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Abstract

Feature selection and weighting are central
problems in pattern recognition and instance-based
learning. In this work, we discuss the challengds o
constructing and weighting features to recognize 3D
patterns of electron density to determine protein
structures. We present SLIDER, a feature-weighting
algorithm that adjusts weights iteratively such tha
patterns that match query instances are better ethk
than mismatching ones. Moreover, SLIDER makes
judicious choices of weight values to be considered
each iteration, by examining specific weights afath
matching and mismatching patterns switch as nearest
neighbors to query instances. This approach reduces
the space of weight vectors to be searched. We make
the following two main observations: (1) SLIDER
efficiently generates weights that contribute
significantly in the retrieval of matching electron
density patterns; (2) the optimum weight vector is
sensitive to the distance metric i.e. feature ralese
can be, to a certain extent, sensitive to the uhdeg
metric used to compare patterns.

1. Introduction

Defining a suitable measure of similarity is a
fundamental requirement of pattern recognition [11]
instance-based learning [2], case based reasogihg [
27] and other machine learning approaches [29]e€as
or instances are typically compared by a similadty
distance function based on numeric features that
characterize the relevant aspects of the instances.
Potentially useful features are generally defingdan
expert or extracted by automated techniques [284, a
a subset of these features are automatically ssdect
(or weighted), based on relevance to the task atlha
[3]. The approaches to feature selection and waight
can be categorized into two major groupflter
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methods try to build classifiers that take into aant
some properties of the features involved, such as
correlations, dependencies and other informatidj;[2
the features are considered independently of the
induction algorithm.  Another paradigm, dubbed
wrapper, use part of the data sample to iteratively
evaluate the subset of selected features by tedesiq
such as cross-validation i.e. the features arectede
based on the bias of the induction algorithm [ZPhe
challenges of defining and determining relevance ar
also addressed in [6], which stresses on the need f
studies on difficult data sets, especially with dar
number of attributes, and where a large proportén
attributes are irrelevant.

In this work, we focus on SLIDER [17, 13], a
filter approach that uses the following measure to
evaluate the optimality of a set of weights: givanest
instance, we look at how well the weighted features
rank a known similar instance, relative to a set of
known different ones. Another central idea in SLIRE
is that evaluation is done for very specific weight
where there is a switch in neighbors between a test
region, its match and its mismatch. These “crossrbv
weights are the ones which will influence accurady
matching the most. Thus, by limiting the space of
weights to be searched, and identifying the weights
that make a significant difference, the efficienapd
effectiveness of learning are largely ensured. Ur o
empirical analysis, we compare different weighting
schemes — uniform (all features are selected, and
weighted equally), binary (feature weights can be
either 0 or 1) and continuous weights, where theela
two are derived from the output of the SLIDER
algorithm. We also analyze the sensitivity of the
weighting methods to different distance measures. |
this work, we look at the Minkowsky family of
distance metrics (of order 1, 2 and 3) i.e. Manhatt
(L4), Euclidean (L) and L.

Our empirical investigation is in the domain of
protein crystallography, where 3D patterns in an
electron density mapave to be recognized and fitted



with molecular structural components (or amino agid
to determine the structure of a protein macromolecu
(Figure 1). TEXTAL™ [21] is a system that
automates this process of electron density map
interpretation; it uses nearest neighbor learnitg] [

structure of proteins would shed light on the

importance of genomic sequence regions, how the
protein functions, and how drugs can be designed to
effectively interact with proteins. Thus there Hasen

a growing demand for high-throughput computational

and case-based reasoning to recognize patterns of methods for protein structure determination, inahgd

electron density (in small spherical regions in a
density map) by comparing them to known solved

rapid interpretation of electron density maps irra§
crystallography. A density map is generated by the

patterns stored in a case-base. Good matches areFourier transformation of diffraction patterns oiped

retrieved and assembled together to create a protei
model, guided by knowledge of the domain, either
explicitly stated (like typical stereo-chemical
constraints of proteins) or implicitly encoded ihet
solved cases.

