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The basic framework of time-dependent quantum-mechanical methods for molecular dynamics calculations is described. 
The central problem addressed by computational methods is a discrete representation of phase space. In classical mechanics, 
phase space is represented by a set of points whereas in quantum mechanics it is represented by a discrete Hilbert space. 
The discretization described in this paper is based on collocation. Special cases of this method include the discrete variable 
representation (DVR) and the Fourier method. The Fourier method is able to represent a system in phase space with the 
efficiency of one sampling point per unit volume in phase space h,  so that, with the proper choice of the initial wave function, 
exponential convergence is obtained in relation to the number of sampling points. The numerical efficiency of the Fourier 
method leads to the conclusion that computational effort scales semilinearly with the volume in the phase space occupied 
by the molecular system. Methods of time propagation are described for time-dependent and time-independent Hamiltonians. 
The time-independent approaches are based on a polynomial expansion of the evolution operator. Two of these approaches, 
the Chebychev propagation and the Lanczos recurrence, are also compared. Methods to obtain the Raman spectra directly 
by using the Chebychev propagation method are shown. For time-dependent problems unitary short-time propagators are 
described: the second-order differencing and the split operator. Consideration of all these methods has led to scaling laws 
of computation. The conclusion from such scaling laws is that, for simulations of complex molecular systems, approximation 
techniques have to be employed which reduce the dimensionality of the problem. The time-dependent self-consistent field 
(TDSCF) is suggested. Finally, a brief description is presented of current applications of the time-dependent method. 

I. Introduction 
Chemical change is brought about by the motion of electrons 

and nuclei within reacting molecules. The description of this 
internal motion is the subject of molecular dynamics. Theoretical 
advances in the field have been linked to the ability to calculate 
from first principles the basic molecular encounter. This paper 
is concerned with methods of calculation, particularly those of 
the solution of the time-dependent Schriidinger equation, applying 
the results to the numerical simulation of basic chemical events. 
The purpose of this paper is to set guidelines for constructing, as 
exactly as possible, calculations that are aimed at gaining detailed 
insight into the molecular system and that serve as benchmarks 
for other more approximate methods. All calculation methods 
scale in proportion to the volume of phase space that the molecular 
encounter occupies. Therefore, phase space is a common de- 
nominator by which different methods of calculation can be 
compared and the feasibility of the calculation estimated. One 
of the most important issues is the adaptability and flexibility of 
the method. Both these issues will be addressed by a description 
of the essential steps in time-dependent quantum-mechanical 
calculations. 

In recent years molecular dynamics has been great strides.' 
The field has gone through a transition from indirect bulk-type 
experiments to direct experiments that study the elementary 
process without interference of secondary processes. This isolation 
of basic chemical encounters has motivated a theoretical inter- 
pretation based on first principles, i.e., the fundamental equations 
of motion. 

Isolation of the elementary event can be achieved either in space 
or in time. For gas-phase encounters or gas-surface encounters 
isolation is achieved by high-vacuum techniques. The experiments 
are generally based on the seeded supersonic molecular beam.2 
In such an experiment molecules in the beam emerge at very low 
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temperatures which enables control of the initial molecular state. 
With crossed-beam geometries, a direct study of bimolecular 
reactions is possible.s5 When the molecular beam is crossed with 
a laser beam, detailed studies of unimolecular dissociation can 
be made, in particular the dissociation of van der Waals mole- 
cules.6-'2 Colliding the beam with a solid surface allows the 
examination of basic gas-surface  encounter^.'^-^^ For study of 
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elementary reactions in solution, spatial isolation is not possible. 
Recently developed new ultrafast laser pulses in the femtosecond 
regime allow a time isolation in which the elementary process can 
be studied before the surrounding solvent molecules can inter- 
fere.2’-2* 

An important distinction exists between modeling and simu- 
lating a molecular system. The purpose of modeling is to gain 
insight into the mechanism of molecular phenomena. A simple 
calculation pointing to a possible theoretical interpretation is 
usually adequate. The aim of simulation is a quantitative com- 
parison of theory to experiment. The possibility of simulation in 
molecular dynamics is the result of both the experimental isolation 
of phenomena and the rapid improvement in computers. In this 
present work, emphasis is on simulation methods, although the 
same theoretical tools can serve to construct models as well. 

On the basis of first principles, there are four fundamental 
theoretical methods for describing and simulating the elementary 
dynamical event: (a) the classical trajectory method, (b) the 
semiclassical method, (c) the quantum coupled channel method, 
and (d) the quantum time-dependent method. These basic 
methods are also the foundation of the vast approximation tech- 
niques that have been developed in theoretical chemistry. 

The working hypothesis in applying these methods to molecular 
dynamics simulations is the Born-Oppenheimer approximation 
which allows separation of the electronic from the nuclear motion.29 
The hypothesis leads to the potential energy surface on which the 
chemical event takes place. A generalization considering si- 
multaneous motion on more than one potential energy surface is 
usually adequate for cases where the simple adiabatic Born- 
Oppenheimer approximation breaks down.30 

The most widely used method is the classical trajectory ap- 
p r ~ a c h . ~ ’ - ~ ~  In this treatment the motion of the nuclei on the 
Born-Oppenheimer potential surface is solved by using Newton’s 
equations of motion. Once the potential energy surface is known, 
the method can be easily implemented. Starting from a known 
initial configuration, the interpretation of the results is simple. 
The method has been applied to a large number of systems de- 
scribing isolated encounters. The classical trajectory method has 
been extended to processes in a condensed phase by using the 
generalized Langevin equation. It allows the description of systems 
in contact with a thermal bath.34s35 Despite its success the classical 
trajectory method has major problems. A detailed classical 
trajectory simulation, with full final state resolution, requires 
extensive sampling in phase space which becomes extremely ex- 
pensive in computation time. This drawback is especially sig- 
nificant when rare or slow chemical events are considered. Another 
shortcoming has been found for large molecular systems when 
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the onset of chaos is reached at  very low excitations, making the 
definition of normal modes i m p o ~ s i b l e . ~ ~  Nevertheless, these 
drawbacks are minor compared to the fact that the chemical 
motion is quantum mechanical in nature. Quantum effects, like 
tunneling or the influence of zero-point motion, are extremely 
important for basic chemical encounters37 and represent an in- 
herent obstacle to the trajectory approach which may lead to 
qualitatively different results. 

Semiclassical methods aim to correct the flaws in the classical 
description by including the most important quantum effects, while 
maintaining the simple implementation of classical mechanics.38” 
The rationale behind these methods is that because the nuclei are 
relatively heavy, quantum effects can be treated as corrections 
to the basically classical motion. The most developed semiclassical 
dynamical method is the Gaussian wave-packet approximation.4s72 
In this method the quantum wave packet is constrained to be of 
a Gaussian form. The Gaussian approximation method has been 
widely used in many applications with great success. Nevertheless, 
at this stage, the semiclassical method is a very delicate tool. Each 
system requires a special implementation, and the validity of the 
approximation is not known. 

The main difficulty in exact quantum-mechanical calculations 
is their nonlocal character which means that a global simultaneous 
description of all the molecular phase space is required. The most 
mature quantum-mechanical approach is the stationary coupled 
channel approach (CC), which is based on a solution of the sta- 
tionary scattering eq~at ion . ’~  The method has been applied to 
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many dynamical problems such as reactive surface 
s ~ a t t e r i n g , ~ ~ - ~ ~ $ * *  and more. However, despite extensive effort 
invested into working out the approach, progess in simulating 
realistic systems has been slow. Only now, 10 years after the first 
reactive scattering result for the H + H2 system, are results 
emerging for the isotopic analogue D + H283 The difficulty stems 
from the computational effort of the method, which scales as the 
number of channels cubed. Moreover, the method is difficult to 
implement primarily because it is a boundary-value problem which 
requires a special treatment for each system considered. For 
problems in which more than one continuum of final states exists 
in stimulated desorption (three continua), it is not clear how to 
apply the C C  method. 

The time-dependent quantum-mechanical methods are based 
on the solution of the time-dependent Schradinger 
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own advantages. Because they are initial value problems, the 
methods are ea!y to implement. This means also that only one 
column of the S matrix is calculated. In particular the time- 
dependent picture enables a simple treatment of continua and of 
the rearrangement problem in reactive scattering. Besides these 
technical advantages, time-dependent methods lead to a better 
interpretation of the physical mechanism under discussion. The 
time variable also enables a description of externally driven 
systems, by introducing time-dependent Hamiltonians. These 
systems include molecules subject to strong laser fields or in contact 
with stochastic baths. 

Exact time-dependent methods were slow to develop. Initially 
they were obtained by expanding the state on a basis set, diago- 
nalizing the Hamiltonian matrix in this set, and using the ei- 
genvalues and eigenfunctions to propagate in time. The numerical 
cost of diagonalization scales as the number of expansion functions 
cubed (O(N3)) .  Although diagonalization methods are possibly 
more efficient for small simple model problems, because of their 
fast computational scaling properties they have to be replaced for 
the simulation of realistic larger systems. This was the motivation 
for exploring new methods with slower scaling properties. The 
first departure from the fast scaling limitation was introduced in 
the work of McCullough and who used a finite difference 
scheme combined with an implicit propagator. The method scales 
as O ( p ) ,  where N is the number of grid points (spatial points 
used to represent the system). The finite difference has been 
improved by Askar using the explicit second-order-differencing 
propagatorsS where the method scales as O(N). The slow con- 
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at 

For many physical situations, time-dependent methods have their 
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vergence rate with respect to grid size of finite differencing limits 
its use to only qualitative problems. 

