

δδδδ=.04, 
λλλλ=99.5 

Probabilistic 2865 2140 1941 1860 
Euclidean 5797 3175 2258 2048 
Cosine 6883 3822 2424 2135 

 
 

Table 2. Theoretically predicted values of k for ca tching a match with probability > .80 
Similarity 
measure 

δδδδ=.01,  
λλλλ=6.9 

δδδδ=.02, 
λλλλ=23.1 

δδδδ=.03, 
λλλλ=53.8 

δδδδ=.04, 
λλλλ=99.5 

Probabilistic 1930 1205 1006 925 
Euclidean 4862 2240 1323 1113 
Cosine 5948 2887 1489 1200 
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  Figure 4. Theoretically expected vs. observed            Figure 5. The rank (according to the object ive    
  ranks for the probabilistic distance measure              metric) of the first match retrieved (for k = 500).      
  (δδδδ = 0.01, ττττ = 600).                                                            Rank decreases with similarity. 
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  Figure 6. P(rank(q,m,sim) < k | rank(q,m,obj) < λλλλ)        Figure 7. P(rank(q,m,sim) < k | rank(q,m,obj) < λλλλ)  
   vs. k ( δδδδ = 0.01).            vs. δδδδ (k = 500).  
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  Figure 8. P(rank(q,m,obj) < λλλλ | rank(q,m,sim) < k )        Figure  9. Plot of λλλλ[P(rank(q,m,sim) < k | rank(q,m,obj)]/  
  vs.  δδδδ (k = 500).   k[P(rank(q,m,obj) < λλλλ | rank(q,m,sim) < k)]; should 

ideally be 1 for all k, as per equation 6.  



5. Conclusion 
 

 We proposed a general strategy for efficient case 
retrieval by approximating an objective, expensive 
similarity metric with a fast, feature-based similarity 
measure, and using the latter as a filter of probably 
good matches, based on k-nearest neighbor learning. 
With this approach, case-based reasoning systems can 
afford large case-bases as well as improve on time 
performance. We empirically and theoretically 
analyzed the issue of the number of cases that need to 
be filtered. We proposed a test procedure and a 
theoretical model based on a loss function to represent 
how approximate different measures of similarity are, 
and to predict the choice of k, based on stringency of 
expected results and an estimation of the degree of 
inaccuracy of ranking by the approximate measures. 
One of the limitations of the proposed test procedure is 
the computational cost related to the exhaustive search 
of the database for determining truly best matches of 
test cases. We are currently investigating various 
approaches to statistically model the relationship 
between the approximate and objective measures of 
similarity, and derive the expected objective ranks of 
matches, in lieu of explicitly computing these objective 
ranks through exhaustive search.   An important 
closely related issue not discussed in this paper is the 
choice of the size and composition of the database. We 
are currently developing methods that would eliminate 
redundancy and ensure more consistency between the 
objective and approximate similarity measures. We are 
considering two basic approaches: (1) a priori pre-
processing of the entire case-base to eliminate noise 
and redundancies, and (2) dynamic screening of the 
case-base where we determine (at run-time) 
inconsistencies and dubious matches (because of noise 
in the form of incorrect data or irrelevant features) in 
the local region of the feature space under 
consideration.  Finally, we recognize that a global 
value of k has its limitations. For some cases that have 
a large number of good matches, a relatively low k 
should catch a match with high probability, whereas 
more difficult cases may require comparison with more 
potential matches for effective retrieval. Context-
sensitive determination of k is yet another worthwhile 
future investigation.  
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