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Abstract 
X-ray crystallography is the most widely used method for 
determining the three-dimensional structures of proteins and 
other macromolecules. One of the most difficult steps in 
crystallography is interpreting the 3D image of the electron 
density cloud surrounding the protein. This is often done 
manually by crystallographers and is very time-consuming 
and error-prone. The difficulties stem from the fact that the 
domain knowledge required for interpreting electron density 
data is uncertain. Thus crystallographers often have to resort 
to intuitions and heuristics for decision-making. The 
problem is compounded by the fact that in most cases, data 
available is noisy and blurred. TEXTAL is a system 
designed to automate this challenging process of inferring 
the atomic structure of proteins from electron density data. 
It uses a variety of AI and pattern recognition techniques to 
try to capture and mimic the intuitive decision-making 
processes of experts in solving protein structures.  The 
system has been quite successful in determining various 
protein structures, even with average quality data. The 
initial structure built by TEXTAL can be used for 
subsequent manual refinement by a crystallographer, and 
combined with post-processing routines to generate a more 
complete model.    

X-ray Protein Crystallography 
Proteins are very important macromolecules that perform a 
wide variety of biological functions. Knowledge of their 
structures is crucial in elucidating their mechanisms, 
understanding diseases, designing drugs, etc. One of the 
most widely used methods for determining protein 
structures is X-ray crystallography, which involves many 
steps. First, the protein has to be purified and then grown 
into a crystal.  The protein crystals   are   usually small, 
fragile and may contain as much solvent as protein. The 
crystal is exposed to beams of X-rays, and the position and 
intensity of diffracted waves are detected to make up a 
diffraction pattern sampled at points on a 3D lattice. But 
the diffraction pattern contains information only about the 
intensity of the diffracted wave; the phase information 
cannot be experimentally determined, and must be 
estimated by other means. This is referred to as the classic 
phase problem. Furthermore, the sample of points on 
which intensities are collected is limited, which effectively 
limits the resolution  i.e.  the  degree  to  which  atoms  can  
__________ 
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be distinguished. Resolution is usually measured in 
Angstrom (Å), where 1Å = 10-10m. 
 A Fourier transform of the observed intensities and 
approximated phases creates an electron density map, 
which is an image of a unit cell of the protein structure in 
the form of density of the electron cloud around the protein 
at various (x, y, z) coordinates. An initial approximate 
structure can be determined from the typically noisy and 
blurred electron density map, with the help of 3D 
visualization and model-building computer graphic 
systems such as O (Jones, Zou, and Cowtan 1991). The 
resulting structure can be used to improve the phases, and 
create a better map, which can be re-interpreted. The whole 
process can go through many cycles, and the complete 
interpretation may take days to weeks. Solving an electron 
density map can be laborious and slow, depending on the 
size of the structure, the complexity of the crystal packing, 
and the quality and resolution of the map. 
  

Automated Map Interpretation: 
Issues and Related Work 

Significant advances have been made toward improving 
many of the steps of crystallography, including 
crystallization, phase calculation, etc. (Hendrickson and 
Ogata 1997; Brünger et al. 1998).  However, the step of 
interpreting the electron density map and building an 
accurate model of a protein remains one of the most 
difficult to improve. 

This manual process is both time-consuming and error-
prone. Even with an electron density map of high quality, 
model-building is a long and tedious process.  There are 
many sources of noise and errors that can perturb the 
appearance of the map (Richardson and Richardson 1985). 
Moreover, the knowledge required to interpret maps (such 
as typical bond lengths and angles, secondary structure 
preferences, solvent-exposure propensity, etc) is uncertain, 
and is usually more confirmatory than predictive. Thus, 
decisions of domain experts are often made on the basis of 
what is most reasonable in specific situations, and 
generalizations are hard to formulate. This is quite 
inevitable since visible traits in a map are highly dependent 
on its quality and resolution.   