The introduction of the Fourier method"JI7 has solved the 
problem of accuracy. The results of the calculation converge 
exponentially with respect to grid size. The method is also ex- 
tremely efficient due to the fast Fourier transform (FIT)  al- 
gorithm, which scales as O(N log N).147-149 Moreover, with the 
use of modern computer architecture the scaling can he reduced 
to qlog N).I" The accuracy and efiiciency of the Fourier method 
have made it a leading example by which other calculational 
methods can be compared. 

The present paper concentrates on exact time-dependent 
quantum-mechanical methods. Approximate semiclassical 
timedependent methods which have been extensively studied by 
Heller and c o - w o r k e r ~ ~ ~ ' ~  will not be described here. The main 
considerations leading to the development of exact timedependent 
methods are presented. Details are described when they have 
importance for the general picture or when they have not been 
published previously such as the calculation of a spectrum using 
the Chehychev propagator. Rather than give a complete review, 
the emphasis is on general principles and on the relationship to 
other methods of calculation. Special attention is given to the 
construction of computational scaling laws. Extrapolating on the 
present extremely rapid growth of the field, it is expected that 
time-dependent quantum-mechanical methods will become an 
everyday tool in physical chemistry of both the experimentalist 
and the theorist. This work is aimed therefore at  opening the 
"black box" of the method and to shed light on the main design 
considerations. With this knowledge the casual user can un- 
derstand the limitations and cost of using the "black box" of 
time-dependent quantum-mechanical calculational methods. 

The implementation of the time-dependent method can he 
divided into five steps: (a) representation; (h) initiation; (c) 
Hamiltonian operation; (d) time propagation; (e) analysis of 
results. Section I1 is devoted to the description of steps a-c. 
Section I11 describes s t ep  d and e. Section IV deals with current 
applications and the TDSCF approximation, and section V is an 
overview. 

ll. Representation 

II.1. Phase Space and Hilbert Space. Our understanding of 
physical phenomena relies heavily on the idea of continuity. In 
particular the laws of mechanics are defined by continuous 
functions. The idea that local properties of a continuous function 
determine its global character is the source of the well-known 
perturbation approach. The same concept is the basis of the 
computational approaches in which a continuous function can be 
completely represented by a set of sampling points. A numerical 
approach is consequently dominated by the rate of convergence 
of an approximation based on a finite set of sampling points. The 
efficiency of a computational scheme can he judged by the con- 
vergence sped with respect to the number of representation values. 

In molecular dynamics two fundamental concepts have to be 
represented: the state of the system and the operators that rep- 
resent ohservahles of the system. There is a significant difference 
in the way molecular dynamics is represented in classical and in 
quantum mechanics, phase space being the common denominator 
to which a comparison can he made. 

In classical mechanics a point in phase space represents the state 
of the dynamical system.l'l A trajectory originating from this 
point describes the evolutionary dynamics of the system through 
time. The evolution is a manifestation of the classical equations 
of motion and of the initial conditions. Knowledge of position 

P 

P MI L" 
I C L -  

Figure 1. Rectangular-shaped phase space. The extent in mrdinate 
space is L, and the extent in momentum space is 2P,. One unit cell 
is darkened. The volume of this phase space is ZSh; therefore the number 
of grid paints N = 25, hr = L / N  = h/2P,,  and Ap = h / h .  

and momentum is required for all degrees of freedom. The local 
point representation in phase space is the reason why the classical 
trajectory method in molecular dynamics is easily implemented. 
Despite its advantage, however, the point representation in phase 
space is a source of a major difficulty. Even not considering the 
uncertainty relation, a strict point localization of a system in phase 
space is not possible. In practical terms a system has to he 
localized. This means that the trajectory must represent a bundle 
of neighboring trajectories in order to faithfully portray the true 
dynamics. The stability of this bundle of trajectories has been 
the subject of research effort for many years.'52 For integrable 
classical systems, stability is assured by the KAM theorem,ls3 but 
most large molecular systems are not integrable. The onset of 
chaos even appears at energies that include only the zero-point 
motion in the molecular vibrational modes. Under such conditions 
neighboring trajectories diverge and all stability is lost. 

In quantum mechanics, the minimum volume in which a 
physical system can be localized in phase space is hD (h is Planck's 
constant and D the number of degrees of freedom). This means 
that a discrete representation is possible with at  least one point 
per unit volume h.D. The fundamental nonlocal character of a 
quantum-mechanical system poses the problem that the dynamics 
of a system cannot be confined to a finite volume in phase space; 
only its lower bound can he ascertained, the minimum value hD. 
This is the main source of error in finite approximation of a 
quantum system. 

To summarize, in classical mechanics the local character enables 
the motion to he confined within an upper boundary surface in 
phase space. The difficulty arises because of the use of a local 
representation in which a single point is not always an adequate 
representation of a small neighboring volume in phase space. In 
quantum mechanics, on the other hand, a strict lower boundary 
is set by the minimum localization volume P. An upper boundary 
surface in phase space cannot he strictly defined because of the 
nonlocal character of the theory. 

The finite representation of phase space in quantum mechanics 
is the basis of the computational methods used to solve the 
quantum-mechanical equations of motion. The shape of the unit 
volume element is arbitrary. This fact can be utilized to optimize 
the representation for a particular problem. Figure 1 displays 
a rectangular-shaped unit volume used in the Fourier method 
described below. 

The construction of a quantum-mechanical representation of 
phase space is closely connected to the representation of the wave 
function in Hilbert space. In the next section the wssihilitv of 
accurately represent& phase space in quantum mechanics with 
one point per unit volume will he demonstrated. (147) Cmlcy. I. W.; Tukcy, 1. W. Math. Comput. 1965.19, 297. 

(148) Temperton, C .  3. Contput. Phys 1983,52, 1. 
(149) Nussbaumcr. H. 3. Fast Fourier Trowform ami Gm"ut ion Al- 

( I  50) Swarzlrauber, P. N. In Pamalid Computmiom; Rcdriguc. 0.. Ed.; 

(151) Pcrcival. I.; Richards, D. Dywmica; Cambridge University Press: 

gorithms. 2nd 4.; Springer Verlag: Berlin, 1982. 

Academic: New York, 1982. 

Cambridge, 1982. 

( I  52) Sce, for example, the set of p- in Topics in Nonlinear Dymmics; 
Joma. S., Ed.; AIP Confer" Roceedings 46; American Institute of Physics: 
New York, 1978; 403. 

(153) Amold, W. I.; Avcz, A. EIgodic Problem of Clossieol Mcchonies; 
Benjamin: New Yark, 1974. 
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11.2. Representation in Hilbert Space. The nonlocal character 
of quantum mechanics must be overcome in constructing a rep- 
resentation. The use of Hilbert space is the method for solving 
this difficulty because it enables the description of nonlocal op- 
erators. The structure of the Hilbert space determines the rep- 
resentation in phase space, an issue that will be addressed later 
in this section. For a calculation scheme the Hilbert space must 
be discrete. Out of many alternatives the collocation method due 
to Gauss has been chosen by this author, for the construction of 
the discrete Hilbert space. The next section will review the basic 
features of the collocation method. 

Consider approximating an arbitrary functionflx) by a set of 
functions gn(x): 

N- 1 

f ( x )  = Ca&n(x) (2.1) 
n=O 

The question is how to determine the expansion coefficients a,,. 
In the collocation method these expansion coefficients are de- 
termined by matching the solution on a set of N grid points: 

N- I 

where xj  are the grid points (or collocation points). This equation 
is equivalent to a set of coupled linear equations. In matrix form 
they become 

wheref, = f(xj) and Gnj = gn(xj), which has a solution provided 
gn(xj) are linearly independent: 

a = &If (2.4) 

The functional basis that is connected through the expansion 
coefficients to the spatial grid allows the accurate representation 
of nonlocal operators. For example, the momentum operator -ih 
(a/ax) operating on a grid point j becomes 

f = Ca (2.3) 

The choice of the functions gn(x) and the sampling points xj has 
great influence on the quality of the approximation. Boundary 
conditions can be matched by choosing gn(x) to satisfy the 
boundary conditions. 

A great simplification is achieved if the set gn(x) is chosen from 
an orthogonal base. One approach is to use quadrature points 
of orthogonal polynomials: 

g n ( 4  = W(X)P"(X) (2.6) 

where w(x) is a weight function and p,(x) is an orthogonal 
polynomial. The sampling points are chosen as zeros of pN(x). 
The theory of Gaussian integration then assures that the vectors 
g, are orthogonal. The orthogonality can be used to solve (2.4): 

N 

j= 1 
an = Cf(xj)gn(xj) (2.7) 

Ih has been shown by Schwartzls4 that (2.1) is completely 
qi ivalent  to 

where the sampling points xi are zeros of gN(x) and gN can be 
any continuous function with N zeros. This formula can be used 
as a basis for calculating derivatives on the grid points. The use 
of this formula scales as O ( p )  for N derivatives on all grid points. 
This can be improved by using the partial summation method of 
L a n c ~ o s ' ~ ~  to obtain scaling as O(N). Part of these ideas are well 
discussed in the work of Gottlieb and Orszagls6 and are known 

(154) Schwartz, C. J .  Math. Phys. 1985, 26, 411. 
(1 55) Lanczos, C. Applied Anolysis; Prentice-Hall: Englewood Cliffs, NJ, 

1956. 

as the pseudospectral method. In molecular dynamics the same 
approach is known through the work of J. C. Light and co-workers 
as the discrete uariable representation (DVR).i57,158 

Examining the scaling of a numerical effort in calculating 
nonlocal operators, the linear relations (2.3) and (2.4) mean that 
this effort scales as O(Z@). If the total number of representation 
points is proportional to the volume of phase space containing the 
system, the numerical effort wil! scale as this volume squared. 

