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Simple and fast multigrid solution of Poisson’s
equation using diagonally oriented grids

A.J. Roberts∗
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Abstract

We solve Poisson’s equation using new multigrid algorithms that
converge rapidly. The feature of the 2D and 3D algorithms are the
use of diagonally oriented grids in the multigrid hierarchy for a much
richer and effective communication between the levels of the multigrid.
Numerical investigations into solving Poisson’s equation in the unit
square and unit cube show simple versions of the proposed algorithms
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are up to twice as fast as correspondingly simple multigrid iterations
on a standard hierarchy of grids. Similar improvements are found for
a basic advection-diffusion equations.
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1 Introduction

Multigrid algorithms are effective in the solution of elliptic problems and
have found many applications, especially in fluid mechanics [6, e.g.], chemical
reactions in flows [10, e.g.] and flows in porous media [7]. Typically, errors in
a solution may decrease by a factor of 0.1 each iteration [5, e.g.]. The simple
algorithms I present decrease errors by a factor of 0.05 (see Tables 1 and 3 on
pages E12 and E32). Further gains in the rate of convergence may be made
by further research into more sophisticated versions of the algorithms.

Generally, geometrically based multigrid algorithms use a hierarchy of
grids whose grid spacings are proportional to 2−` where ` is the level of the
grid [12, 11, e.g.]. The promising possibility reported here is the use of a
richer hierarchy of grids with levels of the grids oriented diagonally to other
levels. Specifically, for two spatial dimensions (2D) I introduce in Section 2
a hierarchy of grids with grid spacings proportional to 2−`/2 and with grids
aligned at 45◦ to adjacent levels, see Figure 1 (pE6). In three spatial dimen-
sions (3D) the geometry of the grids is much more complicated; in Section 3
we introduce and analyse a hierarchy of 3D grids with grid spacings roughly
2−`/3 on the different levels, see Figure 5 (pE19). Algebraic multigrid meth-
ods are based only upon the matrix of the linear equations. These more
flexible methods have previously generated the hierarchy of diagonally ori-
ented grids in 2D, see Example 1 by Reusken [8, p577], but appear not to
have been investigated in 3D. However, it seems that because of their gener-
ality the algebraic based multigrid algorithms do not converge as quickly as
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that attained here. The geometrically based hierarchy of diagonal grids em-
ployed here are an alternative to the semi-coarsening hierarchy of multigrids
used by Dendy [1] and algebraic multigrid methods [8, 11] in more difficult
problems.

Now Laplace’s operator is isotropic so that its discretisation is straight-
forward on diagonally oriented grids. Thus in this initial work we explore
primarily the solution of Poisson’s equation,

∇2u = f , (1)

although in Section 2.5 we investigate a simple anisotropic advection-diffusion
problem. Given an approximation ũ to a solution, each complete iteration
of a multigrid scheme seek a correction v so that u = ũ + v is a better
approximation to a solution of Poisson’s equation (1). Consequently the
update v has to approximately satisfy a Poisson’s equation itself, namely

∇2v = r where r = f −∇2ũ (2)

is the residual of the current approximation. The multigrid algorithms aim
to estimate the error v as accurately as possible from the residual r. Ac-
curacy in the ultimate solution u is determined by the accuracy of the spa-
tial discretisation in the computation of the residual r: here we investigate
second-order and fourth-order accurate discretisations [12, e.g.] but so far
only find remarkably rapid convergence for second-order discretisations.

In this initial research we only examine the simplest reasonable V-cycle
on the hierarchy of grids and use only one Jacobi iteration on each grid. We
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find in Sections 2.1 and 3.1 that the smoothing restriction step from one
grid to the coarser diagonally orientated grid is done quite simply. Yet the
effective smoothing operator from one level to that a factor of 2 coarser,
being the convolution of two or three intermediate steps, is relatively sophis-
ticated. One saving in using these diagonally orientated grids is that there
is no need to do any interpolation. Thus the transfer of information from
a coarser to a finer grid only involves the simple Jacobi iterations described
in Sections 2.2 and 3.2. Performance is enhanced within this class of sim-
ple multigrid algorithms by a little over relaxation in the Jacobi iteration
as found in Sections 2.4 and 3.4. The proposed multigrid algorithms are
found to be up to twice as fast as comparably simple conventional multigrid
algorithms.

2 A diagonal multigrid for the 2D Poisson

equation

To approximately solve Poisson’s equation (2) in 2D we use a novel hierarchy
of grids in the multigrid method. The length scales of the grid are propor-
tional to 2−`/2. If the finest grid is aligned with the coordinate axes with grid
spacing h say, the first coarser grid is at 45◦ with spacing

√
2h, the second

coarser is once again aligned with the axes and of spacing 2h, as shown in
Figure 1, and so on for all other levels on the multigrid. In going from one
level to the next coarser level the number of grid points halves.
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Figure 1: three levels of grids in the 2D multigrid hierarchy: the dotted
green grid is the finest, spacing h say; the dashed red grid is the next finest
diagonal grid with spacing

√
2h; the solid blue grid is the coarsest shown grid

with spacing 2h. Coarser levels of the multigrid follow the same pattern.
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Figure 2: restriction stencils are simple weighted averages of neighbouring
grid points on all levels of the grid.