Figure 1. A portion of an electron density map
which shows the contours of the intensity of
electrons around that part of the protein. The
correct structure (atoms and bonds) has been
fitted in this density map.

The rest of this paper is organized in sections
which discuss the following: (1) the significancach
challenges of the protein crystallography domaimd a
an overview of the TEXTAL™ system; (2) the
methods that TEXTAL™ uses to efficiently compare
and retrieve matching cases from a (large) caseba
(3) the features that experts defined in this doméd)
the SLIDER algorithm; (5) empirical results on the
weights returned by SLIDER and their effectiveness
finding matching density patterns, for the three
Minkowsky distance metrics; (6) analysis of the
results, limitations and future work.

2. Protein crystallography & TEXTAL™

The structural genomicsnitiative is a worldwide
effort to determine the structure of all proteins &
high-throughput mode [8,31]. This is motivated et
very rapid growth in the number of genomic

when X-rays are shone on the crystal of the protein
Interpreting a map essentially involves fitting kmo
molecular structures known as amino acids into the
density (Figures 1 and 2); there are 20 types oinam
acids in nature, and proteins are essentially chain
typically 100-1000 amino acids that fold in complex
3D conformations. Maps are usually interpreted by
crystallographers, with the help of visualization
programs. The process can be laborious and
challenging, especially since the map can be ofrpoo
quality (noisy and low resolution). There is also
significant subjectivity in model building [30]; &
difficulties in interpreting electron density ardsa
discussed in [32].

One of the major difficulties is the fact that, to
generate a density map, we need the intensity ds we
as phase information of diffracted patterns. Bué th
phases cannot be experimentally determined, and hav
to be approximated by other means. This is known as
the phase problemthus the crystallographer has to go
through various cycles of (1) interpret inaccurate
maps, (2) improve phases from the model built, (8¢
improved phases to generate better maps, which can
be re-interpreted.

TEXTAL™ aims at automating this process of
solving an electron density map, thereby savingtap
weeks of effort required by an expert crystallogrgp
to interpret one map, especially if it is noisy and
blurred. Given an unsolved map of a protein in
XPLOR [7] format, TEXTAL™ first identifies the
positions of special carbon atoms (called’s} which
lie roughly at the center of each amino acid. Tles
achieved by a sub-system called CAPRA, or C-Alpha
Pattern Recognition Algorithm [20]. Then spherical
regions (of 5A diameter) around each @re looked
at; they are characterized by a set of numericuiez,
which are used to find matches from a case-base of
solved patterns. These fragments of pre-determined
structures are retrieved, and a macromolecular inode
is gradually built, by fitting the fragments togeth
subject to many constraints e.g. on bond lengthd an
angles. The model is also improved by aligning the
sequence of amino acids obtained with the known
sequence [34]; further refinement is done by moving
the atoms slightly to improve the fit with the détys—

sequences being discovered, since knowledge of the thjs process is known as real space refinementT[Bg



TEXTAL™ system is much larger is scope; for more
details, refer to [21, 20, 17, 13] and
http://textal.tamu.edu:12321. TEXTAL™ is also a
component of PHENIX  (http://www.phenix-
online.org) [1], an integrated crystallographic
computing environment.

Figure 2. The pattern on the left represents a
spherical region of unsolved electron density.

An expert crystallographer would recognize
the shape (with the help of a 3D visualization
program) and model this region of the protein

i.e. determine the positions of the atoms, and
how they bond together (as shown in the
pattern on the right). These two patterns are,
in fact, identical but oriented differently in 3D

space. Thus, rotation-invariant features are
required to represent them.

In this paper, we focus on the choice of featuies t
represent spherical regions of density patternd,the
determination of their weights for various distance
functions that can be used to compare and retribee
regions, based on k-nearest neighbor learning [12].
Before discussing the features and their weights, w
first describe the general approach that TEXTAL™
uses to efficiently retrieve cases from a database.