11.3. The Fourier Method. The Fourier method is a special 
case of an orthogonal collocation representation. This method 
deserves special attention for two reasons: first, it can be shown 
that the limit of one point per unit volume in phase space can be 
approached. Second, because it has great numerical advantages. 
Due to the FFT a l g ~ r i t h m , ~ ~ ~ - ' ~ ~  numerical effort scales semili- 
nearly with the volume of phase space. 

In the Fourier method the orthogonal functions gn(x) are chosen 
as 

gk(x) = eiZ*kx/L , k = -(N/2 - l ) ,  ..., 0, ..., N/2 (2.9) 

and the sampling points are equally spaced: xj = 0' - 1)Ax and 
L is the length of the interval. With this choice a wave function 
$(x) is represented as 

Nl2 
$(x) % akei2*kxlL (2.10) 

k=-(N/Z-l) 

The expansion coefficients ak become the Fourier expansion 
coefficients. The choice of the expansion functions (2.9) implies 
periodic boundary conditions with period L .  One can use the 
orthogonality of the Fourier functions with equidistant sampling 
points to invert the relation, giving 

(2.1 1)  
1 N  

Nj-1 
ak = -C~.(x.)e-'2rkxj/L 

In quantum mechanics the coefficients ak have an important 
interpretation since they represent the amplitude of the wave 
function in momentum space. 

At this point the phase-space representation should be recon- 
sidered. The minimum volume in phase, space covered by the 
Fourier representation is calculated as follows: The length of the 
spatial dimension in phase space is L and the maximum mo- 
mentum is pmx.  Therefore, the represented volume becomes Vol 
= 2L-p,,, where the factor of 2 appears because the momentum 
range is from -pmax to +pmax. By use of the fact that p = h k ,  
the phase-space volume can be expressed 

where N is the number of sampling points. Then the sampling 
spacing Ax is related to the maximum wave vector via 

AX = a/lkmaxl (2.13) 

Figure 1 expresses the relation between the volume in phase space, 
the unit volume, and the grid parameters Ax and N .  The com- 
putational scaling properties of the Fourier method are a result 
of the scaling properties of the FFT algorithm, which scales as 
O(N log N).14' As a result, the Fourier method scales with phase 
space as O((Vo1) log (Vol)). 

A function that is bounded in momentum space is equivalent 
to the Fourier transform of the function being band limited. 
Confinement of such a function to a finite volume in phase space 
is equivalent to a band limited function with finite support. The 
accuracy of a representation of this function is assured by the 
Whittaker-Kotel'nikov-Shannon sampling t h e ~ r e m . ~ ~ ~ - ' ~ '  It 
states that a band-limited function with finite support is fully 
specified if the functional values are given by a discrete, sufficiently 
dense set of equally spaced sampling points. The number of points 

(156) Gottlieb, D.; Orszag, S. A. Numerical Analysis of Spectral Meth- 
ods: Theory and Applications; SIAM: Philadelphia, 1977. 

(157) Lill, J .  V.; Parker, G. A.; Light, J. C. Chem. Phys. Lett. 1982, 89, 
483. Light, J .  C.; Hamilton, I .  P.; Lill, J. V. J .  Chem. Phys. 1985.82, 1400. 

(158) Hamilton, J.  P.; Light, J.  C. J .  Chem. Phys. 1986, 84, 306. 
(159) Whittaker, E. T. Proc. R .  SOC. Edinburgh 1915, 35, 181. 
(160) Nyquist, H. Trans. AIEE 1928, 47, 617. 
(161) Shannon, C. E. Proc. IRE 1949, 37, 10. 

Vol = 2hL*kmaX = Nh (2.12) 
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TABLE I: Isotropic Sampling Efficiency" 
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a multiplication by the kinetic energy discrete spectrum: 

dim. llmarlb % l)eub.c %3 9 m a X l l ) C U b d  

1 100.0 100.0 1 .o 

3 74.0 52.4 1.4 
4 61.7 30.8 2.0 
5 46.5 16.45 2.8 
6 31.3 8.07 4.6 
7 29.5 3.69 8.0 
8 8.07 0.505 16.0 

? 90.7 78.5 1.15 

"Data from ref 162. bMaximum sampling efficiency. 'Efficiency of 
cubic lattice. "Improvement factor. 

is determined by (2 .12 ) .  This implies that a value of a point 
between sampling points can be interpolated with any desired 
accuracy. This theorem also implies a faithful representation of 
the nth derivative of the function inside the supported interval. 

The most simple generalization of the Fourier method to 
multidimensions is the use of an equally spaced Cartesian grid. 
An important observation is that this grid is not isotropic in 
momentum space, so that different directions have different 
sampling intervals. Although a completely isotropic grid is not 
possible, the sampling positions can be optimized to construct the 
optimum isotropic grid in momentum space. It has been 
~ h o w n " ~ , ~ ~ ~  that the optimal sampling points are equivalent to 
the centers of multidimensional densely packed hard spheres.'63 
The free volume between the spheres is wasted phase volume. As 
a result, in multidimensions, the limit of one sampling point per 
unit volume is not obtainable even for optimal packing. Table 
I compares the sampling efficiency of a cubic grid with the optimal 
grid as a function of dimension. One can notice that the im- 
portance of optimal sampling is enhanced with dimensionality. 
Nevertheless, even the optimal sampling efficiency decreases with 
dimensionality; for example, for six dimensions 2.7 sampling points 
are needed per unit volume, compared to 12.4 points in .the 
Cartesian cubic lattice. 

As has been shown, a confined function in phase space can be 
represented with no loss of accuracy. In realistic problems, the 
wave function cannot be confined, which means that it is not 
strictly band limited with finite support. The idea of a wave packet 
which is a wave function that is almost band limited is central 
to the use of the discrete representation. A wave packet is a wave 
function that is semilocalized in phase space. The most well-known 
example is the Gaussian wave packet. Although the wave function 
is not confined to a finite volume, the amplitude out of this volume 
in phase space converges exponentially :o zero when the volume 
is increased. This exponential convergence is typical of a good 
representation of phase space.164 A counter example is supplied 
by a rectangular packet which has been reported in the literature.86 
In coordinate space the wave function is well confined, but in 
momentum space the rectangular wave function is transformed 
to $ ( k )  = [sin ( a ( k  - k o ) ) / [ a ( k  - k O ) ] ,  which has only a linear 
convergence rate with the size of the grid in k space. 

11.4. Representation of Operators. The construction of the 
discrete Hilbert space enables the representation of operators. The 
collocation method allows the calculation of local as well as 
nonlocal operators as was demonstrated by ( 2 . 5 ) .  A more ap- 
pealing quantum-mechanical description is to calculate the op- 
eration of operators through their discrete spectrum. The most 
important operato! is the Hamiltonian operator. The result of 
its operation 4 = H $  is the key to the time evolution step. The 
Hamiltonian operator is partition_ed in_the usual fashion between 
kinetic and potential operators H = T + V .  The strategy is to 
calculate each operator locally. The potential operator is already 
local in coordinate space, and therefore its operation is simply a 
multiplication of V(xj)  by $(xj ) .  A local operation of the kinetic 
energy operator is possible in momentum space where it becomes 

(162) Petersen D. P.; Middelton, D. InJ Contr. 1962, 5 ,  279. 
(163) Rogers, C .  A. Packing and Covering Cambridge University Press: 

(164) Tadmor, E. SIAM J .  Numer. Anal. 1986, 23, 1 .  
Cambridge, 1964. 

T ( k )  = h 2 k 2 / 2 m  (2.14) 

To summarize, the kinetic energy operator is calculated by 
transforming + to momentum space by a forward FFT, multiplying 
by T ( k ) ,  and performing an inverse FFT back to coordinate 
space.94 It has been showng4 that this spectral representation 
preserves the coordinate momentum commutation relations which 
are the heart of quantum mechanics. An important issue in 
representing the kinetic energy operator is that it must be Her- 
mitian. Otherwise instabilities arise in the propagation. 

The Fourier spectrum can be compared to the spectrum of the 
finite difference (FP)  method165 by noticing that the finite dif- 
ference operator, T F d  = -h2Cf,,] + - 2f , ) /2mAx2,  is a 
member of the family of convolution operators and therefore is 
diagonal in k space. Performing a Fourier transform, the spectrum 
in k space of the FD kinetic energy operator is obtained: 

fFD(k) = -- 2m Ax2 -"[ 2m Ax ] 
(2.15) 

Upon comparing the spectra, it is apparent that, as k increases, 
the finite difference spectrum deviates more and more from the 
correct value. It is usually assumed that acceptable accuracy in 
the FD method is obtained when at  least 10 points are used per 
wave period, which means also 10 points per unit volume in phase 
space. The finite difference algorithms are based on a local 
polynomial approximation of the wave function; therefore the 
convergence of the method follows a power law of (Ax)", where 
n is the order of the finite difference approximation. The local 
description leads to a poor spectral representation of the kinetic 
energy operator. As a result of this semilocal representation of 
the momentum operator, the commutation relations of quantum 
mechanics are not strictly obeyed. The finite difference methods 
scale linearly with the phase-space volume because they cannot 
account for all the nonlocal character of quantum mechanics. 

In a rectangular set of multidimensional coordinates, the kinetic 
energy operator is separable 

2 
h2 2(cos (kAx)  - 1) 2 sin ( k A x / 2 )  

(2 .16 )  

where & is the vector of k values in spatial dimension i .  For the 
optimal packing case1I3 or other skewed sets of coordinates, the 
kinetic energy operator becomes 

P h2 - - = -K.G.K 
2m 2m 

(2.17) 

?here K is the vector of k values for each spatial direction and 
G is a positive definite matrix connecting spatial direction i with 
direction j .  Reference 1 13 describes the Fourier implementation 
for the skewed multidimensional coordinate system. 

