
Topic 8 | Calculating Potentials 
Due to Charged Conductors

A Case Study in Computer Analysis

The techniques we have used in this chapter for calculating potentials and electric
fields are useful only if the charge distribution is known. In many practical situa-
tions, however, the charge distribution is not known; instead, the value of the
potential is known on the boundaries of a region. For instance, in an electrostatic
situation the surface of a conductor is always an equipotential surface, but the dis-
tribution of charge on the surface is in general not uniform and is not readily cal-
culated by the techniques we’ve encountered so far. Consider a region of space
enclosed by one or more conductors maintained at fixed potentials (for example,
by a battery). How can we determine the potential as a function of position in this
region?

The key to solving this problem is to use the following fact about the elec-
tric potential: In a region where there is no charge, the value of the potential at a
given point is equal to the average of the potential values at surrounding points.
We’ll prove this statement by using Gauss’s law in conjunction with:

(T8.1)

This equation gives the electric field components in terms of partial derivatives of
the potential.

We’ll confine our discussion to situations in which the potential depends only
on two coordinates, x and y. An example is the potential due to a long charged
cylinder. The potential at a point depends only on the point’s coordinates in a
plane perpendicular to the axis of the cylinder, not on the coordinate z along the
axis. For such a two-dimensional situation, consider a point P at coordinates (x, y,
z), and enclose it by a Gaussian surface in the shape of a cubical box of side 2∆ l
centered on P (Fig. T8.1). If there is no charge in the volume enclosed by the box,
the total electric flux ΦE through the box is equal to zero. From Eq. (T8.1) the z-
component of the electric field equals zero because the potential V
is not a function of z. Hence there is no flux through the two faces of the Gauss-
ian surface that are parallel to the xy-plane. Since the box is small, to a good
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T8.1 In a region where there is no charge,
the value of the potential at a point P
equals the average of the potential values
at points surrounding P.



approximation the flux through each of the other four faces of the box is equal to
the product of the normal component of E at the center of each face and the area
(2∆ l )2 of each face. The total flux (equal to zero) through the box can then be
expressed as

(T8.2)

Using Eq. (T8.1), we can write the electric-field components to the same approx-
imation as

(T8.3)

Substituting Eqs. (T8.3) into Eq. (T8.2) and dividing through by 4 ∆ l , we obtain

If we solve this for V(x, y), the potential at point P, we find

(T8.4)

In words, the value of the potential at P is the average of the potential values at the
points surrounding P. This statement becomes exact in the limit that ∆ l becomes
infinitesimally small.

To see how to use Eq. (T8.4) to calculate the potential due to a set of charged
conductors, let’s consider a specific situation. Figure T8.2a shows a hollow con-
ducting box with a square cross section and with a long axis parallel to the z-axis.
The length of the box is very much greater than the dimension L. The top of the
box, labeled a, is insulated from the other three sides, collectively labeled b; this
is done by having the top be a separate piece of metal with a small gap between it
and the vertical sides of the box (Fig. T8.2b). A fixed potential difference V0 is
maintained between segments a and b of the box. We choose the potentials of the
lower segments to be Vb = 0, so the potential of the upper segment is Va = V0. As a
result of the potential difference, there is a positive charge on a (the higher-poten-
tial conductor) and a negative charge on b (the lower-potential conductor).

Our goal is to find the potential V at all points in the interior volume of the box.
Because the box is long, the potential inside the box is to a good approximation a
function of x and y only. We imagine making a rectangular grid of points inside the
box, separated by a distance ∆ l (Fig. T8.3). The outermost points of the grid are on
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T8.2 (a) A conducting box whose z-
dimension is much longer than the dimen-
sion L along the x- and y-axes. (b) A view
down the z-axis of the box, showing the
two segments into which the box is
divided and the potential difference
between the segments.
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T8.3 A view down the long axis of the
conducting box showing a rectangular grid
of points separated by ∆ l .



the conductor surfaces themselves. Equation (T8.4) then relates the potential at dif-
ferent grid points to each other; since the potentials of the conductors are specified,
we can determine the potential at each grid point in the empty interior of the box.

Complications arise because Eq. (T8.4) relates the values of the potential at
four different grid points. The value of V is unknown at each grid point in the inte-
rior of the box, and each such point is surrounded by two or three other interior
points at which V is also unknown. So Eq. (T8.4) can’t be used to solve for the val-
ues of the potential at these interior points in a single step. Instead, we have to use
an iterative method; we will make a series of successive approximations to find a
set of values of V at the interior grid points such that Eq. (T8.4) is satisfied at every
point. The procedure that we follow to do this is called the relaxation method.

Here’s a skeleton of a computer program to carry out this calculation.

Step 1: Choose a positive value of the potential difference V0. (The procedure
described below runs into trouble if V0 < 0.) 