AI-based approaches are well suited to mimic the 
decisions and choices made by crystallographers in map 
interpretation. Seminal work by ( Feigenbaum, Engelmore, 



and Johnson 1977) led to the CRYSALIS project (Terry 
1983), which was an expert system designed to build a 
model given an electron density map and the amino acid 
sequence. It is based on the blackboard model, where 
independent experts interact and communicate by means of 
global data structure, which contains an incrementally built 
solution. CRYSALIS maintains domain-specific 
knowledge through a hierarchy of production rules. 

Molecular scene-analysis (Glasgow, Fortier, and Allen 
1993) was proposed based on using computational imagery 
to represent and reason about the structure of a crystal. 
Spatial and visual analysis tools that capture the processes 
in mental imagery were used to try mimicking 
visualization techniques of crystallographers. This 
approach is based on geometrical analysis of critical points 
in electron density maps (Fortier et al. 1997). Several other 
groups including  (Jones, Zou, and Cowtan 1991; Holm 
and Sander, 1991) have developed algorithms for 
automated interpretation of medium to high-resolution 
maps using templates from the PDB (Protein Data Bank).  

Other methods and systems related to automated model-
building include template convolution and other FFT-based 
approaches (Kleywegt and Jones 1997; Cowtan 1998), 
combining model building with phase refinement 
(Terwilliger 2000; Perrakis et al. 1999; Oldfield 1997) and 
database search (Diller et al. 1999), MAID (Levitt 2001), 
and MAIN (Turk 2001).  
 However, most of these methods have limitations, like 
requiring user-intervention or working on maps of high 
quality only (i.e. with resolution of around 2.3Å or better). 

Overview of the TEXTAL system 
TEXTAL is designed to build protein structures 
automatically from electron density maps, particularly 
those in the medium to poor quality range. The structure 
determination process is iterative and involves frequent 
backtracking on prior decisions.  The salient feature of 
TEXTAL is the variety of AI and pattern recognition 
techniques used to address the specificities of the different 
stages and facets of the problem. It also attempts to capture 
the flexibility in decision-making that a crystallographer 
needs.  
 TEXTAL is primarily a case-based reasoning 
program. Previously solved structures are stored in a 
database and exploited to interpret new ones, by finding 
suitable matches for all regions in the unknown structure. 
The best match can be found by computing the density 
correlation of the unknown region with known ones. But 
this “ ideal”  metric is computationally very expensive, since 
it involves searching for the optimal rotation between two 
regions [see (Holton et al. 2000) for details], and has to be 
computed for many candidate matches in the database. 
This is a very common problem in case-based reasoning 
systems. In TEXTAL, we use a filtering method where 
we devise an inexpensive way of finding a set of potential 
matches based on feature extraction, and use the more 
expensive density correlation calculation to make the final 

selection. The method to filter candidate matches is based 
on the Nearest Neighbor algorithm, which uses a weighted 
Euclidean distance between features as a metric to learn 
and predict similarity.  There are two central issues related 
to this method: (1) identification of relevant features, and 
(2) weighting of features to reflect their contributions in 
describing characteristics of density.  
 As in many pattern-recognition applications, identifying 
features is a challenging problem.  In some cases, features 
may be noisy or irrelevant.  The most difficult issue of all 
is interaction among features, where features are present 
that contain information, but their relevance to the target 
class on an individual basis is very weak, and their 
relationship to the pattern is recognizable only when they 
are looked at in combination (Ioerger 1999).  While some 
methods exist for extracting features automatically (Liu 
and Motoda 1998), currently consultation with domain 
experts is almost always needed to determine how to 
process raw data into meaningful, high-level features that 
are likely to have some form of correlation with the target 
classes, often making manual decisions about how to 
normalize, smooth, transform or otherwise manipulate the 
input variables (i.e. “ feature engineering” ). 
 Applying these concepts of pattern recognition to 
TEXTAL, we want to be able to recognize when two 
regions of electron density are similar.  Imagine we have a 
spherical region of around 5Å in diameter (which is large 
enough to cover one side-chain), centered on a C�  atom 
and we have a database of previously solved maps. We 
would like to extract features from the unmodeled region 
that could be used to search the whole database efficiently 
for regions with similar feature values, with the hope of 
finding matching regions with truly similar patterns of 
density. This idea of feature-based retrieval is illustrated in 
Figure 1.   
 However, there is one important issue: candidates in the 
database with matching patterns for a region we are trying 
to interpret might occur in any orientation in 3D 
(rotational) space, relative to the search pattern.  In 
principle, methods like 3D Fourier transforms could have 
been used to extract features, but they would have been 
sensitive to the orientation, which would have required the 
database to be much larger, to contain examples of every 
pattern in every orientation.  Therefore, one of the initial 
challenges in TEXTAL was to develop a set of numeric 
features that are rotation-invariant.  Statistical properties 
like average density and standard deviation are good 
examples of rotation-invariant features. 
 Once the features were identified, it was important to 
weight the features according to relevance in describing 
patterns of electron density; irrelevant features can confuse 
the pattern-matching algorithm (Langley and Sage 1994; 
Aha 1998). The SLIDER algorithm (Holton et al. 2000) 
was developed to weight features according to relevance 
by considering how similar features are for pairs of 
matching regions relative to pairs of mismatching regions. 
A more detailed discussion on SLIDER is provided later. 



