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Abstract - Similarity between cases in pattern
recognition is typically measured by computing
distances between feature vectors. This paper
evaluates the effectiveness of various measures of
similarity in retrieving good matches in TEXTALTM, a
system that uses nearest neighbor learning to retrieve
matching 3D patterns of electron density to
incrementally determine the structure of proteins by
X-ray crystallography. We investigate various
geometric  measures of  similarity, including
Euclidean, Manhattan (city-block, or L,), the
generalized Minkowsky metric (Ly) and the Cosine
measure. We also experiment with a probabilistic
distance metric — a likelihood measure based on the
Bayesian classifier. Our experiments in the protein
crystallography domain show that the probabilistic
measure of similarity outperforms geometric ones
significantly. We present a general framework for
efficient pattern retrieval from a large database using
feature-based matching, and argue that probabilistic
and statistical measures of similarity are more robust
in  noisy,  high-dimensional  feature  spaces
representing visual patterns.

Keywords: pattern recognition, nearest neighbor
learning, case-based reasoning, distance measure.

1.0 Introduction

Similarity between images or visual patterns
is typically determined by measuring the
distance between feature vectors representing
these patterns. Since feature spaces can have
very large dimensions, non-parametric
methods are usually employed to determine
the similarity between patterns. The nearest

neighbor rule, for instance, is based on the
assumption that patterns that are close
together (for some appropriate distance
measure) in the feature space are similar.
Geometric  measures,  especially  the
Euclidean distance, are very widely used. But
such measures may not effectively simulate
human perception of visual patterns [9,8],
and do not provide any a priori guarantee
that they really reflect the similarities and
dissimilarities between cases [6]. Thus, other
similarity measures need to be explored [1,2].

In this paper, we investigate the effectiveness
of various geometric and probabilistic
measures of similarity in the context of
TEXTAL™, a  case-based reasoning
system that retrieves matching electron
density patterns from a database to determine
protein structures by X-ray crystallography.
The rest of this paper is organized as follows.
In the next section, we describe the protein
crystallography domain and give a brief
overview of the relevant parts of
TEXTAL™. Next, we provide a general
framework for efficient pattern recognition.
In section 4, we define the various similarity
measures used in these experiments, and we
empirically compare the effectiveness of
different measures of similarity in the
ensuing section. These results are discussed
in the concluding section.



2.0 X-ray protein crystallography

Proteins are very important macromolecules
that perform a wide variety of biological
functions. Knowledge of their structures is
essential, and X-ray crystallography is the
most widely used method for protein
structure determination. One of the most
difficult steps in protein crystallography is
the interpretation of the electron density
cloud surrounding the protein i.e. inferring
the atomic coordinates given the distribution
of density of electrons around the protein
(Fig. 1). This is done by crystallographers,
and is wusually very time-consuming and
error-prone, especially since the electron
density data collected is typically noisy and
blurred (poor resolution). TEXTAL™ uses
pattern recognition and case-based reasoning
approaches to automate this process i.e. given
the electron density data for a protein, the
coordinates of all atoms are determined.
TEXTAL™ employs a divide-and-conquer
approach, where an unsolved structure is
decomposed into smaller spherical regions
(with a diameter of 5A, where 1A = 10"°m)
around special carbon atoms known as Ca.
To model each region, a database of ~50,000
regions (which are already interpreted) are
searched to find one with similar density
pattern. Thus, the structure of the protein is
incrementally determined by solving each
region and combining the solutions.
TEXTAL™ is a deployed application used
mostly by crystallographers; a full description
of the system is beyond the scope of this
paper. For more details, refer to [4].

An expert crystallographer can model an
unknown region, drawing from experience on
how to visualize 3D density patterns (usually
with the help of 3D visualization and model
building programs). To automate this process
of modeling, we can find the density
correlation of the unknown region with

Fig. 1. The pattern on the left represents a spherical
region of electron density. An expert crystallographer
would recognize the shape (with the help of a 3D
visualization program) and model this region of the
protein i.e. determine the positions of the atoms, and
how they bond together (as shown in the pattern on the
right). These two patterns are, in fact, identical but
oriented differently in 3D space. Thus, rotation-
invariant features are required to represent them.