The idea of a space in which a local representation of the 
operator is possible can be carried beyond Cartesian coordinates 
and the kinetic energy operator. A local representation is the most 
efficient way to implement a numerical scheme. Work on these 
lines has been carried out for the representation of the kinetic 
energy operator in spherical  coordinate^:^^^^^^' 

- P 
_.- 

2m 

The representation problem can be divided into radial and angular 
parts. For the radial part of the Laplacian, the Bessel function 
JI i2(r )  is an eigenvalue. This means that, by using a Bessel 
transform, the radial part of the Laplacian becomes a local op- 

(165) Miller, K. S .  An Introduction to Calculus of Finite Difference and 
Difference Equations; Henry Holt and Co.: New York, 1960. 
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erator with the spectrum -k2. Moreover, using the transform with 
J1+l 2, one can include the centrifugal part of the Laplacian, l(1 
+ l{/?, when a YIm expansion is used in the operator eliminating 
the singularity at the origin. Technically fast Bessel transforms 
have been reported in the literature which scale as O(N log N) 
with the number of grid points N.166 A local description of the 
angular part has not yet been reported. For the 4 coordinate, the 
Fourier method is applicable. For 0, a discrete variable repre- 
sentation with Legendre quadrature points has been suggested.16' 
Care must be taken that the 4 grid points are staggered for each 
0 layer. For an angular momentum I ,  there will be l2 sampling 
points. Because a fast Legendre transform is not known, the 
method will scale as Q(I3 log I). For small values of I ,  direct 
expansion in YIm122-128 functions is more efficient than the spectral 
method. The scaling becomes O(14). Other collocation methods 
can have advantages in cases where boundary conditions have to 
be matched or to include singular operators such as the Coulomb 
potential V ( r )  = - (e2/r) .168 

11.5. Flexibility. One of the most important qualities of the 
representation strategy described here is its flexibility. This is 
because different degrees of freedom can be treated by different 
methods, and the total represent_ation can be combined to give 
a vector representation of 4 = H$J. As was mentioned in the 
previous section, a partial expansion is one of the most useful 
options that has been applied to rotational states.122-128 A 
straightforward application of this idea is in the treatment of 
nonadiabatic phenomena as motion on more than one potential 
energy surface.110J45 

One of the methods to minimize the computational effort is 
to use an adoptive grid, a grid which changes as the calculation 
progresses. For example, in a reactive scattering calculation for 
the initial state representation, it is enough to include only the 
entrance channel and then, when the wave packet evolves to 
enlarge the grid, to include also the reactive channel. The key 
element in this program is an interpolation scheme that allows 
grid-tegrid transfer of the wave function. The collocation method, 
besides allowing the representation of nonlocal operators, is also 
an extremely accurate and efficient interpolation scheme.169 In 
the same spirit, the work of Heather and me ti^'^^ has demon- 
strated the use of the superposition principle to split the propa- 
gation onto two overlapping grids. This method allows the sep- 
aration of the asymptotic dynamics from the interaction part. Care 
must be taken that the transmission of amplitude from one grid 
to the other is gradual in space to avoid numerical problems of 
overflowing phase space by a sharp transmission function. 

The possibility of optimizing the representation method and 
adopting it to the current extent of the wave function allows a 
very flexible computational scheme. 

11.6. Initial Wave Packet. The choice of the initial wave packet 
depends on the purpose of the calculation. For the translational 
asymptotic degree of freedom, a Gaussian wave packet is the 
common choice because it allows good control of its extent in phase 
space. The choice of the width of the Gaussian wave packet 
depends on the purpose of the calculation. For example, in the 
simulation of a gassurface collision, the width of the packet can 
be chosen to match the energy spread of the experimental su- 
prsonic beam. Other applications, such as the determination of 
S matrix elements, are optimal with a wide energy range. This 
means a narrow wave packet in position. For bound asymptotic 
degrees of freedom, it is customary to chose an eigenstate as the 
initial condition (see section 111.5). The total initial wave packet 
is constructed as a product of the wave packets of different degrees 
of freedom, for example, $(x,y ,z)  = 4(x)tCy)x(z) .  

11.7. Computational Considerations. The collocation method 
that has been described in this section has many advantages. First, 
flexibility allows the efficient modeling of a large variety of 
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systems. The computational scaling varies from O(N) to O(Nz). 
Moreover, the algorithms developed from the collocation methods 
are highly vectorizable, an important consideration since modern 
computers gain their speed from parallel and vector type archi- 
tecture. In particular, the FET algorithm has extremely efficient 
implementation.Is0 The representation procedure for the Ham- 
iltonian operator, as will be described in the next section, is used 
recursively. It is found that if the representation is not completely 
Hermitian, the propagation scheme can become unstable. 

111. Time Propagation 
111.1. Once the solution to representing the wave function and 

the Hamiltonian operation has been found, the problem of 
propagating the wave function has to be addressed. Formally the 
time-dependent Schrdinger equation has the solution 

(166) Talman, J. D. J .  Comput. Phys. 1978, 29, 3 5 .  J .  Comput. Phys. 

(167) Light. J. C.. urivate communication. 
1978, 30, 93. 

(168) LLForestier; k.; Kosloff, R., work in progress. 
(169) Bisseling, R.  H.; Kosloff, R.; Kosloff, D. Compur. Phys. Commun. 

1986, 39, 313. 

$(t)  = o(t)$(O) = pexp[  - i L ' f i d r ' ] $ ( O )  (3.1) 

where p i s  the time-ordering operator. An approximation of this 
equation presents the following difficulties: first, exponentiation 
of the Hamiltonian operator and, second, the construction of the 
time-ordering operator, T. 

Before reviewing the existing solutions for these difficulties, 
one can consider the limitations imposed on the propagation by 
the time-energy uncertainty principle. These limitations are 
common to all propagation schemes and therefore serve as a 
common denominator for comparison. In analogy to the mo- 
mentum coordinate phase space, the time-energy phase space can 
be considered. The volume of this phase space in units of h 
determines the minimum number of points needed to propagate 
the system in time intervals Ar with energy range AE, 

For each discrete representation, one can estimate the range 
of eigenvalues of the Hamiltonian operator AE = Emax - Emin. 
For example, in the Fourier representation the range can be 
estimated by adding the upper and lower bounds of the kinetic 
and potential energy represented on the grid: 

where 
(3.2) 

(3.3) 

where mi and Aqi are the mass and grid spacing of the ith co- 
ordinate and 

Emin = Vmin (3.4) 
Once AE is known, the time-energy phase space with volume AEt 
can be considered. This volume gives a lower bound to the number 
of steps in the time propagation. This also can be understood by 
noticing that a time step cannot be larger than the smallest period 
determined by h/Ema,. 

If the Hamiltonian in (3.1) is time independent, the time-or- 
dering operator, T, can be omitted, resulting in great simplification. 
The strategy for solving time-dependent problems is to divide the 
total evolution operator into short segments in which the Ham- 
iltonian does not change significantly: 

N- I 
o ( t )  = n=O o((n+l)At,nAt) (3.5) 

where At = t / N .  It will be shown that global propagators which 
use a polynomial expansion of U(t)  are more accurate and efficient 
than short-time propagators. Nevertheless, for time-dependent 
problems one can only use short-time approximation. 

111.2. Global Propagators: The Chebycheu and Laczos 
Schemes. The main idea in a global propagator is to use a 
polynomial expansion of the evolution operator: 

The problem then becomes the choice of the optimal polynomial 
approxima tion. 
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The Chebychev scheme99 approaches this problem in analogy 
to the approximation of a scalar function. Consider a scalar 
function F(x) in the interval [-I, 1 1 .  In this case it is known that 
the Chebychev polynomial approximations are optimal since the 
maximum error in the approximation is minimal compared to 
almost all possible polynomial  approximation^.'^^ 

In the approximation of th,e evolution operator, the complex 
Chebychev polynomials @ , ( X )  are used, replacing the scalar 
function by a function of an operator. In making this change, 
one has to examine the domain of the operator and adjust it to 
the range of definition of the Chebychev polynomials. The range 
of the definition of these polynomials is from -i to i. This means 
that the Hamiltonian operator has to be renormalized by dividing 
by AE = E,,, - Emin. Also, for maximum efficiency, the range 
of eigenvalues are positioned from -1 to 1 by shifting the Ham- 
iltonian to 

Kosloff 

With this definition, the evolution of the wave function $ can be 
approximated as 

where 9, are the complex Chebychev polynomials. The first term 
in the right-hand side is a phase shift compensating the shift in 
the energy scale. The expansion coefficients become 

and ao(a) = Jo(a)  and a = AEt/h. Considering the propagation 
algorithm_, the use of (3.8) requires the calculation of the operation 
of @,(-iHnm) on $(O). This is calculated by using the recursion 
relation of the Chebychev polynomials 

4 n + l  = -2iHnorm4, + 4,-1 (3.10) 

where 4,, = $, ( - i f inorm)$(0) .  In order to save storage, only the 
vectors that are the result of the n and n - 1 operation are saved. 
The result is accumulated in $. The number of expansion terms 
needed to converge the sum in (3.8) is determined by the size of 
the time-energy phase-space volume: a = A E t / h .  Examining 
the expansion coefficients as a function of n, one finds that when 
n becomes larger than a,  the Bessel functions J , (a )  decay ex- 
ponentially. This means that, in a practical implementation, the 
maximum order N can be chosen such that the accuracy is dom- 
inated by the accuracy of the computer. The total number of 
expansion terms will be slightly larger than the theoretical limit 
A E t / h .  One of the most important aspects of the Chebychev 
propagation scheme is that the error is uniformly distributed over 
all the range of eigenvalues. Numerical examples have shown 
that a practical algorithm can be constructed confirming all the 
mathematical  prediction^.^^ 

