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Abstract 

 
Feature selection and weighting are central 

problems in pattern recognition and instance-based 
learning. In this work, we discuss the challenges of 
constructing and weighting features to recognize 3D 
patterns of electron density to determine protein 
structures. We present SLIDER, a feature-weighting 
algorithm that adjusts weights iteratively such that 
patterns that match query instances are better ranked 
than mismatching ones. Moreover, SLIDER makes 
judicious choices of weight values to be considered in 
each iteration, by examining specific weights at which 
matching and mismatching patterns switch as nearest 
neighbors to query instances. This approach reduces 
the space of weight vectors to be searched. We make 
the following two main observations: (1) SLIDER 
efficiently generates weights that contribute 
significantly in the retrieval of matching electron 
density patterns; (2) the optimum weight vector is 
sensitive to the distance metric i.e. feature relevance 
can be, to a certain extent, sensitive to the underlying 
metric used to compare patterns. 
 
 
1. Introduction 
 

Defining a suitable measure of similarity is a 
fundamental requirement of pattern recognition [11], 
instance-based learning [2], case based reasoning [25, 
27] and other machine learning approaches [29]. Cases 
or instances are typically compared by a similarity or 
distance function based on numeric features that 
characterize the relevant aspects of the instances. 
Potentially useful features are generally defined by an 
expert or extracted by automated techniques [28], and 
a subset of these features are automatically selected 
(or weighted), based on relevance to the task at hand 
[3]. The approaches to feature selection and weighting 
can be categorized into two major groups: filter 

methods try to build classifiers that take into account 
some properties of the features involved, such as 
correlations, dependencies and other information [23]; 
the features are considered independently of the 
induction algorithm.  Another paradigm, dubbed 
wrapper, use part of the data sample to iteratively 
evaluate the subset of selected features by techniques 
such as cross-validation i.e. the features are selected 
based on the bias of the induction algorithm [22]. The 
challenges of defining and determining relevance are 
also addressed in [6], which stresses on the need for 
studies on difficult data sets, especially with large 
number of attributes, and where a large proportion of 
attributes are irrelevant. 

In this work, we focus on SLIDER [17, 13], a 
filter approach that uses the following measure to 
evaluate the optimality of a set of weights: given a test 
instance, we look at how well the weighted features  
rank a known similar instance, relative to a set of 
known different ones. Another central idea in SLIDER 
is that evaluation is done for very specific weights 
where there is a switch in neighbors between a test 
region, its match and its mismatch. These “cross-over” 
weights are the ones which will influence accuracy of 
matching the most. Thus, by limiting the space of 
weights to be searched, and identifying the weights 
that make a significant difference, the efficiency and 
effectiveness of learning are largely ensured. In our 
empirical analysis, we compare different weighting 
schemes – uniform (all features are selected, and 
weighted equally), binary (feature weights can be 
either 0 or 1) and continuous weights, where the latter 
two are derived from the output of the SLIDER 
algorithm. We also analyze the sensitivity of the 
weighting methods to different distance measures. In 
this work, we look at the Minkowsky family of 
distance metrics (of order 1, 2 and 3) i.e. Manhattan 
(L1), Euclidean (L2) and L3. 

Our empirical investigation is in the domain of 
protein crystallography, where 3D patterns in an 
electron density map have to be recognized and fitted 



with molecular structural components (or amino acids) 
to determine the structure of a protein macromolecule 
(Figure 1).  TEXTAL™ [21] is a system that 
automates this process of electron density map 
interpretation; it uses nearest neighbor learning [12] 
and case-based reasoning to recognize patterns of 
electron density (in small spherical regions in a 
density map) by comparing them to known solved 
patterns stored in a case-base. Good matches are 
retrieved and assembled together to create a protein 
model, guided by knowledge of the domain, either 
explicitly stated (like typical stereo-chemical 
constraints of proteins) or implicitly encoded in the 
solved cases. 
 

 
Figure 1. A portion of an electron density map 
which shows the contours of the intensity of 
electrons around that part of the protein. The 
correct structure (atoms and bonds) has been 
fitted in this density map. 
 