known ones in the database and return the
best match; this objective metric is
computationally very expensive, since it
involves searching for the optimal rotation
between two regions [5]. To make this search
more tractable, we filter k (500, for instance)
cases using a feature-based comparison
method, and use the more expensive metric
to make the final selection. 76 numeric
features were chosen, based on domain
knowledge [5]. Feature identification was
particularly challenging for various reasons:
(1) features have to be rotation-invariant
since the regions may occur in any
orientation in the database — statistical
features like mean, standard deviation,
skewness and kurtosis of the density
distribution are examples of features
independent of 3D orientation; (2) features
may be noisy or irrelevant; in TEXTAL™,
we use an algorithm called SLIDER [5] to
weigh the relevance of features in describing
patterns of electron density by comparing
how similar features are for pairs of matching
regions relative to pairs of mismatching
regions; (3) relevance of features can be
context sensitive [3] i.e. the relevance depend
on where we are in the feature space; (4)
features may interact, where the relevance of
a feature is weak on an individual basis, but



their relationship to the pattern is evident
only when looked at in combination [4].
These issues make retrieval a challenging
task, and the effectiveness of the database
search hinges on an appropriate choice of the
feature-based distance metric.

3.0 Efficient pattern retrieval

TEXTAL™ is based on the following general
model, which is applicable to and potentially
useful for many real applications: we are
given a pattern (like an image), and we are
asked to classify it or, more generally, find
similar patterns using cases from a (typically)
large database. Given a query case ¢, and a
database of N cases, our goal can be met if
we could rank the N cases on their distances
to g, by using an appropriate distance
function. But the optimal distance metric is
often computationally too  expensive,
especially if the database is large. The
approach that we propose is to quickly filter k
approximate matches (relative to the
objective metric) by representing all cases by
a vector of features, and using a fast method
of finding similarity (like the Euclidean
measure) that we can afford to run over the
whole database. These k cases can be further
examined by computationally expensive
methods to make the final selection. The
effectiveness of the method depends on the
choice of good (and appropriately weighted)
features, a good understanding of how
approximate the feature-based distance
method is (which will help choose a suitable
k) and the database size. In this paper, we
focus of this issue of assessing various
similarity metrics in this framework.

Very often, we may not require the retrieval
of the very best match, but be complacent
with reasonably good ones. We formalize
this notion of “good enough” matches as
follows. Given an objective (correct) measure

of similarity (called Sim), a query case q, and
a tolerance 0, the objectively best A matches
from the database are deemed to be good
enough if:

[Srﬂ(q,mD—San,mk)]/Slm(q,ml) <3

where m; is the i best match according to
sim (sim > 0). Therefore, we essentially need
to choose a distance measure that is most
effective in getting any one of the A matches
in the top k.

4.0 Definitions of similarity metrics
4.1 Geometric measures of similarity

Let Lox,y) = [Zwilx - yi1"" 1<j<F,
where x, y are F-dimensional feature vectors,
and wj is a measure of the relevance of
feature j. If n = 1, we get the Manhattan
distance (also known as city-block or
histogram intersection). If n = 2, the distance
is known as Euclidean. The generalized form,
L is known as the Minkowsky distance. The
cosine distance between vectors x and y =1 -

x.y/]lyl
4.2 Probabilistic measure of similarity

This measure proposed by [1] essentially
evaluates the likelihood that two patterns are
similar, and use this likelihood to rank all
patterns in the database in terms of how
similar they are to a query pattern. First a
class S of similar pairs of patterns, and a
class D of different pairs of patterns are
defined. In TEXTAL™, some pairs of
regions which have a density correlation
greater (less) than a threshold are randomly
chosen to represent S (D). Given patterns x
and y, we compute the difference vector, d =
x —y. The posterior probabilities that x & y
are similar and different are respectively
given by:



P(Sld) = P(dIS) P(S)/P(d)
& P(DId) = P(dID) P(D)/P(d)

The likelihood that x & y are similar can be
defined as r(d) = P(SId)/P(Dld). Assuming
that is it equally probable for x & y to be
different and similar [i.e. P(S) = P(D)], we
get:

r(d) = P(dIS)/P(dID)

We also assume that the feature differences
in S and D have a multivariate normal
density with mean s and pp respectively,
and covariance matrices 2s and 2p
respectively i.e.

f(dusZs) = )2 1= "% exp[-(d-ps)" =5 (d-ps)/2]

f(dlup,Zp) = 2172 1Zp[ M2 exp[-(d-pp) " Zp™(d-Hp)/2]

Now, r(d) P(dIS)/P(dID)

f(dlus,2s) / f(dlpp,2p)

By taking log and eliminating constants, r(d)
can be re-written as:

r(d) = (d-Hp)" Zp(d-Hp) - (d-pe) " s (d-ps)

Given a query pattern ¢, the likelihood ratio
can be computed for all dj = q — x;, and used
to rank all the patterns in the database in
terms of how similar they are to q, where the
higher the ratio, the more similar the pattern.