             

a) F=<0.90,0.65,-1.40,0.87…>      b) F=<1.58,0.18,1.09,-0.2…> 
 
 

                
c)  F=<1.72,-0.39,1.04,1.55…>    d) F=<1.79,0.43,0.88,1.52…> 

 
Fig. 1.  Illustration of feature-based retrieval.  In the four panels 
above are shown examples of regions of density centered on C�  
atoms.  In panels (a), (b), and (c) are shown representative density 
for amino acids Phenylalanine, Leucine, and Lysine respectively 
(the circle indicates 5Å-radius sphere).  In panel (d) is a region of 
unknown identity and coordinates [actually a Lysine, but oriented 
differently from (c)].  Feature values like average density, 
standard deviation of density, distance to center of mass in 
region, moments of inertia, etc. can be used to match it to the 
most similar region in the database. 
 
 Rotation-invariant features were extracted for a large 
database of regions within a  set  of  electron  density maps  
for proteins whose structures are already known. Hence, 
the atomic coordinates for a region in a new (unsolved) 
map could be estimated by analyzing the features in that 
region, scanning through the database to find the closest 
matching region from a known structure (a procedure 
referred to as LOOKUP), and then predicting atoms to be 
in analogous locations.  To keep the LOOKUP process 
manageable, the regions in the TEXTAL database are 
restricted to those regions of an electron density map that 
are centered on known C�  coordinates.  
 Clearly, the effectiveness of this approach hinges on the 
ability to identify candidate C�  positions accurately in the 
unknown map, which become the centers of the probe 
regions for LOOKUP.  In TEXTAL, this is done by the 
CAPRA   (C- Alpha Pattern  Recognition Algorithm)   sub- 
system. CAPRA uses the same rotation-invariant features 
as LOOKUP, though it employs a neural network to 
predict which positions along a backbone trace are most 
likely to be closest to a true C�  in the structure.  CAPRA 
uses a heuristic search technique to link these putative C�  
atoms together into linear chains; the remaining backbone 
and side-chains atoms are filled in by performing 
LOOKUP on each C� -centered region  along the  predicted 
chains. 
 Thus, TEXTAL is intended to simulate the kind of 
intelligent decision-making that crystallographers use to 

interpret electron density maps, following the basic two-
step approach of main-chain tracing followed by side-chain 
modeling. The AI and pattern-recognition techniques 
employed approximate many of the constraints, criteria, 
and recognition processes that humans intuitively use to 
make sense out of large, complex, 3D datasets and produce 
coherent models that are consistent with what is known 
about protein structure in general. The model obtained 
from TEXTAL can be edited by a human 
crystallographer or used to generate higher quality maps 
through techniques like reciprocal space refinement or 
density modification. 
 In the next three sections, we provide a more detailed 
description of the main stages of TEXTAL: CAPRA, 
LOOKUP and post-processing routines (Figure 2). 
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Fig. 2.  Main stages of TEXTAL. 