The rest of this paper is organized in sections 
which discuss the following: (1) the significance and 
challenges of the protein crystallography domain, and 
an overview of the TEXTAL™ system; (2) the 
methods that TEXTAL™ uses to efficiently compare 
and  retrieve matching cases from a (large) case-base; 
(3) the features that experts defined in this domain; (4) 
the SLIDER algorithm; (5) empirical results on the 
weights returned by SLIDER and their effectiveness in 
finding matching density patterns, for the three 
Minkowsky distance metrics; (6) analysis of the 
results, limitations and future work. 
 
2. Protein crystallography & TEXTAL™  
 

The structural genomics initiative is a worldwide 
effort to determine the structure of all proteins in a 
high-throughput mode [8,31]. This is motivated by the 
very rapid growth in the number of genomic 
sequences being discovered, since knowledge of the 

structure of proteins would shed light on the 
importance of genomic sequence regions, how the 
protein functions, and how drugs can be designed to 
effectively interact with proteins. Thus there has been 
a growing demand for high-throughput computational 
methods for protein structure determination, including 
rapid interpretation of electron density maps in X-ray 
crystallography. A density map is generated by the 
Fourier transformation of diffraction patterns obtained 
when X-rays are shone on the crystal of the protein.  
Interpreting a map essentially involves fitting known 
molecular structures known as amino acids into the 
density (Figures 1 and 2); there are 20 types of amino 
acids in nature, and proteins are essentially chains of 
typically 100-1000 amino acids that fold in complex 
3D conformations. Maps are usually interpreted by 
crystallographers, with the help of visualization 
programs. The process can be laborious and 
challenging, especially since the map can be of poor 
quality (noisy and low resolution). There is also 
significant subjectivity in model building [30]; the 
difficulties in interpreting electron density are also 
discussed in [32].  

One of the major difficulties is the fact that, to 
generate a density map, we need the intensity as well 
as phase information of diffracted patterns. But the 
phases cannot be experimentally determined, and have 
to be approximated by other means. This is known as 
the phase problem; thus the crystallographer has to go 
through various cycles of (1) interpret inaccurate 
maps, (2) improve phases from the model built, (3) use 
improved phases to generate better maps, which can 
be re-interpreted.  

TEXTAL™ aims at automating this process of 
solving an electron density map, thereby saving up to 
weeks of effort required by an expert crystallography 
to interpret one map, especially if it is noisy and 
blurred. Given an unsolved map of a protein in 
XPLOR [7] format, TEXTAL™ first identifies the 
positions of special carbon atoms (called C� ’s) which 
lie roughly at the center of each amino acid. This is 
achieved by a sub-system called CAPRA, or C-Alpha 
Pattern Recognition Algorithm [20]. Then spherical 
regions (of 5Å diameter) around each C�  are looked 
at; they are characterized by a set of numeric features, 
which are used to find matches from a case-base of 
solved patterns. These fragments of pre-determined 
structures are retrieved, and a macromolecular model 
is gradually built, by fitting the fragments together, 
subject to many constraints e.g. on bond lengths and 
angles. The model is also improved by aligning the 
sequence of amino acids obtained with the known 
sequence [34]; further refinement is done by moving 
the atoms slightly to improve the fit with the density – 
this process is known as real space refinement [9]. The 

6/13/04 18



TEXTAL™ system is much larger is scope; for more 
details, refer to [21, 20, 17, 13] and 
http://textal.tamu.edu:12321. TEXTAL™ is also a 
component of PHENIX (http://www.phenix-
online.org) [1], an integrated crystallographic 
computing environment. 
 

 
 
Figure 2. The pattern on the left represents a 
spherical region of unsolved electron density. 
An expert crystallographer would recognize 
the shape (with the help of a 3D visualization 
program) and model this region of the protein 
i.e. determine the positions of the atoms, and 
how they bond together (as shown in the 
pattern on the right). These two patterns are, 
in fact, identical but oriented differently in 3D 
space. Thus, rotation-invariant features are 
required to represent them.  
 

In this paper, we focus on the choice of features to 
represent spherical regions of density patterns, and the 
determination of their weights for various distance 
functions that can be used to compare and retrieve the 
regions, based on k-nearest neighbor learning [12]. 
Before discussing the features and their weights, we 
first describe the general approach that TEXTAL™ 
uses to efficiently retrieve cases from a database.   
 