One drawback of a global evolution method is that intermediate 
results, which may carry much information, are not obtained. One 
way to overcome this problem is to split the propagation into 
smaller intervals. The practical lower limit of the Chebychev 
expansion is 40 terms. The reason is that the extra terms above 
n = a which are needed to converge the sum begin to dominate, 
making the approximation inefficient. For interpretation of in- 
termediate results, this time interval is usually enough, but many 
applications require the calculation of correlation functions at very 
short intervals. The problem can be overcome by considering that 
only the expansion coefficients in (3.8) are time dependent. The 
Chebychev polynomial operations, 4, = @,,(-iHnOrm)$(O), which 
require most of the calculation effort, are time independent. This 
means that the expansion coefficients a, can be recalculated for 
many intermediate times. For example, when the correlation 

(170) Smirnov, V. I.; Lebedov, M. A. Functions of a Complex Variable; 
ILIFFE Books: London, 1968. 
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Figure 2. Raman spectrum of ground-state Morse oscillator and an 
excited-state repulsive potential. The lower panel shows the spectra Ial01* 
as a function of Au. The broad line is a result of the fast photodisso- 
ciation on the upper repulsive potential. The upper right panel shows the 
ground-state initial state and the ground-state potential (dashed line) and 
the upper state wave function after 280 au of time on the repulsive 
potential (dashed line). The Morse potential parameters are Do = 0.174 
au, Po = 0.9374 a d ,  and mass m = 91 1 au. The upper repulsive po- 
tential parameters are D, = 0.164 au and Dl = 0.9374 a d .  A grid of 
128 points was used with Ax = 0.075 au. The number of Chebychev 
coefficients in the calculation was 436. 

function ([(O)(bl$(t')) is desired at an intermediate time t', it 
can be approximated by 

Notice that the accumulator which is the right-hand side of (3.1 1) 
is scalar and therefore the storage requirements of the calculation 
are only slightly increased. 

One of the mostjmportant correlation functions in molecular 
dynamics is when 0 = f i ,  the dipole operator. It has been shown 
that the a b ~ o r p t i o n , ' ~ ~ J ~ ~  Raman,171J73 and CARS spectra'74 can 
be calculated by using Fourier transforms of these correlation 
functions. For example, the Raman spectrum becomes 

where af i (Aw)  is the Raman amplitude from an initial state i to 
a final statefwith frequency difference Aw and where the evo- 
lution of the state i is on the upper electronic surface. Applying 
this formula with (3.11) and changing the order of the sum and 
integral, one finds that the spectrum becomes 

(3.13) 

where Hnom is the upper state normalized Hamiltonian, and the 
new expansion coefficients b, are the half Fourier transforms of 
the Bessel functions a , ( A E t / h ) :  

i N  
af i (Aa)  = Cbn(Aw)(+i(O)IPI4,) 

n=O 

b,(Aw) = 2i [sin [ n arcsin (31 + 
(AE' - A U ~ ) ' / '  

i cos [ n arcsin (%)]I (3.14) 

and 
bo = i / [ ( A E 2  - A w ~ ) I / ~ ]  

Similar formulas can be obtained for the absorption and CARS 
spectra. Figure 2 displays the Raman spectra of a photodisso- 
ciating molecule. The Morse potential is used for the ground state. 

(171) Hizhanykov, V. V.; Tehver, I. .I. Opt. Commun. 1977, 22.49. 
(172) Heller, E. J.  J .  Chem. Phys. 1976, 65, 63. 
(173) Tannor, D. J.; Heller, E. J .  J .  Chem. Phys. 1982, 77, 202. 
(174) Tannor, D. J.; Rice, S. A.; Weber, P. M. J .  Chem. Phys. 1985, 83, 

6158. 



Feature Article 

1 1  

The Journal of Physical Chemistry, Vol. 92, No. 8, 1988 2095 

for all eigenvalues, the error in the Lanczos method is larger for 
larger eigenvalues. On the other hand, the Lanczos vectors + are 
orthogonal and can be used as a base to diagonalize the Ham- 
iltonian matrix which is tridiagonal in this representation. The 
Chebychev vectors 4 are not orthogonal. Another advantage of 
the Lanczos method is that one does not have to normalize the 
Hamiltonian. Nevertheless, the Lanczos recursion is not stable 
and therefore requires stabilization techniques, unlike the Che- 
bychev method for which the recursion is stable. Runs using more 
than 4000 terms have been used (see Figure 3). The most im- 
portant point is that in most applications the Chebychev and 
Lanczos recurrence schemes are interchangeable. 

III .3 .  Short-Time Propagators. In many physical situations, 
time-dependent Hamiltonian operators are used. Examples include 
motion in high laser fields, motion under thermal agitation, or 
the TDSCF approximation. In this case it is appropriate to use 
a short-time propagation scheme. 

The Second-Order-Differencing Scheme (SOD). The simplest 
s_cheme for p_rpagating (1.1) is to expand the evolution operator 
CJ = exp(-iH dt/ h )  in a Taylor series: 

exp(-ifidt/h) = 1 - i f i d t / h  + ... (3.16) 

It has been found that a numerical scheme based on this expansion 
is not stable.8s The instability comes about because the scheme 
does not conserve the time reversal symmetry of the Schradinger 
equation. With a symmetric modification of the expansion, sta- 
bility is obtained. One way to formulate the scheme is to use 
second-order differencing (SOD) to approximate the time de- 
rivative in (1.1). Another formulation uses the symmetric relation 

+(t+dt) - $(t-dt) = (e-jfidflh - e'fidf/h)$(t) (3.17) 

and then by expanding 0 = exp(-iHdt/h) and 0* in a Taylor 
series, the explicit second-order propagation scheme is obtained: 

+(t+At) +(t-At) - 2iAtfi+(t)/h (3.18) 

This is the time propagation scheme used in the finite difference 
method of Askar and Cakmakss and also in the Fourier me- 

If the Hamiltonian operation is Hermitian, which is the case 
for both the FD method and the Fourier method, the SOD 
propagation scheme preserves norm and energy. A good way to 
investigate this is to write the propagation as a discrete mapping 
scheme: 

thod.94,95,101 

t = 3 m  
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Figure 3. Raman spectrum of ground-state Morse oscillator and an upper 
modified Morse potential. The lower panel shows the Raman spectra. 
Sharp features can be seen due to the bound upper surface. The upper 
right panel shows the initial state and the upper state after 3000 au of 
time. The upper state is clearly bound. The upper potential has the form 
V(r) = Dl[exp(-2fllr) - cl exp(-fllr)], where D, = 0.164~11, p1 = 0.9374 
a d ,  cI = 1.5, and ro was shifted from the ground state by 0.1 au. The 
number of Chebychev coefficients in the calculation was 4596. Even with 
this very large Chebychev expansion the norm and energy were conserved 
to the accuracy of the computer, demonstrating the stability of the 
Chebychev recursion. 

A repulsive exponential potential is used for the excited state. 
Converged results were obtained for a relatively short propagation 
bemuse the wave function moves away from the excitation zone. 
Figure 3 displays the Raman spectra of a system with a bound 
excited state. The period of propagation was approximately 10 
times longer than that in Figure 2. Notice the stability of the 
Chebychev recurrence, which was carried out to order 4596. The 
overhead involved in the calculation is minor compared to the 
propagation of the wave function. In calculating the spectra for 
more complicated systems, this method is most efficient when the 
propagation on the excited surface is short. The coefficients b, 
converge very slowly with n; therefore the convergence of the 
expansion must come from the motion of the wave function on 
the excited surface. Such a situation is found in photodissociation 
experiments for which the method will find many applications. 

Recently in molecular dynamics the use of the Lanczos re- 
currence e x p a n ~ i o n l ~ ~ J ~ ~  has been used for time propagation. 
Writing the Lanczos recurrence relation 

~ # j + 1  = [fi- aj~+j - Bj-14j-I (3.15) 

where 

aj = (+jIQ+ji, 

fij is obtained by the normalization requirement: 

(+j+l l+j+l) = 1 

and Bo = 0. For propagating in time, the recurrence is started 
in the same way as the Chebychev method = $(O).  The 
outcome of the recurrence is a set of orthogonal vectors in which 
the Hamiltonian matrix becomes tridiagonal. Remembering that 
the Chebychev and the Lanczos recurrence are both independent 
of the representation and that they have been applied to similar 
problems, it is desirable to compare the methods. So far this has 
not been attempted. 

Park and Light'44 estimate that the error in the Lanczos ex- 
pansion for a time-dependent propagation behaves as in a Taylor 
expansion. The convergence properties of the Taylor expansion 
behave as a power law, which is a slower convergence than the 
exponential law of the Chebychev expansion. Moreover, unlike 
the Chebychev method for which the error is distributed uniformly 

(175) Nauts, A.; Wayatt, R. E. Phys. Rev. Lett. 1983, 51, 2238. 
(176) Lanczos, C. J .  Res. Natl. Bur. Stand. 1950, 45, 255. 