CAPRA: C-Alpha Pattern Recognition 
Algor ithm 

CAPRA (Ioerger and Sacchettini 2002) is the component 
that constructs C�  backbone chains; it operates in 
essentially four main steps (see Figure 3): first, the map is 
scaled to enable comparison of patterns between different 
maps.  Then, a “ trace”  of the map is made. Tracing is done 
in a way similar to many other skeletonization algorithms 
(Greer 1985; Swanson 1994).  The trace gives a connected 
skeleton of “pseudo-atoms”  that generally goes through the 
medial axis of the contours of the density pattern.  Note 
that the trace goes not only along the backbone, but also 
branches out into side-chains.  
 CAPRA picks a subset of the pseudo-atoms in the trace 
(which we refer to as “way-points” ) that appear to 
represent C�  atoms.  To determine which of these pseudo-
atoms are likely to be near true C� ’s, CAPRA uses a 
standard feed-forward network. The goal is to learn how to 
associate certain characteristics in the local density pattern 
with an estimate of the proximity to the closest C� . The 
network consists of one input layer of 38 feature values (19 
features for 2 different radii), one layer of hidden units 
with sigmoid thresholds, and one output node: the 
predicted distance (unthresholded). The hidden layer has 
20 nodes and the network is fully interconnected between 
layers. 
   The neural network was trained by giving it examples of 
feature vectors for high-density lattice points in maps of 



sample proteins at varying distances from known C�  
atoms, ranging from 0 to around 6Å.  The weights in the 
network are optimized on this dataset using back-
propagation. 
   Given these distance predictions, the set of candidate 
C� ’s (i.e. way-points) is selected from all the pseudo-
atoms in the trace. Preference is given to those that are 
deemed to be closest to C� ’ s (by the neural network). The 
selection of way-points is also based on domain knowledge 
about constraints on distance between C� ’ s.            
              
              Electron density map 
 
                                  
                                                      Scaling of density 
 
                        
                      Scaled map 
 
 
              Tracing of map 
 
          Trace atoms (PDB format) 
 

      
              Prediction of distance 
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Fig. 3. Steps within CAPRA. 
 
    The final step is to link C� ’s together into linear 
chains. This is accomplished by BUILD_CHAINS. 
Finding correct assignment of C�  atoms into chains is 
difficult because there are often many false connections in 
the density.  Note that the trace is not generally linear, but 
is   a graph with branches, and often contains many cycles. 
BUILD_CHAINS integrates a variety of intuitive criteria 
to try to make intelligent decisions about how to identify 
the most reasonably linearized sub-structure of the graph, 
including chain length, quality of predictions by neural 
network, and geometry (attempting to follow chains with 
common secondary structure characteristics).  Wherever 
possible, BUILD_CHAINS does an extensive search of all 
possible ways of building up chains and chooses the best 
one according to a scoring function. In situations  where an 
exhaustive search will be inefficient, BUILD_CHAINS 
uses heuristics to guide the search. 

     LOOKUP: The Core Pattern-Matching 
Routine 

LOOKUP predicts the coordinates of local side-chain and  
backbone atoms of an amino acid, given an estimate of its 
C�  location (output from CAPRA).  A pattern-matching 
approach is used to retrieve atoms from regions with 
similar patterns of density from a database using rotation-
invariant features.  Before describing the details of this 
database-search approach, we need to describe the features 
extracted to represent density patterns. 

Feature Extraction 
TEXTAL relies heavily on the extraction of numerical 
features to help determine which regions have similar 
patterns of density.  As we described above, it is important 
to have features that are rotation-invariant i.e. they have a 
constant value for the same region rotated into any 
orientation in 3D space.     
 In previous work, we have identified four classes of 
features, each with several variations (Holton et al. 2000).  
For example, statistical features, such as the mean, 
standard deviation, skewness and kurtosis of the density 
distribution, can be calculated from the density values at 
grid points that fall within a spherical region. Another class 
of features is based on moments of inertia.  We calculate 
the inertia matrix and recover the eigenvalues for the three 
mutually perpendicular moments of inertia. The 
eigenvalues themselves can be used as features, but we 
have also found that it is especially useful to look at ratios 
of the eigenvalues, which give a sense of the way that the 
density is distributed in the region. Another useful feature, 
in a class by itself, is the distance to the center of mass, 
which measures how balanced the region is.  Finally, there 
is a class of features based on the geometry of the density.     
 While many other features are possible, we have found 
these to be sufficient.  In addition, each feature can be 
calculated over different radii, so they are parameterized; 
currently, we use 3Å, 4Å, 5Å and 6Å, so every individual 
feature has four distinct versions capturing slightly 
different information.  