3. Efficient case retrieval in TEXTAL™  
 

Case-based reasoning systems typically need a 
large database of cases for wide problem coverage and 
high quality solutions. But large case-bases may cause 
degradation in efficiency, especially if the case 
matching function to determine similarity between two 
cases is expensive [35]. TEXTAL™ shares these 
challenges with many other case-based reasoning 
systems; in fact, given an unsolved spherical query 
pattern of electron density (q), the distance between q 
and each case ci in the case-base can be determined, 
and the most similar (smallest distance) can be 
returned as the best match. One metric that can be 
used is the density correlation between q and ci’s, 
which computes the optimal superposition between 
two patterns. Since the number of possible 3D 
rotations is very large, this metric is too expensive, 
which we cannot afford to run over the whole case-

base (of ~50,000 regions). Thus, we use an 
approximate, inexpensive, feature-based distance 
metric to filter a small number (say k = 500) of 
potential matches, and the density correlation 
procedure then makes the final ranking. In [15], we 
evaluate and compare various feature-based distance 
metrics for this approach, and argue in the favor of 
statistical and probabilistic measures as compared to 
geometric distances (like Euclidean). 

It should be noted that a good match need not be 
the absolute best one according to the objective 
metric; it can be the top few matches (based on a 
tolerance on how high we wish the density correlation 
value to be to qualify for being a match). Given a 
query pattern, our aim is to try to get at least one good 
match (anywhere) in the top k, since the expensive 
objective will re-rank the top k matches, and identify 
the truly good ones. In [14], we discuss the 
effectiveness of this filtering scheme and how it 
depends on the level of tolerance of matching. We also 
discuss how the value of k is chosen, based on a loss 
function that represents the extent to which the fast 
feature-based distance measure approximates the 
objective density correlation metric. 
 
4. Features in TEXTAL™ 
 

In TEXTAL™, the features used to characterize 
spherical regions of electron density patterns have 
been manually designed by domain experts. One 
important restriction is that the features have to be 
rotation-invariant, since patterns to be compared can 
occur in any 3D orientation. Four classes of features 
have been defined (Table 1): (1) statistical features 
like mean, standard deviation, skewness and kurtosis 
of electron density distribution for a set of grid points 
in the spherical region; (2) features based on moments 
of inertia, where the inertia matrix is computed, and 
various ratios of eigenvalues for the three mutually 
perpendicular moments of inertia are defined as 
features; (3) a feature that captures how symmetric or 
balanced the region is, based on the distance of each 
grid point within the pattern to its center of mass; (4) 
features that reveal  the shape of the pattern – typically 
an amino acid  have three “spokes” emanating from its 
C� ; these spokes are identified, and various features 
are calculated based on  the angles between these 
spokes.  

Furthermore, for each region, we calculate these 
features at 4 different radii (3, 4, 5 and 6 Å); this is 
necessary since amino acids vary in shapes and sizes, 
and each feature captures slightly different 
information for different sizes. Thus, the total number 
of features that we use is 19*4 = 76.  



Table 1. Definition of features used to describe sp herical density patterns in TEXTAL™. The 
features are grouped into 4 classes; each feature h as 4 versions for different radii of the sphere (3,  
4, 5 and 6 Å, where 1 Å = 10 -10m). 
 

Feature class Description of feature Method of computation ( � i is the electron 
density value at the ith of n grid points in a 
region) 

Mean �  = (1/n)�  � i 
Standard deviation [(1/n)�  (� i-� )2]1/2 
Skewness [(1/n)�  (� i-� )3]1/3 

Statistical 

Kurtosis [(1/n)�  (� i-� )4]1/4 
Magnitude of primary moment 
Magnitude of secondary moment 
Magnitude of tertiary moment 
Ratio of primary to secondary moment 
Ratio of primary to tertiary moment 

Moments of  
Inertia 

Ratio of secondary to tertiary moment 

 
 
Compute inertia matrix, diagolize & sort 
eigenvales. 