1 - 4AtZH2/h2 -2 iAtH/h  ] [ 
(3,19) [ F' ] = [ -2iAtH/h 1 

where n is the index of the time step. The eigenvalues of this 
propagation matrix are 

X1,2 = 1 - 2At21j2/h2 f (3.20) 

The discrete map is area preserving if the determinate of the 
propagation matrix is unity which is equivalent to X,X2 = 1. This 
implies the norm c o n ~ e r v a t i o n ~ ~  

(ic."+'Iic.") = const (3.21) 

The discrete map is stable only if the eigenvalues are complex. 
Real eigenvalues lead to exponential growth as XI" because XI > 
1. This leads to the stability criterion of the discrete map: 

A t 2 @ / h 2  - 1 C 0 (3.22) 

which has to be true for all eigenfunctions of the Hamiltonian 
operator leading to 

At I h/E,,, (3.23) 

where E,,, is the largest (positive or negative) eigenvalue of the 
discrete Hamiltonian. If the time step exceeds the stability limit, 
exponential solutions take over, resulting in a numerical overflow. 
This fact can be used to obtain empirically the stability limit.94 
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The norm and energy conservation of the SOD scheme is a 
consequence of the time reversal symmetry of the scheme and of 
the Hermitian property of the Hamiltonian operator for both the 
FD and Fourier methods. The energy conservation is obtained 
in a similar way by multiplying (1 .1 )  by a$*./&. The result is 

Re ($""lfiP) = const (3.24) 

Because of this norm and energy conservation, the error in 
propagation accumulates in the phase. In order to obtain an 
estimate of this error, consider the propagation of an eigenfunction 
dm with eigenvalue E,. The eigenvalues of the propagation matrix 
become 

Kosloff 

2At2Em2 f- ,,?E,[ - _  At:,,,* 1]1'* (3.25) 
h 

x,,2 = 1 - ~ 

h* 

By comparing (3.24) with the eigenvalues of the exact propagation 
operator, A,, = e*2iEmAr/A, one finds that the error in propagation 
by the SOD method per time step is 

(3.26) 

Propagating N times, this error accumulates N times. First, it 
should be noticed that the error is not uniform and is large for 
large eigenvalues of +. To minimize the error in phase, it is 
customary to choose a time step, At, 5 times smaller than the 
stability limit, At < h/5Em,,. The resulting error for N steps 
becomes: error = N/375, which allows a few hundred propagation 
steps before errors in interference terms become important. For 
calculations pertaining to a thermal surface, phase coherence is 
important only for relatively short periods of time. Therefore, 
the SOD scheme is a good choice for these problems. One should 
notice that, by shifting the energy and by adding a constant to 
the Hamiltonian, one can predetermine the region in energy with 
minimum error. 

have 
introduced a split time propagation scheme in which the kinetic 
operator and potential operator are used to propagate the wave 
function separately: 

The Split Time Propagation Scheme. Feit and 

exp(-ifiAt/h) = exp 
2m 2 h  

exp( -if'$) exp( -i- fi  -) At (3.27) 
2m 2h  

Each of these propagations is carried out in a local representation: 
first, the wave is transformed to k space by a; FFT procedure 
and then multiplied at each grid point by exp(-i(P2/2m)(At/2h)); 
afterward the wave function is transformed back to coordinate 
space by an inverse F? procedure, and finally the wave function 
is multiplied by exp(-iV(At/Zh)), and 1 / 2  time step of propagation 
is complete. The next half step is done in reverse order with the 
potential energy propagation made before the kinetic energy 
propagation. The split operator method can be used when a 
transformation is found from a diagonal kinetic energy repre- 
sentation to a diagonal potential energy representation. The 
method has been used only in relation to the Fourier represent- 
ation. 

Norm is strictly conserved by the split time scheme, because 
each split time step is unitary. Error is due to the noncommut- 
ability of the kinetic and potential operators. Because of the 
alterQating propagation scheme, the first term in the expansion 
At2[P2,  V]/(8mh2) cancels out; therefore, errors are of 0(At3) 
(see also ref 141). 

At3 A - At 
error = max [-i- [ v,[ v , P ~ ]  1 ,  -i- [P, [P2, [  Q 11 / h 3  

16m 32m2 
(3.28) 

This error accumulates in both the phase and energy of the wave 
function. The usual method of estimating the error by propagating 
an eigenvalue of the Hamiltonian is not usable. For the specific 

case of an harmonic oscillator the error can be estimated by 
considering propagation of a Gaussian wave packet since this 
fundamental form is invariant to the split operator propagation. 
It is found that the error is linear in the quantum number n. A 
method to check the error empirically is to follow the energy 
deviation from the initial value because the method does not 
conserve energy. For multichannel problems the split operator 
method becomes cumbersome because of the need to diagonalize 
the potential energy at each grid point. 

Other existing and implicit propagation ̂ schemes based on a 
Taylor expansion of the evolution operator U can be found, such 
as the Crank-Nicholson methods4 or an implicit split 

Two time scales appear in the short-time propagators. The first 
is the stability time limit and the second is the convergence limit. 
The stability limit is determined by the time-energy uncertainty 
limit Ats = h/E,,,. In the SOD scheme a time step larger than 
Af, will cause exponential divergence. The split operator method 
is intrinstically stable. Nevertheless, a time step larger than Ats 
is meaningless because then the phase of the propagation operator 
exceeds 27r. The convergence time step Af, is determined by the 
desired accuracy. All short-time propagation methods accumulate 
errors. Considering a situation where an upper bound is imposed 
on the error for a long-time propagation, the time step At, has 
to be reduced to compensate for the accumulated error for longer 
propagation times. Both the SOD method and the split operator 
method are second order in time, which means that the time step 
is reduced by a factor of t l i 2 .  The result is that the numerical 
effort will scale as 0(t3i2) for both methods. Using a higher order 
method becomes advantageous for longer times because in general 
the computation of a method of order m will scale as O(t'tl /m).  
In both methods the error is not uniformly distributed. In the 
SOD method the error can be minimized by shifting the potential 
by a constant. In the split operator method the largest error is 
expected where the potential has the largest variation. The time 
step At, is then chosen so that the error becomes acceptable. It 
should be emphasized that At, has to be smaller than At,. If for 
a particular choice of grid parameters At, is larger than At,, this 
means that computation savings can be obtained by trimming the 
grid. 

111.4. Interpretation. One of the most attractive aspects of 
time-dependent methods is that much insight can be obtained by 
inspecting snapshots of the wave function at regular time intervals. 
Such an inspection can lead to an identification of mechanisms 
in analogy to the insights obtained from classical trajectories. The 
use of graphic tools for quantum-mechanical calculations needs 
some adjustment, however, because of the global description of 
the wave function. Typically, one inspects the square amplitude 
of the wave function in coordinate or in momentum space. Figure 
4 shows the details of mechanism of the reaction F + DBr - FD 
+ Br. Figure 5 shows a surface scattering event in momentum 
space. The diffraction peaks which are the result of the collosion 
can be identified clearly. Other useful representations include 
flux mapss4 and phase maps. 

A more rigorous approach in analysis relies on the fact that, 
in the asymptotic part of the grid, the energy transfer between 
the different degrees of freedom halts. The system is then divided 
into bound and free degrees of freedom. At this point the overlap 
with the asymptotic bound degrees of freedom is calculated, from 
which transition probabilities can be obtained. In :he case of a 
time-independent Hamiltonian, one column of the S matrix can 
be extracted for a range of energies. This is done by observing 
that because of the conservation of energy, the unbound degree 
of freedom can be analyzed, associating each final-state mo- 
mentum component uniquely with an initial momentum compo- 
nent.'?* 

In many scattering events there is a time-scale separation be- 
tween a direct scattering event and a delayed part which may be 
a resonance. In problems where one is interested in studying the 
decay of the resonance, grid space can be saved by using absorbing 
boundary conditions, based on a slowly varying optical ~ t e n t i a l . ' ' ~  

(177)  Kosloff, R.; Kosloff, D. J .  Compuf. Phys. 1986, 63, 363 .  
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Fiw 4. Snapshots of the squared amplitude of the wave function for 
the reactive sptem F + DBr - FD + Br. Panel a shows the system in 
the reactant channel. The initial vibration is u = I ,  and a Gaussian wave 
function is used for the initial translation. Panel b shows the wave 
function entering the interaction zone. The deuterium is vibrating vie  
lently between the fluorine and bromine atom. Part of the wave function 
is starting to be reflected from the downhill slope of the potential (a pure 
quantum effect). Panel c shows a more developed wave function in the 
reactive mnc. A breathing mode of the fluorine/bromine mode is iden- 
tified while the deuterium is continuing to vibrate. The reflected wave 
function is interfering with the incoming wave function in the entrance 
channel. In panel d the wave function splits into the reactive and non- 
reactive channels. Part of the wave function is seen cutting the comer. 
The initial energy is E = 0.122643 hartree, enough to populate u = 7 
in the reactive channel. The Fourier Chebychev method was used for the 
propagation. (Adopted from A. D. Hammerich, R. Kwloff, and M. A. 
Ratner, unpublished results.) 

III.5. Sidetrack Calnrlarion of Eigenfundions. An offshoot 
of timedependent quantum-mechanical methods is the calculation 
of eigenfunctions and eigenvalues without a full diagonalization 
of the Hamiltonian matrix. These eigenfunctions are usually uscd 
for constructing the initial wave function or for asymptotic analysis. 
One such method is to use a propagation in imaginary time to 
obtain the ground state. This propagation is made by using the 
Chebychev scheme resulting in exponential convergen&.Im Higher 
eigenstates are obtained by filtering out the ground state and other 
lower energy states and resuming the relaxation. This method 
is optimal when only a small set of lower eigenfunctions is needed 
out of a very large problem. 