Searching the Region Database Using Feature 
Matching 
Given an estimate of the coordinates of a C�  atom from 
CAPRA, LOOKUP predicts the coordinates of the other 
(backbone and side-chain) atoms in the vicinity, using a 
database-lookup approach.  The database consists of 
feature vectors extracted from regions within previously 
solved maps.  The features for the new region to be 
modeled are calculated and used to identify the region in 
the database with the most similar pattern of density; since 
coordinates of atoms are known for these regions, they can 
be translated and rotated into position in the new region as 
a prediction (model) of local structure (the overall process 
is illustrated in Figure 4). 
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Fig. 4.  The LOOKUP process. 
 
 The database of feature-extracted regions that 
TEXTAL  uses  is  derived  from  maps  of  200  proteins 
from PDBSelect (Hobohm et al. 1992). The maps are re-
computed at 2.8Å resolution (to simulate medium 
resolution maps). Features are calculated for a 5Å spherical 
region around each C�   atom  in  each  protein structure for  
which we generated a map, producing a database with 
~50,000 regions. 
 To find the most similar region in the database for a 
given region in a new map, we use a three-step process.  
First, the features for a new region are calculated.  Then 
they are compared to the feature vectors for each of the 
regions in the database.  The comparison we use is a 
weighted Euclidean distance, given by the following: �

F(R1,R2) = { � (wi[Fi(R1) – Fi(R2)]
2} 1/2, where i ranges 

over the features, and R1 and R2 are the two regions being 
compared.  The weights wi are intended to reflect the 
relevance or utility of the features, and are determined by a 
specialized feature-weighting algorithm called SLIDER 
(which is described in the next section).  This distance 
measure is calculated from the probe region to all the 
regions in the database, and the top K=400 (with smallest 
distance values) are selected as candidates. 
 The calculation of feature-based distance, however, is 
not always sufficient; there could be some spurious 
matches to regions that are not truly similar.  Hence we use 
this selection initially as a filter, to catch at least some 
similar regions.  Then we must follow this up with the 
more computationally expensive step of further evaluating 
the top K candidate matches by density correlation, and 
choosing the best one. 
 The final step is to retrieve the coordinates of atoms 
from the known structure for the map from which the 
matching region was derived, specifically, the local side-
chain and backbone atoms of the residue whose C�  is at 
the center of the region, and apply the appropriate 
transformations to place them into position in the new map.  
The resulting side-chain and backbone atoms are written 
out in the form of a new PDB file, which is the initial, 
unrefined model generated by TEXTAL for the map. 