Symmetry Distance to center of mass |<xc,yc,zc>|,  where xc = (1/n)� xi � i,  
yc = (1/n)� yi � i, zc = (1/n)� zi � i, 

Minimum angle between spokes 
Maximum angle between spokes 
Median angle between spokes 
Sum of spoke angles 
Radial sum of first spoke  
Radial sum of second spoke  
Radial sum of third spoke 

 Shape 

Spoke triangle area 

 
 
Find 3 “spokes” i.e. 3 distinct vectors with highest 
density summation, and compute angle min, max, 
median, sum, etc.  

 
5. The SLIDER algorithm 
 

In this section we describe the SLIDER algorithm 
to optimize weights for the Minkowsky family of 
distance metrics. We first focus on two-component 
mixtures (i.e. involving two features, where their 
weights sum up to 1) and then extend it to an arbitrary 
number of features. The weighted Minkowsky 
distance of order n between two patterns x and y, 
using two features i and j is defined as: 
 
 Di,j(x,y)   =   (wi|xi – yi|

n + wj|xj – yj|
n)1/n 

 
If n = 1, we get the Manhattan distance; if n = 2, the 
metric is called Euclidean, and in general it is known 
as the Minkowsky distance of order n. We can drop 
the nth root, since it is a monotonic transformation. 
Thus Di,j is re-defined as: 
       
Di,j(x,y)   =    wi|xi – yi|

n + wj|xj – yj|
n 

 
   =    (1 – w)|xi – yi|

n + w|xj – yj|
n 

 
where w is set to wj, the weight of feature j. One 
approach to approximate the optimal pair of weights is 
to  use  a test  set to exhaustively evaluate accuracy for  

 
various pairs of weights defined over a grid, such as 
{0.0, 0.1, 0.2, …, 1.0}. This method is inefficient and 
is limited by the coarseness of the grid sampling. 
SLIDER proposes a more efficient approach. 

Consider an instance x that has y as its closest 
neighbor according to fi, and z as its closest neighbor 
according to fj i.e. the nearest neighbor of x is y when 
w = 0, and it is z when w = 1 (w is the weight of 
feature j). The point at which the  Di,j(x,y) = Di,j(x,z) is 
given by: 
 
        (1 – w)|xi – yi|

n + w|xj – yj|
n   

 
 =    (1 – w)|xi – zi|

n + w|xj – zj|
n 

 
Solving for w, and setting it to w0, we get: 
 
                 |xi – zi|

n - |xi – yi|
n  

w0  =                                                                           (1) 
            |xj – yj|

n - |xi – yi|
n  +  |xi – zi|

n - |xj – zj|
n    

 
In other words, if w is “slided” from 0 to 1, there 

is a weight w0 at which Di,j(x,y) = Di,j(x,z); this point 
is called a “cross-over”, which in fact, is a weight at 
which there is a net increase (or decrease) in accuracy, 
depending on which of y and z is truly closer to x 



(Figure 3).  When there is an increase in accuracy, the 
cross-over is referred to as positive, and negative 
otherwise. It should be noted that not all 3-tuple of 
instances will have a cross-over for a given pair of 
features. 
 
Distance, D 
       
       (xi-zi)

n Di,j(x,z)                            (xj-yj)
n                            

                                           
                                                                     (xj-zj)

n          
                                                                       
       (xi-yi)

n       Di,j(x,y)                  
            
                  0                    w0                1             wj  
Figure 3. As the weight of feature j, w j, slides 
from 0 to 1, the Minkowsky distance between 
x and y [D i,j(x,y)] changes from less to greater 
than that between x and z [D i,j(x,z)]. The 
“cross-over” occurs at w 0 i.e. there is a 
change in accuracy of prediction at w 0, 
depending on whether y or z is truly more 
similar to x.   
 

Crossover points can also be determined by 
considering two subsets of features (instead of just two 
features). Consider two feature subsets A and B, with 
corresponding Minkowsky distances DA and DB 

respectively. A composite metric, DA+B, can be 
defined as DA+B(x,y) =  �  DA(x,y) + (1 – � ) DB(x,y). 
As �  is slided from 0 to 1, it may cause a switch of 
neighbors for three instances, as described earlier.  
Thus �  can be used to determine the new weight 
vector that increases accuracy, based on crossover 
points. Currently, SLIDER randomly chooses one 
feature (set A) and evaluates it against all remaining 
features (set B). The approach can be extended to 
compare feature sets of arbitrary size and composition. 