3. Efficient case retrieval in TEXTAL™

Case-based reasoning systems typically need a
large database of cases for wide problem coverage a
high quality solutions. But large case-bases maysea
degradation in efficiency, especially if the case
matching function to determine similarity betweavot
cases is expensive [35]. TEXTAL™ shares these
challenges with many other case-based reasoning
systems; in fact, given an unsolved spherical query
pattern of electron density (q), the distance bemve
and each case i the case-base can be determined,
and the most similar (smallest distance) can be
returned as the best match. One metric that can be
used is thedensity correlationbetween q and s,
which computes the optimal superposition between
two patterns. Since the number of possible 3D
rotations is very large, this metric is too expesmsi
which we cannot afford to run over the whole case-

base (of ~50,000 regions). Thus, we use an
approximate, inexpensive, feature-based distance
metric to filter a small number (say k = 500) of
potential matches, and the density correlation
procedure then makes the final ranking. In [15], we
evaluate and compare various feature-based distance
metrics for this approach, and argue in the favér o
statistical and probabilistic measures as compaoed
geometric distances (like Euclidean).

It should be noted that a good match need not be
the absolute best one according to the objective
metric; it can be the top few matches (based on a
tolerance on how high we wish the density correlati
value to be to qualify for being a match). Given a
query pattern, our aim is to try to get at leaseayood
match (anywhere) in the top k, since the expensive
objective will re-rank the top k matches, and idgnt
the truly good ones. In [14], we discuss the
effectiveness of this filtering scheme and how it
depends on the level of tolerance of matching. We a
discuss how the value of k is chosen, based onsa lo
function that represents the extent to which thst fa
feature-based distance measure approximates the
objective density correlation metric.

4. Features in TEXTAL™

In TEXTAL™, the features used to characterize
spherical regions of electron density patterns have
been manually designed by domain experts. One
important restriction is that the features have e
rotation-invariant, since patterns to be compared c
occur in any 3D orientation. Four classes of featur
have been defined (Table 1): (¥}atistical features
like mean, standard deviation, skewness and kugtosi
of electron density distribution for a set of gnmbints
in the spherical region; (2) features basednooments
of inertia, where the inertia matrix is computed, and
various ratios of eigenvalues for the three mutpall
perpendicular moments of inertia are defined as
features; (3) a feature that captures heymmetricor
balanced the region is, based on the distance ofi ea
grid point within the pattern to its center of mag4)
features that reveal trehapeof the pattern — typically
an amino acid have three “spokes” emanating frtsn i
Co; these spokes are identified, and various features
are calculated based on the angles between these
spokes.

Furthermore, for each region, we calculate these
features at 4 different radii (3, 4, 5 and 6 A)jdhs
necessary since amino acids vary in shapes and,size
and each feature captures slightly different
information for different sizes. Thus, the totalmher
of features that we use is 19*4 = 76.



Table 1. Definition of features used to describe sp
features are grouped into 4 classes; each feature h
4,5and 6 A, where 1A=10 ™’m).

herical density patterns in TEXTAL™. The

as 4 versions for different radii of the sphere (3,

Feature class Description of feature

Method of comptation (p; is the electron
density value at the " of n grid points in a
region)

Statistical Mean p=(1nkXp
Standard deviation [(1/8)(pi-p)T"*
Skewness (1) (pi-p)*])™”
Kurtosis [(A/nE (pi-p) T
Moments of Magnitude of primary moment
Inertia Magnitude of secondary moment
Magnitude of tertiary moment Compute inertia matrix, diagolize & soft
Ratio of primary to secondary moment eigenvales.
Ratio of primary to tertiary moment
Ratio of secondary to tertiary moment
Symmetry Distance to center of mass %, z>|, where x= (1/n}xip;,
Ye = (Ln}yipi, z. = (1/In)xzip;,
Shape Minimum angle between spokes

Maximum angle between spokes

Median angle between spokes

Find 3 “spokes” i.e. 3 distinct vectors with highes

Sum of spoke angles

density summation, and compute angle min, max,

Radial sum of first spoke

median, sum, etc.