Weighting of Features: The SLIDER Algor ithm 
TEXTAL uses a weighted Euclidean feature-difference 
calculation, ∆F(R1,R2)  (defined earlier), as an initial 
measure of similarity between regions R1 and R2. It is 
important to weight the features according to relevance in 
describing patterns of electron density. The SLIDER 
(Holton et al. 2000) algorithm was developed to weight 
features by considering how similar features are for pairs 
of matching regions relative to pairs of mismatching 
regions.  
 While there are a variety of methods that have been 
proposed in the pattern-recognition literature for 
optimizing feature weights for classification problems 
(Aha 1998), our goal is slightly different: to optimize 
feature-based retrieval of similar matches from a database, 
where true similarity is defined by an objective distance 
metric (density correlation).  SLIDER works by 
incrementally adjusting feature weights to make matches 
(similar regions) have a closer apparent distance than mis-
matches.  As data for this empirical method, a set of 
regions is chosen at random.  For each region, a match 
(with high density correlation) and a mis-match are found, 
forming 3-tuples of regions.  These 3-tuples are used to 
guide the tuning of the weights.  Suppose the set F of all 
features is divided into two subsets, A and B.  Each subset 
can be used to compute distances between examples.  
Good subsets of features are those that rank the match for a 
region higher (with lower distance) than the mis-match, on 
average over the 3-tuples.  Furthermore, the subsets of 
features can be mixed together by linear combination to 
form a composite distance metric, ∆A+B(R1,R2) = 
λ∆A(R1,R2) + (1-λ)∆B(R1,R2), with the parameter λ.  As λ 
changes from 0 to 1, it may cause the match for a region to 
become closer or farther relative to the mis-match for each 
3-tuple.  The point at which the distance from a region to 
its match becomes equal to the distance to the mis-match is 
called a ‘cross-over’ . The weights can�  be optimized by 
finding the value of (0 �  λ �  1) that produces the most 
positive crossovers among the set of 3-tuples. Then the 
process can be repeated with different (random) divisions 
of the overall set of features until it converges (the number 
of positive cross-overs reaches a plateau).  This approach 
bears some resemblance to wrapper-based methods 
(Kohavi, Langley, and Yun 1997), but replaces a grid-
search through the space of weight vectors with a more 
efficient calculation of optimal cross-over points. 

SLIDER is not guaranteed to find the globally optimal 
weight vector (which is computationally intractable), but 
only a local optimum. However, by re-running the search 
multiple times, it can be observed that the resulting ranking 
qualities are fairly consistent, suggesting convergence. 
Also, owing to the randomness in the algorithm (i.e. the 
order in which features are selected for re-weighting), the 
final weight vectors themselves can be different. Hence 
there is no ‘absolute’  optimal weight for any individual 
feature; weights are only meaningful in combinations. For 
example, if there are two highly correlated features, 



sometimes one will get a high weight and the other will be 
near 0, and other times the weights will be reversed. 

Post-Processing Routines 
 
There are a number of ways in which the initial protein 
model output by LOOKUP might be imperfect.  For 
example, because residues are essentially modeled 
independently (based on regions most likely coming from 
entirely different molecules in the region database), the 
backbone connections do not necessarily satisfy optimal 
bond distance and angle constraints.  Often, TEXTAL 
identifies the structure of the side-chains correctly, but 
makes errors in the stereochemistry. There are a number of 
possible refinements that can be applied to improve the 
model by fixing obvious mistakes during post-processing.  
Currently, there are three important post-processing steps 
we use.   
 The first post-processing step is a simple routine to fix 
residues whose backbone atoms are going in the wrong 
direction with respect to their neighbors. It determines 
chain directionality by a voting procedure, and then re-
invokes LOOKUP to correct the residues whose side-chain 
or backbone atoms are pointed in a direction inconsistent 
with the rest of the chain. 
 The second post-processing step is real-space refinement 
(Diamond 1971), which tends to move atoms slightly to 
optimize their fit to the density, while preserving geometric 
constraints like typical bond distances and angles.  
 Another post-processing step involves correcting the 
identities of mis-labeled amino acids.  Recall that, since 
TEXTAL models side-chains based only on local 
patterns in the electron density, it cannot always determine 
the exact identity of the amino acid, and occasionally even 
predicts slightly smaller or larger residues due to noise 
perturbing the local density pattern.  However, up to two-
thirds of the time in real maps used, TEXTAL calls a 
residue that is at least structurally similar to the correct 
residue.  We could correct mistakes about residue identities 
using knowledge of the true amino acid sequence of the 
protein, if we knew how the predicted fragment mapped 
into this sequence.  The idea is to use sequence alignment 
techniques (Smith and Waterman 1981) to determine 
where each fragment maps into the true sequence; then the 
correct identities of each amino acid could be determined, 
and another scan through the list of candidates returned by 
LOOKUP could be used to replace the side chains with an 
amino acid of the correct type at each position.   