The key idea behind SLIDER is to determine the 
cross-overs of many examples sliding over the weight 
of one feature at a time and determine the “optimum” 
weight value at which the overall accuracy increases 
the most. SLIDER uses a greedy approach [33] to 
iteratively choose a (random) feature, adjust its weight 
based on the above criterion, and stops when there is 
no net increase in accuracy. 

Once all cross-over points are determined, we find 
the optimum weight (of the randomly chosen feature) 
which maximizes the difference between the number 
of positive cross-overs and negative cross-overs. This 
is done by first sorting the cross-over weights and 
initializing an accumulator to 0;  we then sweep 
through the sorted list of weights, incrementing the 
accumulator when a positive cross-over is 
encountered, and decrementing the accumulator for 

every negative cross-over. The weight at which the 
accumulator reaches its peak is returned as the 
optimum weight. 

The test procedure that we use to evaluate 
whether overall accuracy has improved by updating 
the weights is as follows: we define a test set S of 
pattern instances, and for each instance we find a 
match (high density correlation), and a set of 
mismatches (average or low density correlation). 
Given a weight vector and an instance, we compute 
the distance of that instance to the known match and 
mismatches; the rank of the match relative to the 
mismatches gives an estimate of the optimality of the 
weights. Given a weight vector w, a test set S of m 
cases, and for each case 1 match and n mismatches, 
we define the Ranking Consistency of w, RC(w) as 
follows:   
 
            RC(w)  =   1/m �  [n - rank(i)]                       (2) 
                                       i 

where rank(i) is the rank of the match of i (relative to 
all n mismatches); note that lower rank implies more 
similar to the query pattern (i.e. the match should 
ideally have rank = 1). 

The SLIDER algorithm is given in Figure 4. It 
should be noted that our objective function in this 
problem is a continuous metric (density correlation). 
But this approach can be extended to handle 
classification problems as well. 
 
6. Results 
 

SLIDER was used to optimize the weights 
independently for Manhattan (L1), Euclidean (L2) and 
Minkowsky distance of order 3 (L3).  76  features were 
used, as described earlier. The weight vector in every 
iteration is evaluated through Ranking Consistency for 
a test set of various sizes (typically 500); for each 
query pattern in the test set, one match and 200 
mismatches are pre-determined by the calculation of 
density correlation. The training examples were drawn 
from “ideal”, artificially generated maps of proteins 
with known structures obtained from PDBSelect [16] 
(or http://www.cmbi.kun.nl/gv/pdbsel), a subset of the 
PDB database (http://www.rcsb.org/pdb) [5].  

To evaluate the effectiveness of SLIDER in 
determining a final set of appropriate global weights 
for the filtering scheme described earlier, we use the 
following test procedure: we chose 200 regions that 
evenly cover the 20 different types of amino acids; the 
regions were obtained from a case-base generated 
from ~200 proteins from PDBSelect. For each test 
region, we exhaustively searched the case-base (of 
~50,000  regions) to find  their true, objective matches  



 
 Inputs: 1. Test set S = {S1,…,Sm}; 
             2. For each Si, a match Mi & n mismatches Ni,j, 1�   i �  m,  1 �   j �  n;   
             3. F features. 
 
 Output: Optimized weight vector w = <w1, w2, …, wF>  
 
 for each feature fi 
     weight of feature i, wi 

�  1/F     // initialize wi’s uniformly s.t. � wi = 1 
 
 repeat  
     select feature ƒ randomly 
     Find all cross-over points for S, by solving linear equations (1)   // i.e. by sliding wƒ from 0 to 1 
     Find the “optimum” weight of ƒ, wƒ*  // The weight that maximizes the difference between +ve & -ve 
                                                                      cross-overs   
     wƒ 

�   wƒ* 
     for all features i, i �  ƒ,    wi 

�  wi + (wƒ - wƒ*)w i/�wk, k ≠ ƒ   // Other weights are proportionally adjusted  
                                                                                                          (according to weight) s.t. all weights add up to 1 
     Find Ranking Consistency of w, RC(w) using (2) 
 until  number of iterations exceeds a threshold and RC(w) does not improve 
 
 return w 
 
 

Figure 4. The SLIDER algorithm. 
 