5.0 Results

A test set of 200 query regions of electron
density patterns were generated, and for each
query region, a database of ~50,000 regions
were exhaustively searched and ranked
according to an objective similarity measure
(density correlation, which ranges from 0 to
1, the latter being the score for a perfect
match). The various feature-based geometric

and probabilistic similarity metrics were then
used to rank all regions in the database for
each query region (as an approximation to the
objective ranking method). As discussed
earlier, the aim of the approximate ranking
systems need not be a perfect ranking of all
regions in the database, but more modestly,
the ability to rank a “good enough” match
within the top k. As described in section 3, a
good enough match is any one of the best A
matches (according to the objective metric),
which depends on a tolerance &. Table 1
shows how mean A (over the 200 test cases)
varies with &. Fig. 2 displays how the first
good enough match retrieved by different
measures is actually ranked according to the
objective metric (where rank = 1 means the
retrieved match is actually the best match i.e.
the lower the rank, the better the similarity
measure). The average (over 200 test cases)
of these ranks is plotted against varying
tolerance. It can be noticed that the mean
rank of the probabilistic measure is roughly
half that of the Euclidean.

Table 1. A increases exponentially with d.

Tolerance,d | Mean A
0.01 7.2
0.02 24.5
0.03 575
0.04 106.9

Fig. 3 shows the percentage of times a good
enough match (i.e. one which is in the first
top A matches according to the objective
metric) is obtained within the top k of
different similarity measures for various
values K (given tolerance = 0.01, which is
reasonably conservative in this domain).

6.0 Conclusion & discussion

We proposed a general framework for
efficient case retrieval from a large database
based on the nearest neighbor rule, where we
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Fig. 2. The objective rank (according to the

objective metric) vs tolerance.

use an efficient but approximate feature-
based measure of similarity to filter some
good cases which can be further examined by
a more expensive objective measure for a
final selection. In this paper, we specifically
analyze how effective various geometric and
probabilistic measures of similarity are in

filtering good enough matches. These
experiments were done in the protein
crystallography domain, where the 3D

structures of proteins are automatically
determined through the recognition and
retrieval of 3D patterns of electron density.

We made the following observations: i) The
probabilistic measure outperforms geometric
measures significantly. The former could
retrieve good matches up to 10% more often
than the Euclidean measure; ii) Manhattan
(L1) performed better than the Euclidean
(L2), which performed better than Lga.
The Cosine method performed relatively the
worst; 1ii1)) The probabilistic metric was
particularly successful in cases which are
difficult to recognize (i.e. where the
geometric measures performed very poorly)
due to factors like poor quality of the pattern
(poor resolution, noisy data) and irrelevant
features. [1] reports results very similar to 1)

Fig 3. The percentage of times a “good
enough” match is retrieved.

and ii) in the image retrieval domain. The
superiority of probabilistic and statistical
distance measures is also highlighted in [7,

6.

We argue that although all similarity metrics
use the same features as input, geometric
measures provide a more parametric method
of matching, and is sensitive to the biases of
the underlying representation of similarity.
On the other hand, the probabilistic measure
is derived more directly from what is
objectively similar/different (through the
classes S & D) and effectively contain more
information (in Us, Zs, Mp, 2p) than what the
representation  for similarity  (including
feature weights) provide in geometric
measures. The density estimates P(Sld) and
P(D|d) explicitly capture the type of pattern
variations which are critical in the
formulation of a good measure of similarity.
Furthermore, geometric metrics are more
sensitive to how features are processed:
normalization [1], scaling and weighting.
These reasons probably explain why the
probabilistic measure is more robust as
compared to geometric ones, especially in
high-dimensional, noisy domains (incorrect
data and irrelevant features).



A number of related ideas can be investigated
to further enhance the accuracy of retrieval of
electron density patterns for TEXTAL™:
aggregation of various rankings and other
methods to combine different measures of
similarity; runtime creation of a distance
measure [2]. The probabilistic measure can
be improved by a more careful choice of the
similar and different classes such that they
contain more relevant, domain-specific
information to enable discriminate between
what is really similar and different.
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