Radial sum of second spoke

Radial sum of third spoke

Spoke triangle area

5. The SLIDER algorithm

In this section we describe the SLIDER algorithm
to optimize weights for the Minkowsky family of
distance metrics. We first focus on two-component
mixtures (i.e. involving two features, where their
weights sum up to 1) and then extend it to an aslit
number of features. The weighted Minkowsky
distance of order n between two patterns x and v,
using two features i and j is defined as:

Dij(xy) = (Wil —yil" + wilx — y)*"
If n = 1, we get the Manhattan distance; if n =tBe
metric is called Euclidean, and in general it isokim
as the Minkowsky distance of order n. We can drop
the " root, since it is a monotonic transformation.
Thus D is re-defined as:

Dijxy) = wix—yil"+wilx —y["
= (@-wh =yl +wix -y’

where w is set to W the weight of feature j. One
approach to approximate the optimal pair of weights
to use atest setto exhaustively evaluate axyfor

various pairs of weights defined over a grid, stah
{0.0, 0.1, 0.2, ..., 1.0}. This method is inefficiemind
is limited by the coarseness of the grid sampling.
SLIDER proposes a more efficient approach.
Consider an instance x that has y as its closest
neighbor according tg,fand z as its closest neighbor
according tofi.e. the nearest neighbor of x is y when
w =0, and it is z when w = 1 (w is the weight of
feature j). The point at which the ;[ix,y) = D;;(x,z) is
given by:

(1 = w)x =" + wix - yI°
= Q-whx-z["+wx -3z
Solving for w, and setting it to yywe get:

|I"I

-zl - -

Wy =

1)
=yl = yil" + x=2zl"- -2z

In other words, if w is “slided” from O to 1, there
is a weight w at which D;(x,y) = Djj(x,z); this point
is called a “cross-over”, which in fact, is a weigat
which there is a net increase (or decrease) in i@

depending on which of y and z is truly closer to x



(Figure 3). When there is an increase in accuréuy,
cross-over is referred to as positive, and negative
otherwise. It should be noted that not all 3-tugk
instances will have a cross-over for a given pdir o
features.

Di D
istance, i
(x-z)" 05-y))"
(Xj'Zj)n

(xi-y)"

: >
0 Wo 1 W

Figure 3. As the weight of feature j, w ;, slides
from O to 1, the Minkowsky distance between

x and y [D ,j(x,y)] changes from less to greater
than that between x and z [D ,(x,2)]. The
“cross-over” occurs at w o i.e. there is a
change in accuracy of prediction at w
depending on whether y or z is truly more
similar to x.

0y

Crossover points can also be determined by
considering two subsets of features (instead dffwe
features). Consider two feature subsets A and Bh wi
corresponding Minkowsky distances sDand D;
respectively. A composite metric, A, can be
defined as Rig(x,y) = A Da(X,y) + (1 —1) Dg(x,y).

As A is slided from 0 to 1, it may cause a switch of
neighbors for three instances, as described earlier
Thus A can be used to determine the new weight

vector that increases accuracy, based on crossover,

points. Currently, SLIDER randomly chooses one
feature (set A) and evaluates it against all renmgjn
features (set B). The approach can be extended to
compare feature sets of arbitrary size and comjuusit

The key idea behind SLIDER is to determine the
cross-overs of many examples sliding over the weigh
of one feature at a time and determine the “optirfium
weight value at which the overall accuracy increase
the most. SLIDER uses a greedy approach [33] to
iteratively choose a (random) feature, adjust itight
based on the above criterion, and stops when tisere
no net increase in accuracy.