2.1 The smoothing restriction

The restriction operator smoothing the residual from one grid to the next
coarser grid is the same at all levels. It is simply a weighted average of the
grid point and the four nearest neighbours on the finer grid as shown in
Figure 2. To restrict from a fine green grid to the diagonal red grid

r`−1
i,j =

1

8

(
4r`

i,j + r`
i−1,j + r`

i,j−1 + r`
i+1,j + r`

i,j+1

)
, (3)
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whereas to restrict from a diagonal red grid to the coarser blue grid

r`−1
i,j =

1

8

(
4r`

i,j + r`
i−1,j−1 + r`

i+1,j−1 + r`
i+1,j+1 + r`

i−1,j+1

)
. (4)

Each of these restrictions takes 6 flops per grid element. Thus assuming the
finest grid is n × n with N = n2 grid points, the restriction to the next finer
diagonal grid (red) takes approximately 3N flops, the restriction to the next
finer takes approximately 3N/2 flops, etc. Thus to restrict the residuals up
` = 2L levels to the coarsest grid spacing of H = 2Lh takes

Kr ≈ 6N
(
1 − 1

4L

)
flops ≈ 6N flops . (5)

In contrast a conventional nine point restriction operator from one level to
another takes 11 flops per grid point, which then totals to approximately
32

3
N flops over the whole conventional multigrid hierarchy. This operation

count is somewhat less than the proposed scheme, but we make gains else-
where. In restricting from the green grid to the blue grid, via the diagonal
red grid, the restriction operation is equivalent to a 17-point stencil with
a much richer and more effective smoothing than the conventional 9-point
stencil.

2.2 The Jacobi prolongation

One immediate saving of this hierarchy of diagonally orientated grids is that
there is no need to interpolate in the prolongation step from one level to the
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(a) (b)

Figure 3: the interpolation in a prolongation step is replaced by simply
a “red-black” Jacobi iteration: (a) compute the new values at the red grid
points, then refine the values at the blue points; (b) compute the new values
at the green points, then refine those at the red points.
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next finer level. For example, to prolongate from the blue grid to the finer
diagonal red grid, shown in Figure 3(a), estimate the new value of v at the
red grid points on level ` by the red-Jacobi iteration

v`
i,j =

1

4

(
−2h2r`

i,j + v`−1
i−1,j−1 + v`−1

i+1,j−1 + v`−1
i+1,j+1 + v`−1

i−1,j+1

)
, (6)

when the grid spacing on the red grid is
√

2h. Then the values at the blue
grid points are refined by the blue-Jacobi iteration

v`
i,j =

1

4

(
−2h2r`

i,j + v`
i−1,j−1 + v`

i+1,j−1 + v`
i+1,j+1 + v`

i−1,j+1

)
. (7)

A similar green-red Jacobi iteration will implicitly prolongate from the red
grid to the finer green grid shown in Figure 3(b). These prolongation-
iteration steps take 6 flops per grid point. Thus to go from the red to the
green grid takes 6N flops. As each level of the grid has half as many grid
points as the next finer, the total operation count for the prolongation over
the hierarchy from grid spacing H = 2Lh is

Kp ≈ 12N
(
1 − 1

4L

)
flops ≈ 12N flops . (8)

The simplest (bilinear) conventional interpolation direct from the blue
grid to the green grid would take approximately 2N flops, to be followed by
6N flops for a Jacobi iteration on the fine green grid (using simply ν1 = 0
and ν2 = 1). Over the whole hierarchy this takes approximately 10 2

3
N flops.
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Again this is a little less than that proposed here, but the proposed diagonal
method achieves virtually two Jacobi iterations instead of just one and so is
more effective.

Compare this with the algebraic multigrid Example 1 of Reusken [8,
p577]. First note that the red nodes are a maximal independent set of the
green nodes, and the blue nodes are a maximal independent set of the red
nodes; in this the methods are the same. However, see that the algebraic
multigrid restriction to the coarser grid generates a 9-point stencil for the
matrix on the coarser grid. This increases the operation count, requires
interpolation in effect, and slows the convergence. Instead here we work
geometrically to good effect.

2.3 The V-cycle converges rapidly

Numerical investigation shows that although the operation count of the
proposed algorithm is a little higher than the simplest standard multigrid
scheme, the speed of convergence is much better. The algorithm performs
remarkably well on test problems such as those in Gupta et al [2]. Here a
quantitative comparison between the algorithms shows the proposed diagonal
scheme is about twice as fast.