Results 
 
TEXTAL was run on a variety of real electron density 
maps, which cover a range of medium resolutions (2-3Å), 
and include a variety of � -helices and 

�
-sheet structures. 

All these maps have been obtained through a variety of 
data collection methods, and have had some sort of density 
modification applied (using CNS). Table 1 summarizes the 
details of these 12 test cases. The maps were re-computed 

at 2.8� , the resolution at which TEXTAL has been 
optimized for. The results of CAPRA and LOOKUP are 
presented in Table 2. Figure 5 shows the C�  chains 
obtained for MVK, and Figure 6 shows a fragment of CzrA 
to illustrate the result of LOOKUP. 
 The r.m.s error in the C�  coordinates predicted is 
typically less than 1Å, compared to manually-built and 
refined models.  CAPRA usually builds 80-95% of the 
backbone, creating several long C�  chains with a few 
breaks. The paths and connectivity that CAPRA chooses 
are often visually consistent with the underlying structure, 
only occasionally traversing false connections through 
side-chain contacts. It tends to produce C�  atoms correctly 
spaced at about 3.8Å apart, and corresponding nearly one-
to-one with true C� ’s, leaving a few skips and spurious 
insertions.              
 Given the C�  chains from CAPRA as input, the side-
chain coordinates predicted by LOOKUP matched the 
local density patterns very well, and the additional (non-
C� ) atoms in the backbone were also properly fit. The all-
atom r.m.s. error of TEXTAL models compared to 
manually-built and refined ones is close to 1Å, and the 
mean density correlation of  residues  is  close  to  0.8.  
These suggest a rather good superposition of the predicted 
C� ’s as well as side-chain atoms. Although LOOKUP does 
not always predict the correct identity of the residue in 
each position, it can find structurally similar residues with 
reasonable accuracy (typically 30-50%). It should be noted 
that low similarity score is often related to diffused density 
of residues at the surface. Furthermore, these results were 
obtained without sequence alignment, which is still being 
tested. Please refer to (Ioerger and Sacchettini 2003) for an 
in-depth discussion of the performance.   

Discussion 
TEXTAL has the potential to reduce one of the last 
major bottlenecks standing in the way of high-throughput 
Structural Genomics (Burley et al. 1999).  By automating 
the final step of model building (for noisy, medium-to-low 
resolution maps), less effort and attention will be required 
of human crystallographers. The protein structures 
constructed by TEXTAL from electron density maps are 
fairly accurate. The neural network approach to recognize 
C� ’s, coupled with heuristics for linking them together, 
can accurately model the backbone. The feature-based 
method enables efficient filtering of good matches from  
the  database.  The   case-based reasoning strategy exploits 
solved structures and enables fairly accurate modeling of 
side chains. For poor quality maps, the relationship 
between density and structure is weak, and modeling 
necessitates a knowledge-based approach. In TEXTAL 
this knowledge is encoded in the database of solved 
structures. 

   There are many additional ideas that can or are being 
tested to improve TEXTAL’s accuracy, such as adding 
new features, clustering the database or integrating model 
building with other computational methods, such  as  phase  



                Table 1. Proteins used in this study. All the maps were rebuilt  at  2.8 Å  using  CNS.   The  proteins  studied  cover  a 
               range of  sizes (as seen from the number of residues in each protein) and were obtained from different map generation 
               routines. The proteins also cover the major secondary structure classes. 

Name of protein Abbreviation Method of 
map 

generation 

Or iginal map 
resolution (Å) 

Secondary 
structure 

No. of 
residues 

α2u-globulin A2u-globulin MR+NCS 2.50 β 158 
β-Catenin Armadillo MAD 2.40 α 469 
Cyanase Cyanase MAD  2.40 α+β 156 
Sporulation Regulatory Protein Gere MAD  2.70 α 66 
Granulocyte Macrophage 
Colony-Stimulating Factor 
(GM-CSF) 