A very useful method for obtaining eigenvalues is by examining 
the Fourier transform of the hutocorrelation function, a use or- 
iginated by Feit and Fleck.”’ An implementation of this idea 
can he made by using the Chehychev propagation method em- 
ploying formulas similar to the ones used to obtain the spectra. 
The method is particularly fit for obtaining eigenvalues under the 

Figure 5. Snapshots of the squared amplmde of Ihe u w c  function in 
momentum spare of rcsttcrinp o i  helium from .? xmon-covered silver 
surtd.~. The top figure ihau< the UBYC function at r = 0 with momentum 
directed toward the surface The middle pncl shows the wave funcuon 
afterr = l5000auuhm thehcliumprrticl~I,onthcrurface Whatcan 
bc seen is a momcntum Iransfrr from the negative direction to Ihc positive 
dirwtian. The diffraction states are also beginning to become occupied. 
The lower pawl show the s)stem after the iollison has bren completed, 
1 = 30000 au. The middle pcik is the specular peak; the side peak, ilrc 
the diffractron p e A  Up to ,ezond-order diffraction is clearly observed. 
(Adopted from C Cerjan and K. Ko,luff. unpublished results I 

TDSCF approximationta (see next section). 
Another method applicable for highly excited eigenstates is to 

start from a known simple separable system for which the ci- 
genfunctions are known and then adiabatically switching the 
interaction. This method has been tested by using the SOD time 
propagation scheme, giving good rcsuIts.l’8 

The advantage of these methods is that, because they are aimed 
at obtaining only a few eigenvalues, they scale as O(N log N) 
compared with O(N’)  for a full diagonalization. 

111.6. Scoling LQWS of Compufarion. As molecular dynamics 
advances, the typical size of a simulation increases. As a result, 
calculation methods that were good for small systems become 
inadequate for larger ones. The knowledge of the scaling laws 
of computation helps to set guidelines for the appropriate strategy 
used to construct the simulatton. 

From the previous sections i t  can be concluded that the total 
computational effort is the product of the computational effort 
in calculating the Hamiltonian representation and the computa- 
tional effort in the time propagation. Both scaling laws are 
proportional to the volume of phase space nculed to represent the 
system. The total computational scaling is the product of the 
cuurdinatc momentum phase-space volume and the time-energy 
phasespace volume. Classical trajectory calculations, k ing  local. 
scale linearly with the momentum coordinate phase space. One 
can ask what the price of the nonlocal character of quantum 
mechanics on the scaling proprtics IS. With the Fourier method 
as the leading example, which scales as O(Vol log (VolJ), the 
computation price of the nonlocality scales as O(lug (Vol)). It 
is conjectured that this scaling i s  a lower bound for the scaling 
properties of a nonlocal quantum-mechanical description. 

(178) N a h ,  M.; Kosloff, R., to be published 
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TABLE 11: Scaling Properties of Time-Dependent Methods” 
phase space time-energy convergence 

method size volume number momentum time energy in space in time 

power Fourier SOD LD log L Vol log Vol N log N 9’ log P,,, 
Fourier split LD log L Vol log Vol N log N 2:: log P,,, E(1/2)D+3/2 log E exp power 

P+,’ t3l2 E(1/2)D+3/2 power power finite difference LD Vol N 
DVR Lanczos L l D  (V01)2 N2 

exP exP Fourier Chebychev L” log L Vol log Vol N log N p*’ log P,,, t E(l/Z)Wl log E 
1 3 / 2  E(I/Z)D+3/2 log E exp 

t2? ED+?. exP ? 
exP exP 0 E3D/2 

&!!* pw 
diagonalization L 3 D  ( ~ 0 1 ) ~  A’3 max 

The finite difference is second order in time and second order in space 

It is now poqible to study the influence of a few factors. First 
it is obvious that the coordinate extent should be minimal. Ab- 
sorbing boundary conditions or adoptive grid methods are the 
means for this minimization. As for the momentum itself, it 
influences the computation in two ways-first by enlarging the 
coordinate momentum phase space and then by determining the 
energy range. For a balanced calculation between kinetic and 

“ L is the spatial size of the box containing the system. Vol is the volume in phase space that the system occupies. N is the total number of grid 
points or expansion functions. P,,, is the maximum momentum that can be represented by the descrete approximation. t is the propagation time. 
E is the total represented energy. D is the dimensionality of the system. Exp means exponential convergence. Power means power law convergence. 

. The scaling laws of the Laczos method are not completely known. 

to the family of time-dependent self-consistent-field (TDSCF) 
a p p r o ~ i m a t i o n s . ~ ~ ~ ~ ” ~ ~ ’ ~ ~ - ~ ~ ~  The equations of motion are gen- 
erated by inserting the product form into the Schrodinger equation 
(1.1) 

potential energy, the energy range is proportional to the maximum 
momentum squared. Combining the effects, the computational 
effort scales with the maximum momentum as O ( e :  log Pmx), 
where D is the dimensionality of the problem. Also, the potential 
energy influences the energy range so that, for a balanced cal- 
culation, a cutoff is imposed on the potential energy approximately 
in the same range as the maximum kinetic energy Pmn2/2m. This 
implies that the scaling law with respect to energy becomes 
O(Ei ;y ’  log Emax). For methods depending on a full matrix 
multiplication, which scale as O ( p ) ,  the total scaling laws are 
squared. For example, the scaling law with respect to energy 
becomes O(Egd).  It should be pointed out a t  this point that 
scaling is proportional to the energy range of the problem. This 
means that shifting the zero of energy is equivalent to removing 
high frequencies and, as a result, much computational effort can 
be saved. With respect to time, computational effort is linear. 
In general, time-dependent methods are most efficient when the 
chemical event to be simulated has short duration. Table I1 
summarizes the scaling properties of the common time-dependent 
methods. 

It is speculated that, for a large and accurate simulation, the 
total time for a classical mechanics calculation exceeds its quantum 
analogue because of the more extensive sampling required in phase 
space. The advantage of classical mechanics is that the problem 
is split into many independent trajectories. 

IV. Molecular Dynamics Simulation and Modeling 
As detailed experimental techniques advance, the 

challenge of setting up realistic simulations becomes greater. The 
simulated systems include many degrees of freedom, and inter- 
actions with the external fields become strong, breaking down the 
traditional perturbation approach. As was stated in the previous 
section, computational effort scales with the volume of coordinate 
momentum and the time-energy phase space. As a result, ex- 
tensive effort should be devoted into minimizing the extent of phase 
space. The most fruitful scheme is to minimize the dimensionality, 
since computational effort scales as a power equal to the di- 
mensionality, D. It therefore is crucial to build the simulation 
only around relevant coordinates and to treat the rest of the system 
approximately. Such an hierarchial approach is similar in spirit 
to the generalized Langevin framework used to treat classical 
mechanics in condensed phases.34 The formal framework to 
exercise these ideas is the time-dependent self-consistent-field 
approach (TDSCF). 

ZV.2. The TDSCF Framework. Consider, for example, a 
system that can be divided into two distinct parts. The starting 
point of the approximation is to impose a product form on the 
total wave function: +(x,y) = ~$(x)x(y). This form reduces the 
n + m dimensional problem to a coupled n and m dimensional 
problem (where n is the dimensionality of the x part and m is the 
dimensionality of they part). This type of approximation belongs 

ZV.1. 

= X b ) f i I ~ ~ ) 4 ( X )  + 4(x)fi2b)xb) + fw+#4x)xb) (4.1) 

By multiplying by x*b) and integrating on they variable using 
the normalization condition (alar) ($14) = 0, and the fact that 
the right-hand side is Hermitian, the TDSCF equations are ob- 
tained: 

(4.2) 

and 

where 

and 

P? 
Ij,(x) = - + P(x) 

2m 

and a similar equation for they coordinate. The equation is solved 
by constructing a grid for the x and y subspaces. On this grid 
the operations of (4.2) are calculated. The propagation in time 
is carried out simultaneously in both degrees of freedom by a 
short-time propagator. The TDSCF scheme preserves the norm 
of both wave functions since HsCF is Hermitian. The total energy 
becomes the expectation value 

(4.3) 

and is conserved in time. The advantage of the TDSCF approach 
is that it is very flexible in allowing different descriptions of the 
substituent systems while conserving the total energy. 

An extreme case is a mixed quantum-classical calculation for 
which part of the system is treated classically and the other parts 
quantum mechanically. As an example, for an atom-surface 
encounter, the atom can be treated by using a wave function 
description of its state. The surface motion can be treated by using 
classical mechanicsi0’ where temperature is introduced through 
a generalized Langevin equation. For a low surface temperature, 
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the classical description has to be replaced by the density operator 
description of the surface motion, using the assumption that the 
surface phonons are harmonic,lo7 and by a semigroup approach 
for the r e l a x a t i ~ n . ~ ~ ~ ~ ~ ~ ~  Other variations of mixed TDSCF 
calculations have been proposed. One that carries much promise 
is a quantumsemiclassical approximation using the Gaussian wave 
packet of Heller for the semiclassical part and a grid for the 
quantum part. This approximation is particularly attractive for 
systems that include a mixture of heavy and light particles. 

When the TDSCF approximation is used, the problem of 
omitted correlations has to be addressed. Unlike static SCF, which 
leaves out all correlations, in the time-dependent SCF, part of the 
correlations are taken into consideration by the time evolution. 
The TDSCF method allows flow of energy from one mode to the 
other subject to total energy conservation. Nevertheless, important 
correlations may still be left out. This can be corrected system- 
atically by adding configurations, producing a multiconfiguration 
time-dependent self-consistent-field (MC-TDSCF) description. 
This possibility has only barely been e x p l ~ r e d . ~ ~ ~ , ~ ~ ~  The main 
impetus behind multiconfiguration is to allow more flexibility in 
the wave function, thus allowing the incorporation of correlations. 
The idea is to include in the calculation only the physically relevant 
correlations. As an illustration, the simple wave function that 
is a sum of products in the x and y space is considered: 

(4.4) 

Normalization is imposed on the x space. The correlations are 
introduced subject to the projection operator which is defined in 
t h e y  space. 