(based on density correlation); then we use the 
weighted feature-based distance metrics to rank all the 
~50,000 regions according to similarity, and find out if 
the feature-based metric manages to “catch” a good 
match in the top k  

Figures 5 and 6 compare the weights returned by 
SLIDER for the three Minkowsky metrics. For all 
three, between 25 and 30 features (out of 76) are 
selected i.e. those features with weights non-negligibly 
greater than 0. Moreover, there is strong tendency to 
choose the same features, and even weigh them 
similarly. There are 28 features for which all three 
metrics have yielded zero weight. It should be noted 
that when different features are chosen, they often are 
very similar, in two ways: (1) they are closely related 
e.g. standard deviation, skewness and kurtosis; (2) it 
may be the same feature (like mean density) but at 
different radii.  

Figure 5 tries to capture this concordance in 
returned weights, by first sorting the features based on 
radius and then grouping them on identity (such that 
related features are as contiguous as possible). Figure 
6 groups features the other way round i.e. for each 
feature, the four radii at which they are calculated are 
shown, sorted in ascending order. The weights have 
been linearly graded on a 5-level scale, where the 
darker the shade, the higher the weight.  

 

We make the following remarks on the feature 
weights computed by SLIDER: 
• The consistency in features selected (and 

weighted) across the three metrics shows that the 
algorithm converges. But the risk of local minima 
still exists; this is partially addressed by the 
randomized choice of feature in each iteration.  

• Table 2 shows the sum of weights for each radius; 
we can again observe significant similarity of 
weights for the three metrics. Furthermore, we 
can note that the total weights for radius 3 Å is the 
maximum, and total weights for radius 6 Å is the 
minimum; these observations are intuitive – the 
3D spherical patterns are expected to cover amino 
acids of various shapes and sizes, which justifies 
the choice of feature values at different radii. At 3 
Å radius, we expect that the pattern to be 
significantly characterized, although inadequately 
since some large amino acids may not be totally 
encapsulated in the sphere. But at  6 Å, we face 
the problem of having noise due to density of 
neighboring  residues; this trend is captured by 
our weight optimization algorithm. Furthermore, 
many features seem to be particularly relevant at 5 
Å, including average density, ratios of moments 
of inertia and sum of spoke angles. 
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Figures 5 and 6. The relative weights of 76 feature s returned by SLIDER for L 1 (Manhattan), L 2 
(Euclidean), and L 3 are shown. In Figure 5 (left), the features are fi rst sorted on radius (in Å), and 
then on identity, such that related weights are con tiguous. In Figure 6 (right), the features are 
sorted on identity and then on radius (in ascending  order, from top to bottom).  Darker the shade, 
higher is the weight. The white cells represent fea tures with zero weight . 
 
 
 

 
 
 



Table 2. Sum of all 19 feature weights, 
independently for 4 different radii. 
 

Sum of weights for three 
Minkowsky metrics 

Radius in 
Å 

(1Å = 10-10m) Manhattan Euclidean L3 
3 .36 .35 .36 
4 .22 .20 .16 
5 .28 .27 .34 
6 .14 .18 .14 

                   
• The individual moments of inertia seem 

irrelevant; but their ratios provide more 
information related to the shape of the density 
pattern (e.g. spherical, ellipsoidal, etc.). This 
exemplifies the feature interaction problem 
[19], where several features may not appear 
relevant on an individual basis, but when 
looked at in combination, they contribute 
significantly to the description of the pattern. 

 
The strong similarity of weights across the 

three metric is largely expected. Some weights are 
relevant, irrespective of the underlying metric. 
Nonetheless, there are differences, and 
interestingly, these differences do capture the 
sensitivity of “optimum” weights to the metric 
being used. Figures 7-9 show the percentage of 
times the three Minkowsky metrics manage to 
catch at least one good match within the top k, for 
various values of k. We can observe that both 
feature selection (binary weights) and feature 
weighting (continuous weights) improve over 
uniform weights (all 76 features equally 
weighted). Furthermore, continuous weights 
improve on binary weights for all three metrics. 
The differences among the three weighting 
schemes are more marked for Manhattan, a little 
less so for Euclidean, and even lesser for L3. In 
[15], we observed that, regardless of the weights, 
Manhattan distance is a better metric than 
Euclidean, which is better than L3. This seems to 
suggest that the better the metric, the more 
sensitive it is to the weights.  An important point 
to note is that, given a distance metric, using 
continuous weights does not improve pattern 
matching (as compared to binary weights) if the 
weights used are those optimized for another 
metric e.g. the weights determined by SLIDER 
for Euclidean will not make continuous weights 
outperform binary weights for Manhattan. 
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Figure 7. The % of test cases where a 
match is “caught” in top k for Manhattan.
  