Once all cross-over points are determined, we find
the optimum weight (of the randomly chosen feature)
which maximizes the difference between the number
of positive cross-overs and negative cross-ovehss T
is done by first sorting the cross-over weights and
initializing an accumulator to 0; we then sweep
through the sorted list of weights, incrementing th
accumulator when a positive cross-over is
encountered, and decrementing the accumulator for

every negative cross-over. The weight at which the
accumulator reaches its peak is returned as the
optimum weight.

The test procedure that we use to evaluate
whether overall accuracy has improved by updating
the weights is as follows: we define a test setfS o
pattern instances, and for each instance we find a
match (high density correlation), and a set of
mismatches (average or low density correlation).
Given a weight vector and an instance, we compute
the distance of that instance to the known matcl an
mismatches; the rank of the match relative to the
mismatches gives an estimate of the optimality fod t
weights. Given a weight vector w, a test set S of m
cases, and for each case 1 match and n mismatches,
we define the Ranking Consistency of w, RC(w) as
follows:

(2)

where rank(i) is the rank of the match of i (relagito

all n mismatches); note that lower rank implies mor
similar to the query pattern (i.e. the match should
ideally have rank = 1).

The SLIDER algorithm is given in Figure 4. It
should be noted that our objective function in this
problem is a continuous metric (density correlajion
But this approach can be extended to handle
classification problems as well.

RC(w) = 1/m}: [n - rank(i)]

6. Results

SLIDER was used to optimize the weights
independently for Manhattan {), Euclidean (L) and
Minkowsky distance of order 3 g. 76 features were
used, as described earlier. The weight vector iargv
iteration is evaluated through Ranking Consistefury

a test set of various sizes (typically 500); forcha
qguery pattern in the test set, one match and 200
mismatches are pre-determined by the calculation of
density correlation. The training examples werewdra
from “ideal”, artificially generated maps of prote
with known structures obtained from PDBSelect [16]
(or http://mww.cmbi.kun.nl/gv/pdbsel), a subsettbé
PDB database (http://www.rcsb.org/pdb) [5].

To evaluate the effectiveness of SLIDER in
determining a final set of appropriate global wdigh
for the filtering scheme described earlier, we ke
following test procedure: we chose 200 regions that
evenly cover the 20 different types of amino acithe
regions were obtained from a case-base generated
from ~200 proteins from PDBSelect. For each test
region, we exhaustively searched the case-base (of
~50,000 regions) to find their true, objective ttizes



Inputs: 1. Testset S ={S..,S};

2. For each Sa match M& n mismatches N, 1< i<m, 1< j<n;

3. F features.
Output: Optimized weight vector w = ywv,, ..., Wg>

for each feature, f
weight of feature i, we— 1/F

repeat
select feature f randomly

Find all cross-over points for S, by solvinigéar equations (1) //i.e. by slidingpfrom 0 to 1
Find the “optimum” weight of f, w* // The weight that maximizes the difference betm +ve & -ve

Cross-overs
Wy < Wf*

for all features i, it f, W« w; + (Wr- wewil2wy, k2 f // Other weights are proportionally adjusted

Find Ranking Consistency of w, RC(w) using (2)

until number of iterations exceeds a threshold and R@es not improve

returnw

/l initialize w's uniformly s.t.Xw; = 1

(according to weight) s.t. all weights add uplt

Figure 4. The SLIDER algorithm.

(based on density correlation); then we use the
weighted feature-based distance metrics to rankhall
~50,000 regions according to similarity, and fingit af
the feature-based metric manages to “catch” a good
match in the top k

Figures 5 and 6 compare the weights returned by
SLIDER for the three Minkowsky metrics. For all

three, between 25 and 30 features (out of 76) are .

selected i.e. those features with weights non-igégly
greater than 0. Moreover, there is strong tendetacy
choose the same features, and even weigh them
similarly. There are 28 features for which all tere
metrics have yielded zero weight. It should be wote
that when different features are chosen, they oéten
very similar, in two ways: (1) they are closely agtd

e.g. standard deviation, skewness and kurtosis;jt(2)
may be the same feature (like mean density) but at
different radii.