GM-CSF MIRAS+NCS  2.35 α 118 

N-Ethylmaleimide Sensitive 
Factor 

Nsf-d2 MAD   2.40 α/β 370 

Penicillopepsin Penicillopepsin MIR  2.80 β 323 
Postsynaptic Density Protein Psd-95 MAD  2.50 α/β 294 
G-Protein Rab3a Rab3a MAD  2.60 α/β 176 
Haloalkane Dehalogenase  Rh-dehalogenase MIRAS   2.45 α/β 290 
Chromosome-determined Zinc-
responsible operon A 

CzrA MAD/MR 2.30 α 94 

Mevalonate kinase MVK MAD 2.40 α/β 317 

* The data for the first ten proteins were collected from various researchers and processed by Dr. Paul Adams (Lawrence          
Berkeley National Lab). The original references for each structure are available upon request (Email: ioerger@cs.tamu.edu). 

 
          Table 2. Results of CAPRA & LOOKUP.  § The ratio of the structure built compared to the manually   built and   refined  
           model. ¶ The r.m.s error of the Cα predictions relative to the refined model. ¥ The mean density  correlation between the 
           regions of the protein and their corresponding matches retrieved from the database. 

�
 The r.m.s.  error  of  all  the  atoms  

           relative to the manually built and refined model. �  The structural similarity between the residue selected for a region and 
           the actual residue. 

Protein No. of 
chains 
output 

Length 
of 

longest 
chain 

Mean 
length of 
output 
chains 

% of 
structure  
built § 

Cαααα 
rms 

er ror  
(Å) ¶ 

Mean  
residue 
density 
corr . ¥ 

All-atom 
rms 

er ror (Å) �
 

% Side chain 
structural 

similar ity �  

A2u-globulin 2 88 68.5 85 0.851 0.84 0.99 48.9 
Armadillo 9 217 46.7 89 0.979 0.82 N.A. 43.7 
Cyanase 6 94 32.0 94 1.099 0.79 1.03 42.7 
Gere 2 44 30.5 90 0.854 0.83 1.00 30.0 
GM-CSF 4 46 25.0 82 0.911 0.84 0.94 28.9 
Nsf-d2 6 79 39.5 92 0.963 0.83 1.13 33.5 
Penicillopepsin 13 58 25.0 91 1.136 0.78 1.09 41.9 
Psd-95 8 58 31.8 94 1.000 0.82 1.04 34.7 
Rab3a 8 30 20.5 90 0.905 0.82 1.06 30.5 
Rh-dehalogenase 8 66 36.5 97 0.924 0.83 0.99 54.6 
CzrA 3 57 33.3 94 1.054 0.82 1.15 39.1 
MVK 10 58 28.7 88 0.833 0.82 1.00 44.5 

 
refinement (Murshudov, Vagin, and Dodson 1997; Brünger 
et al. 1998). But even in its current state, TEXTAL is of 
great benefit to crystallographers.  
   Although the output model may still need to be edited 
and refined (especially in places where the density itself is 
poor), generating an initial model that is approximately 
correct saves an enormous amount of crystallographers' 
time.  
   Currently, access to TEXTAL is being provided 
through a website (http://textal.tamu.edu:12321), where 
maps can be uploaded and processed on  our  server.  Since 
its release in June 2002, an average of 2 maps have been 
regularly submitted to the TEXTAL website every week. 

The development of TEXTAL started in 1998, and 
currently the system consists of ~72,000 lines of C/C++ 
code, with a few programs in Fortran, Perl and Python. The 
system is currently being incorporated as the automated 
structure determination component in the PHENIX 
crystallographic computing environment currently under 
development at the Lawrence Berkeley National Lab 
(Adams et al. 2002). The alpha release of PHENIX is 
planned for March 2003. 
    This work is supported by grant P01-GM63210 from the 
National Institutes of Health. 
 



 
Fig. 5. CAPRA chains for MVK (in green or light grey), with C�  
trace of manually built model superimposed (in purple or dark 
grey). 
 

 
Fig. 6. A fragment of an � -helix in CzrA is shown where 
LOOKUP guessed the identities of four consecutive residues 
correctly, and put the atomic coordinates in extremely good 
superposition of the model built by hand. 
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