Step 2: Choose the number m of grid points across or down the region shown in
Fig. T8.3. The total number of grid points is then m2, and the total number of grid
points in the interior of the box is (m − 2)2. Values of m between 10 and 40 work
well. Large values of m require lengthy calculation; small values of m give low
resolution.

Step 3: Let ( j, k) be a pair of integer indexes that identify a particular grid point
and its location in the grid (the j th column and k th row in the grid); each ranges
from 1 to m.

Step 4: Begin a loop on k, from k = 1 to k = m (successive rows of grid points).

Step 5: Begin a loop on j, from j = 1 to j = m (successive columns of grid points).

Step 6: Assign an initial value to the potential V(j, k) for each grid point. If
k = 1 (the top row, corresponding to the surface of the upper conductor a in
Fig. T8.3), set V(j, k) equal to V0. If j = 1, j = m, or k = m, set V(j, k) equal to
zero; these correspond to the left, right, and bottom surfaces, respectively,
of the lower conductor b in Fig. T8.3. For all other values of (j, k), corre-
sponding to grid points in the empty interior of the box, assign an arbitrary
value of V(j, k). The closer this arbitrary value is to the actual value, the
fewer iterations will be required to obtain a good solution. But any value
greater than 0 and less than V0 will do. A good choice for the arbitrary value
might be 0.5V0 for all interior grid points. Do not use V = 0; this choice will
cause problems in Step 13. 

Step 7: End of loops over j and k.

Step 8: Specify the desired accuracy of the results, expressed as a fractional
uncertainty. The program is about to begin iterating to find a solution for V( j, k)
at grid points inside the box, and the iteration will stop when the fractional change
in the values from one iteration to the next is less than the desired accuracy. Rea-
sonable values are from 0.01 to 0.001; the smaller the value chosen, the more iter-
ations will be required. 

Step 9: Define a quantity d (lowercase “delta”) and set it equal to zero. 

Step 10: Again begin a loop on k, this time from k = 2 to k = m − 1 (that is, over
interior points only).

Step 11: Begin a loop on j, this time from j = 2 to j = m − 1 (interior points only).

Step 12: Compute new values of Vnew( j, k) for each interior grid point,
using Eq. (T8.4). (The loops over j and k do not include the values 1 and m



1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.49 0.68 0.76 0.80 0.82 0.82 0.80 0.76 0.68 0.49 0.00

0.00 0.28 0.46 0.57 0.62 0.65 0.65 0.62 0.57 0.46 0.28 0.00

0.00 0.18 0.33 0.42 0.48 0.50 0.50 0.48 0.42 0.32 0.18 0.00

0.00 0.13 0.23 0.31 0.36 0.38 0.38 0.36 0.31 0.23 0.13 0.00

0.00 0.09 0.17 0.23 0.27 0.29 0.29 0.27 0.23 0.17 0.09 0.00

0.00 0.06 0.12 0.17 0.20 0.21 0.21 0.20 0.17 0.12 0.06 0.00

0.00 0.05 0.09 0.12 0.14 0.15 0.15 0.14 0.12 0.09 0.05 0.00

0.00 0.03 0.06 0.08 0.10 0.11 0.11 0.10 0.08 0.06 0.03 0.00

0.00 0.02 0.04 0.05 0.06 0.07 0.07 0.06 0.05 0.04 0.02 0.00

0.00 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T8.4 Potentials after 75 iterations for the
situation shown in Fig. T8.3, with
V0 = 1.00 V. The grid points on the con-
ductor surfaces are shown shaded for clar-
ity. For this grid, m = 12. The potential
decreases as you move away from the
higher-potential top surface and toward the
lower-potential surfaces of the sides and
bottom.

because the values of the potential on the conductor surfaces are fixed.)
That is, let 

Referring to Fig. T8.3, this means that the new value of the potential at ( j,
k) is the average of the old values of V at the four grid points immediately
to the right, the left, below, and above.

Step 13: Calculate the fractional change in potential ∆V /V from the old
value to the new value, and take its absolute value:

A division-by-zero error will result if V( j, k) = 0; this is the reason for our
cautionary note at the end of Step 6. If ∆V /V is greater than d , set d equal to
∆V /V.

Step 14: Replace the old value of V by the new value. That is, set V( j, k)
equal to Vnew( j, k).

Step 15: End of loops over j and k.

Step 16: If the value of d is greater than the desired accuracy specified in Step 8,
there is at least one interior grid point at which the change in V during the itera-
tion just completed was greater than the desired accuracy. Hence one or more
additional iterations are required, and the program must return to Step 10. If the
value of d is less than or equal to the desired accuracy, the current values of V( j, k)
are adequate, and the program may proceed to Step 17. 

Step 17: Print out the potential for each grid point. 

Step 18: END.