Figure 5 tries to capture this concordance in
returned weights, by first sorting the featuresdzhen
radius and then grouping them on identity (sucht tha
related features are as contiguous as possiblgur€i
6 groups features the other way round i.e. for each
feature, the four radii at which they are calcuthtae
shown, sorted in ascending order. The weights have
been linearly graded on a 5-level scale, where the
darker the shade, the higher the weight.

We make the following remarks on the feature

weights computed by SLIDER:

The consistency in features selected (and
weighted) across the three metrics shows that the
algorithm converges. But the risk of local minima
still exists; this is partially addressed by the
randomized choice of feature in each iteration.
Table 2 shows the sum of weights for each radius;
we can again observe significant similarity of
weights for the three metrics. Furthermore, we
can note that the total weights for radius 3 Ahigt
maximum, and total weights for radius 6 A is the
minimum; these observations are intuitive — the
3D spherical patterns are expected to cover amino
acids of various shapes and sizes, which justifies
the choice of feature values at different radii. 3\t

A radius, we expect that the pattern to be
significantly characterized, although inadequately
since some large amino acids may not be totally
encapsulated in the sphere. But at 6 A, we face
the problem of having noise due to density of
neighboring residues; this trend is captured by
our weight optimization algorithm. Furthermore,
many features seem to be particularly relevant at 5
A, including average density, ratios of moments
of inertia and sum of spoke angles.
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Figures 5 and 6. The relative weights of 76 feature s returned by SLIDER for L ; (Manhattan), L ,
(Euclidean), and L 3 are shown. In Figure 5 (left), the features are fi  rst sorted on radius (in A), and
then on identity, such that related weights are con tiguous. In Figure 6 (right), the features are
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higher is the weight. The white cells representfea  tures with zero weight
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Table 2. Sum of all 19 feature weights,
independently for 4 different radii. Manhattan
Radius in Sum of weights for three el
A Minkowsky metrics g 750/ ‘/./-
(1A=10"m) | Manhattan | Euclidean | Lj £ 0, e —
3 36 35 36 sl iy
4 22 .20 .16 ’g 55j0 | / Continuous
5 .28 .27 .34 g 50.0
6 14 .18 14 s B0
40.0 T T
0 1000 2000 3000
e The individual moments of inertia seem k
irrelevant; but their ratios provide more

information related to the shape of the density Figure 7. The % of test cases where a
pattern (e.g. spherical, ellipsoidal, etc.). This match is “caught” in top k for Manhattan.

exemplifies the feature interaction problem
[19], where several features may not appear
relevant on an individual basis, but when Euclidean
looked at in combination, they contribute
significantly to the description of the pattern.

85.0
80.0 +
75.0

70.0 1 y
——&—Uniform

65.0
600 /_ ~———Binary

55.0 +

The strong similarity of weights across the
three metric is largely expected. Some weights are
relevant, irrespective of the underlying metric.
Nonetheless, there are differences, and w00
interestingly, these differences do capture the 450
sensitivity of “optimum” weights to the metric 40.0
being used. Figures 7-9 show the percentage of
times the three Minkowsky metrics manage to
catch at least one good match within the top k, for
various values of k. We can observe that both
feature selection (binary weights) and feature
weighting (continuous weights) improve over
uniform weights (all 76 features equally
weighted). Furthermore, continuous weights Ly
improve on binary weights for all three metrics.
The differences among the three weighting 750
schemes are more marked for Manhattan, a little 70,0 ]
less so for Euclidean, and even lesser fgr In 650 ] \/"
[15], we observed that, regardless of the weights, 600 | ;
Manhattan distance is a better metric than
Euclidean, which is better than;LThis seems to
suggest that the better the metric, the more
sensitive it is to the weights. An important point 100 ‘ ‘
to note is that, given a distance metric, using 0 1000 2000 3000
continuous weights does not improve pattern k
matching (as compared to binary weights) if the
weights used are those optimized for another Figure 9. The % of test cases where a
metric e.g. the weights determined by SLIDER match is ’caught” for L 3 the
for Euclidean will not make continuous weights improvements with weighting is less for
outperform binary weights for Manhattan. Ls.