$(XJ) = 4l(X)XICv) + 42(X)XZCv) 
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pendent variational procedure has been suggested.’84 In this 
method the representation in phase space is optimized continuously 
in time. A similar idea may apply to MC-TDSCF where the 
projection operator P defining the correlation will be optimized 
continuously in time. 

ZV.3. Applications. Time-dependent quantum-mechanical 
calculations have just begun to proliferate so that most applications 
are in an initial stage. Nevertheless, in several fields of research, 
time-dependent quantum-mechanical methods have caused a 
significant impact. In computational physics, existing working 
codes have developed “momentum”. The new methods have 
entered areas in which there has been no known alternative or 
they have shown significant increase in efficiency. Because of 
their scaling properties, time-dependent approaches become more 
attractive when phase space is large. For problems requiring 
thousands of channels, they gain in importance because the tra- 
ditional coupled channel methods are inadequate. Another ex- 
ample of a problem for which time-dependent methods have no 
feasible alternative is a system that includes more than one 
continuum of states. This situation occurs in a collision-induced 
or laser-induced dissociation. One of the most important reasons 
for using these methods is the insight that can be gained by 
inspecting intermediate results, unique to the time-dependent 
approach. 

Atomic and molecular surface encounters is an area where 
time-dependent calculations have contributed significantly. The 
main reason has been the easy implementation of the Fourier 
method to a basically Cartesian coordinate system, where the 
periodic boundary conditions can be matched to the surface unit 
cell. The calculations performed can be divided into ones with 
static or a dynamic description of the surface. Static calculations 
concentrate on problems related to surface structure. Many of 
these are very large scattering problems, which make time-de- 
pendent methods attractive. For example, in the work of Yinnon 
et al.,9698 time-dependent calculations have been used to elucidate 
the physical phenomena associated with single impurities and 
isolated vacancies on metal surfaces. Another calculationIo2 has 
been concerned with scattering from disordered surfaces. 
Three-dimensional calculations including up to 4096 diffraction 
channels were performed regularly. Molecular surface scattering 
calculations are concerned with interaction of the molecular de- 
grees of freedom with the surface. The problem is six dimensional, 
making it a computational challenge. Current calculations con- 
centrate on rotational excitation, elucidating the connection be- 
tween rotational excitation and the diffraction pattern. The 
systems studied include H2, D2, and N, rotational excitation.122-’26 
The very large number of asymptotic scattering channels has led 
to the largest scattering calculation to date, which was performed 
for the scattering of N2 from a surface displaying rotational 
rainbows.126 

Dynamical surface calculations are aimed at  understanding 
inelastic and energy-transfer phenomena between the gas molecule 
and the surface, The time dependence is used explicitly to include 
the continuum of phonon states. Calculations have been carried 
out for desorption energy accommodation and phonon excitation. 
The general framework of these calculations is a TDSCF approach 
in which the surface motion and the molecular motion are sep- 
arated. In this framework, surface motion can be treated either 
classically for high surface temperature or quantum mechanically 
for low surface temperature. Molecular dissociation dynamics 
on a surface is a field in which time-dependent calculations will 
contribute significantly. The objective is to understand the detailed 
dynamics of the first stage in homogeneous surface ~ a t a 1 y s i s . l ~ ~  
A review of time-dependent quantum-mechanical methods in 
surface scattering has appeared recently. lo* 

Photochemical processes is a field in which time-dependent 
calculations are expected to have great impact. As was described 
in section 111, time-dependent methods lend themselves to the 
calculation of ~ p e c t r a . ~ ~ ’ , ’ ~ ~  In particular, the method has sig- 

(4.5) 

The choice of the projection operator determines the correlation. 
For example, the projection operator can differentiate between 
reactive and nonreactive channels. Imposing total normalization, 
($I$)  = 1, one obtains in the y space 

( X l l X l )  + (x2lx2) = 1 

This leads to the interpretation of the amplitude (xilxi) as the 
probability associated with the projection P. Inserting (4.4) into 
the Schrodinger equation (1.1) and imposing the normalization 
conditions, the MC-TDSCF equations are obtained: 

ih - = [(411fix141) + m.. + ~(411~xy141)lx1 + 
at 

Pfi. ( 4 1142 ) + P( 4 1 I R.142 ) 1 XZ 

In a similar fashion the equations of-motion for d2 and x2 are 
obtained. The choice of the projection P i s  where physical intuition 
takes place. 

The quality of the TDSCF and the MC-TDSCF approximation 
very much depends on the choice of coordinates. This choice can 
be led by physical intuition, looking for a natural separability such 
as that arising from different time scales or mass differences. A 
more systematic approach is to optimize the coordinates. For static 
S C F  this has been carried out successfully with a variational 
approach.lss For TDSCF an approach based on the time-de- 
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nificant advantages when the spectra are of molecules undergoing 
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photodissociation. The method is particularly efficient fo; fast 
processes in the femtosecond region requiring short integration 
times. One such example has been to prove the feasibility of 
photoselective processes by using a pulsed sequence of light.’IO 

A similar idea was used to describe the ionization dynamics 
of atoms and molecules in very intense laser fields.’*’ The purpose 
of the calculation was to obtain the photoionization rate far beyond 
the fields that can be described by perturbation theory.’I2 In this 
calculation the time dependence was used explicitly to describe 
the ele5tromagnetic field as a time-dependent vector potential: 
T = ( P  - e / c A  ( t ) ) 2 / 2 m .  

Time-dependent methods have many advantages in the study 
of molecular mechanisms. The ability to review snapshots of the 
wave function in intermediate stages of the process facilitates 
identification of a molecular mechanism. Studies on these lines 
have been devoted to the process of resonance decay. The systems 
studied include the dissociation dynamics of the collinear van der 
Waals complex of He12.115.129 This study was carried out by both 
an exact time-dependent method and the TDSCF approximation. 
Detailed studies on the dissociation dynamics of the model collinear 
kinetically coupled Morse oscillators have shown a great variety 
of dissociation lifetimes for resonances with almost the same 

Reactive scattering problems are the slowest to have been 
developed. Many collinear reactions have been studied with the 
main advantage of gaining insight into the detailed dynamics. The 
systems studied include H + H2, F + DBr, H+ + H2,95 and more. 
Also, collision-induced-dissociation calculations were performed. 
Here the time-dependent method was chosen because of its ability 
to treat multiple Almost all time-dependent cal- 
culations are restricted to collinear geometry. The reason is the 
complexity of the coordinate system for a total J conservation. 
The resulting curvilinear coordinates are not simply represented 
by the Fourier method, and other collocation methods have still 
to be developed. It may be desirable to simulate these reactive 
systems in six-dimensional Cartesian coordinates. The simplicity 
will compensate for the saving due to the conservation of total 
angular momentum. 

The latest topic is the simulation of electrons in condensed 
phases. The framework is a TDSCF quantum4assical calculation 
where the dynamics of the nuclear motion is treated classically. 
Calculations were applied to an electron in a cluster’46 and to 
electrons in molten ~ a l t s . ’ ~ * , ’ ~ ~  Advances have been also made 
in the treatment of electronic motion by static SCF calculations 
using pseudospectral methods.’” 

Proiecting to new applications, methods scaling as the Fourier 

energy. 103-105.191 

In developing today’s algorithms, it is important to foresee 
tomorrow’s applications and the hardware tools that will be 
available. This is in order to incorporate as many as possible future 
requirements in the present algorithms, whose lifetime might well 
extend into the next computer generation. 

The rule of thumb of computer architects is that every five years 
a new computer generation is born, with computing power enlarged 
by an order of magnitude. Since computational effort scales as 
the volume in phase space, this implies that the frontier of solvable 
problems is pushed one dimension forward every seven or eight 
years. The current status is that, on fast minicomputers, three- 
dimensional molecular problems can be performed and, on su- 
percomputers, four-dimensional problems can be performed. For 
electrons, which are lighter, the current status is that six-di- 
mensional calculations can be performed. From this the conclusion 
can readily be drawn that, even with fast development of new 
computers, the frontier continues to move very slowly. This points 
to the importance of developing good approximation methods, 
instead of waiting until the year 2000, for solving a six-dimensional 
reactive scattering problem. The same problem can be solved 
today by appropriately separating out two subspaces by using the 
TDSCF method. The benchmark function of accurate time-de- 
pendent methods is a help in gaining physical insight into how 
valuable the approximation technique is. 

Besides the trend of faster machines with larger memory, there 
is another trend that can be noticed today, which is the devel- 
opment of parallel machines. Since there is a limit to how fast 
a single processor can work, the obvious way to expand computing 
power is to connect many of them into a parallel machine. 

Algorithms that can be parallelizable might survive into the 
next computer generation, while others that cannot might perish. 
Consequently, algorithms that are inferior on sequential machines 
might be the superior ones on parallel machines. This fact ne- 
cessitates a reevaluation of existing algorithms, in consideration 
of the development of parallel new algorithms. The Fourier 
method is highly parallelizable, since FFT’s are. The TDSCF 
method can be implemented in parallel in a natural way and 
because of this might gain prominence. 

In conclusion, the combination of collocation methods highly 
gained by parallelizable approximation algorithms might be the 
right way to confront high-dimensional molecular dynamics 
problems in the future. Time-dependent quantum-mechanical 
methods will play a major role in future simulations because of 
their accuracy, flexibility, and efficiency leading to greater insight 
into dynamical molecular processes. 

method wili play a dbminant role. As the similated problem 
becomes larger’ the ‘lower methods become more and more 

because it describes correctly the nonlocal character of quantum 
mechanics. has the slowest scaling properties. 
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