Figure T8.4 shows the result of this calculation.
The program described above is actually easier to implement with a spread-

sheet than with a programming language such as BASIC or Pascal. Most popular
spreadsheets permit iterative calculations and will automatically go through the
steps described above. To carry out the calculation, choose a square grid of
spreadsheet cells, enter the values of the conductor potentials in the cells on the
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periphery of the grid, and enter the formula corresponding to Eq. (T8.4) into each
interior cell. The results shown in Fig. T8.4 were obtained with a spreadsheet.

It’s easy to modify the above program to treat other types of conducting bound-
aries. The values of the potential on the conducting surfaces can be chosen at will.
The box can be changed from a square to a rectangle by having a different num-
ber of rows than columns. The box can also have shapes other than rectangular.
Various suggestions are included in the exercises.

Once the values of the potential have been calculated for all grid points, the
electric field components Ex and Ey can be calculated as well using equations sim-
ilar to Eq. (T8.3). At a point (x, y) in the interior of the box, we can find Ex and Ey

using the approximate results

(T8.5)

The magnitude of the field is

(T8.6)

To indicate the direction of E at each interior grid point, the program can be
instructed to draw a line of length c between the two points with coordinates

(T8.7)

You can verify that the distance between these points is c and that the direction of
the line is the same as that of E at (x, y).

To draw lines indicating the direction of E at each interior grid point, insert the
following additional steps between Steps 17 and 18 in the above program skele-
ton. (Note: This may be easier to implement by using BASIC or Pascal than with
a spreadsheet.)

Step 17A: Choose the screen coordinates (addresses of pixels on the screen)
within which the grid points and direction lines of E will be drawn, that is, values
of xmin, ymin, xmax, and ymax. These values are determined by the characteristics of
your computer. For example, a Macintosh with a 14-inch monitor has xmin = 0,
xmax = 639, ymin = 0, and ymax = 479. Some languages let you change the range of
the screen coordinates. In BASIC, for example, the WINDOW command lets you
choose any range of x and y you like; it does the conversion to screen coordinates
for you. 

Step 17B: Choose the distance ∆ l (the spacing, in pixels, between grid points on
the screen) so that all the grid points will fit on the screen. For instance, if the
number of grid rows and columns is m = 20, choose ∆ l to be 1/20 of the smaller
of (xmax − xmin) and (ymax − ymin). Set the line length c equal to ∆ l .

Step 17C: Begin a loop on k from k = 2 to k = m − 1 (interior points only).

Step 17D: Begin a loop on j from j = 2 to j = m − 1 (interior points only).

Step 17E: Calculate the x- and y-coordinates of the screen position corre-
sponding to the current grid point:
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Step 17F: Calculate the electric-field components at the interior grid point 
( j, k) using Eq. (8.5): 
Step 17G: If Ex = 0 and Ey = 0, do not draw a line for the direction of E
(since the field is zero); instead, go on to the next grid point. Otherwise, find
E using Eq. (T8.6).

Step 17H: Draw a line between the points given by Eq. (T8.7). 

Step 17I: End of loops over j and k.

Figure T8.5 shows the result of this calculation for the situation depicted in 
Fig. T8.3.

You may want to refine the calculation to draw at each grid point a vector with
length proportional to the field magnitude E; this shows both the magnitude and
the direction of the field. To do this, simply replace the parameter c in Step 17H
by a multiple of E. You may have to experiment to find the appropriate scale fac-
tor for the best picture.

By a simple modification of the technique used to create the field map, we can
map the equipotential lines in the xy-plane (the cross section in this plane of the
equipotential surfaces). We use the idea that when an equipotential crosses a field
line, the two are perpendicular. To map the equipotentials, we draw a line at each
grid point in a direction perpendicular to the field line at that point. From analytic
geometry, if two lines in a plane are perpendicular, their slopes are negative reci-
procals of each other. The slope of the field line at each point is Ey /Ex, so the slope
of the equipotential at the same point is −Ex /Ey. Referring to Eq. (T8.7), which we
used to draw lines with length c parallel to the field, we see that we need only
replace Ex by Ey and Ey by −Ex in this expression to get a line perpendicular to E
at the point. That is, in Step 17H we use, instead of Eq. (T8.7), the following:

(T8.8)

Figure T8.6 shows the result of such a calculation. Compare this to the field
map shown in Fig. T8.5. Note that this procedure doesn’t plot actual equipotential
curves; rather, it plots segments of various curves. But these give us a good idea
of the shapes of the equipotentials.

Finally, we note that the relaxation-method approach is just another case in
which it is easiest to find the potential first, then determine the electric field from
the potential.
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T8.6 Equipotential line segments for the
situation shown in Fig. T8.3. Each grid
point is marked with a dot. For this grid,
m = 22. As you approach the conducting
surfaces at the top, left, bottom, and right,
the equipotentials become nearly parallel
to the surfaces.

T8.5 Electric-field map for the situation
shown in Fig. T8.3. Each grid point is
marked with a dot. For this grid, m = 22.
The field is directed away from the posi-
tive charges on the top surface at V = V0

and toward the negative charges on the
sides and bottom at V = 0.