Euclidean
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Figure 8. The % of test cases where a 
match is “caught” in top k for Euclidean. 
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Figure 9. The % of test cases where a 
match is ”caught” for L 3: the 
improvements with weighting is less for 
L3.  
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Figure 10. The rank of first “good match” 
for various levels of tolerance. 
 

There are other possible ways of assessing 
the effectiveness of retrieval. For instance, Figure 
10 shows how the Manhattan metrics rank a true 
“match” – a case is a match to a query if their 
density correlation is within a tolerance of the 
correlation between the query and its absolute 
best match. Figure 10 shows the rank for 4 levels 
of tolerance between .01 and .04, where density 
correlation lies between 0 and 1, the latter 
corresponding to a perfect match. Similar results 
are obtained for Euclidean and L3 (not shown).  
 
7. Discussion  
 

The SLIDER system has been successfully 
applied to determine the weights of features for 
the complex problem of recognizing patterns of 
electron density for finding the structure of 
proteins. But the techniques employed are general 
and potentially useful in other domains, especially 
those with high-dimensional, noisy data. The 
salient aspects of our approach are:  
• SLIDER is a filter method which avoids 

searching a large space of possible weight 
vectors. Instead, the evaluation is performed 
at weight values which matter i.e. where there 
is a marked change in accuracy of matching. 
Furthermore, locating these weight values 
can be done efficiently, since it involves 
solving linear equations applicable to many 
metrics (like the Euclidean distance).  The 
benefits of restricting the number of weights 
searched and used for nearest neighbor 
classification are emphasized in the DIET 
system [24]; the latter also argue that there 
are probably no benefits in using weights 
beyond two possible values (0 and 1) - but 
the SILDER algorithm does manage in 

computing finer weight values that improve 
matching and case retrieval.   

• SLIDER was used to optimize weights for 
three Minkowsky distance metrics, and 
proved to be successful in improving pattern 
matching and retrieval, in the context of a 
case-based reasoning and nearest-neighbor 
strategy to efficiently retrieve matches.   The 
weights as determined by SLIDER were 
largely similar for the various metrics; 
nonetheless, the slight differences were 
significant in capturing the sensitivity of 
relevance to the distance metric being used. 
We argue that the relevance of features in 
describing a pattern is not absolute; it 
depends on how the features are used to 
determine similarity, especially since 
similarity itself is often a fuzzy concept, with 
imprecise ways of determining it. 

As future work, we are currently looking at the 
following issues, where there is considerable 
scope for improvement and investigation: 
• SLIDER is currently limited to distance 

metrics for which cross-overs weights can be 
calculated by solving simple linear equations. 
This may not be possible for other metrics, 
like those based on probabilistic and 
statistical methods [4, 26, 15]. We are 
currently investigating methods where cross-
over points for such metrics can be efficiently 
determined (by binary search over the space 
of weights, for instance). 

• One aspect which probably necessitates 
closer scrutiny is the definition of matches 
and mismatches to assess if the updated 
weights improve accuracy. We use a simple 
strategy where two patterns are said to 
match/mismatch if their density correlation in 
above/below a threshold. We observed that 
final set weights returned by SLIDER is 
sensitive to this threshold. What would be an 
appropriate threshold, and how can it be 
determined? Or is there a better way of 
assessing similarity in this context? Should 
we use “perfect” matches/mismatches in our 
training set, or do we need to allow for near-
matches/mismatches as well, which will 
enable us capture the nuances in the 
information that is required to confidently say 
how different two instances are? 

• More generally, we are also working on other 
strategies to weight features, including 
analyzing the sensitivity of feature relevance 
to the context [10,18] and methods based on 
Single Value Decomposition (SVD) and 
Principal Component Analysis (PCA). 
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