Continuous

% times a match is within top k

0 1000 2000 3000

Figure 8. The % of test cases where a
match is “caught” in top k for Euclidean.

——&— Uniform
~—l—Binary

5501 Continuous

50.0 +

45.0 +

% times a match is within top k




Rank of first match for Manhattan

6000
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4000 4
——&— Uniform

~—l—Binary
Continuous

3000 1

Rank

2000 +

1000 -

0

0 001 002 003 004 0.05

Tolerance

Figure 10. The rank of first “good match”
for various levels of tolerance.

There are other possible ways of assessing
the effectiveness of retrieval. For instance, Feur
10 shows how the Manhattan metrics rank a true
“match” — a case is a match to a query if their
density correlation is within dolerance of the
correlation between the query and its absolute
best match. Figure 10 shows the rank for 4 levels
of tolerance between .01 and .04, where density
correlation lies between 0 and 1, the latter
corresponding to a perfect match. Similar results
are obtained for Euclidean and (not shown).

7. Discussion

The SLIDER system has been successfully
applied to determine the weights of features for
the complex problem of recognizing patterns of
electron density for finding the structure of
proteins. But the techniques employed are general
and potentially useful in other domains, especially
those with high-dimensional, noisy data. The
salient aspects of our approach are:
 SLIDER is a filter method which avoids

searching a large space of possible weight

vectors. Instead, the evaluation is performed
at weight values which matter i.e. where there
is a marked change in accuracy of matching.

Furthermore, locating these weight values

can be done efficiently, since it involves

solving linear equations applicable to many
metrics (like the Euclidean distance). The
benefits of restricting the number of weights
searched and used for nearest neighbor
classification are emphasized in the DIET
system [24]; the latter also argue that there
are probably no benefits in using weights
beyond two possible values (0 and 1) - but
the SILDER algorithm does manage in

computing finer weight values that improve
matching and case retrieval.

e« SLIDER was used to optimize weights for
three Minkowsky distance metrics, and
proved to be successful in improving pattern
matching and retrieval, in the context of a
case-based reasoning and nearest-neighbor
strategy to efficiently retrieve matches. The
weights as determined by SLIDER were
largely similar for the various metrics;
nonetheless, the slight differences were
significant in capturing the sensitivity of
relevance to the distance metric being used.
We argue that the relevance of features in
describing a pattern is not absolute; it
depends on how the features are used to
determine  similarity, especially since
similarity itself is often a fuzzy concept, with
imprecise ways of determining it.

As future work, we are currently looking at the

following issues, where there is considerable

scope for improvement and investigation:

e SLIDER is currently limited to distance
metrics for which cross-overs weights can be
calculated by solving simple linear equations.
This may not be possible for other metrics,
like those based on probabilistic and
statistical methods [4, 26, 15]. We are
currently investigating methods where cross-
over points for such metrics can be efficiently
determined (by binary search over the space
of weights, for instance).

e One aspect which probably necessitates
closer scrutiny is the definition of matches
and mismatches to assess if the updated
weights improve accuracy. We use a simple
strategy where two patterns are said to
match/mismatch if their density correlation in
above/below a threshold. We observed that
final set weights returned by SLIDER is
sensitive to this threshold. What would be an
appropriate threshold, and how can it be
determined? Or is there a better way of
assessing similarity in this context? Should
we use “perfect” matches/mismatches in our
training set, or do we need to allow for near-
matches/mismatches as well, which will
enable us capture the nuances in the
information that is required to confidently say
how different two instances are?

* More generally, we are also working on other
strategies to weight features, including
analyzing the sensitivity of feature relevance
to the context [10,18] and methods based on
Single Value Decomposition (SVD) and
Principal Component Analysis (PCA).
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