Both the diagonal and usual multigrid algorithms use 7N flops to compute
the residuals on the finest grid. Thus the proposed method takes approxi-
mately 25N flops per V-cycle of the multigrid iteration, although 17% more
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Table 1: comparison of cost, in flops, and performance for various algo-
rithms for solving Poisson’s equation in 2D. The column headed “per iter”
shows the number of flops per iteration, whereas columns showing “per dig”
are flops/ log10 ρ̄ and indicate the number of flops needed to compute each
decimal digit of accuracy. The right-hand columns show the performance for
the optimal over relaxation parameter p.

algorithm per iter ρ̄0 per dig p ρ̄ per dig
diagonal, O(h2) 25.0N .099 25.0N 1.052 .052 19.5N
standard, O(h2) 21.3N .340 45.5N 1.121 .260 36.4N
diagonal, O(h4) 30.0N .333 62.8N 1.200 .200 42.9N
standard, O(h4) 26.3N .343 56.6N 1.216 .216 39.4N

than the simplest conventional algorithm that takes 211
3
N flops, the conver-

gence is much faster. Table 1 shows the rate of convergence ρ̄0 ≈ 0.1 for this
diagonal multigrid based algorithm. The data is determined using Matlab’s
sparse eigenvalue routine to find the largest eigenvalue, and hence the slow-
est decay, on a 65 × 65 grid with 12 levels in the multigrid hierarchy. This
should be more accurate than limited analytical methods such as a bi-grid
analysis [3]. Compared with correspondingly simple schemes based upon the
standard hierarchy of grids [11, p11,e.g.], the method proposed here takes
much fewer iterations, even though each iteration is a little more expensive,
and so should be about twice as fast.

Fourth-order accurate solvers in space may be obtained using the above
second-order accurate V-cycle as done by Iyengar & Goyal [4]. The only
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necessary change is to compute the residual r in (2) on the finest grid with
a fourth-order accurate scheme, such as the compact “Mehrstellen” scheme

ri,j =
1

12
(8fi,j + fi+1,j + fi,j+1 + fi−1,j + fi,j−1)

− 1

6h2
[−20ui,j + 4 (ui,j−1 + ui,j+1 + ui−1,j + ui+1,j)

+ ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1] . (9)

Use the V-cycles described above to determine an approximate correction v
to the field u based upon these more accurate residuals. The operation
count is solely increased by the increased computation in the residual, from
7N flops per iteration to 12N flops (the combination of f appearing on the
right-hand side of (9) need not be computed each iteration). Numerical
investigations summarised in Table 1 show that the multigrid methods still
converge, but the diagonal method has lost its advantages. Thus fourth-
order accurate solutions to Poisson’s equation are most quickly obtained
by initially using the diagonal multigrid method applied to the second-order
accurate computation of residuals. Then use a few multigrid iterations based
upon the fourth-order residuals to refine the numerical solution.

2.4 Optimise parameters of the V-cycle

The multigrid iteration is improved by introducing a small amount of over
relaxation.
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First consider the multigrid method applied to the second-order accurate
residuals. Numerical optimisation over a range of introduced parameter val-
ues suggested that the simplest, most robust effective change was simply to
introduce a parameter p into the Jacobi iterations (6–7) to become

v`
i,j =

1

4

(
−2ph2r`

i,j + v`−1
i−1,j−1 + v`−1

i+1,j−1 + v`−1
i+1,j+1 + v`−1

i−1,j+1

)
, (10)

v`
i,j =

1

4

(
−2ph2r`

i,j + v`
i−1,j−1 + v`

i+1,j−1 + v`
i+1,j+1 + v`

i−1,j+1

)
, (11)

on a diagonal red grid and similarly for a green grid. An optimal value
of p was determined to be p = 1.052. The parameter p just increases the
weight of the residuals at each level by about 5%. This simple change, which
does not increase the operation count, improves the factor of convergence to
ρ̄ ≈ 0.052, which decreases the necessary number of iterations to achieve a
given accuracy. As Table 1 shows, this diagonal multigrid is still far better
than the standard multigrid even with its optimal choice for over relaxation.

Secondly consider the multigrid method applied to the fourth-order accu-
rate residuals. Numerical optimisation of the parameter p in (10–11) suggests
that significantly more relaxation is preferable, namely p ≈ 1.20. With this
choice one V-cycle of the multigrid method generally reduces the residuals
by a factor ρ̄ ≈ 0.200. This simple refinement reduces the number of itera-
tions required by about one-third in converging to the fourth-order accurate
solution.
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2.5 Application to an advection-diffusion problem

Consider in this subsection the anisotropic advection-diffusion problem

∇2u − cux = f , (12)

where c is an advection speed here taken for definiteness to be in the x-
direction. In the presence of this advection, we briefly investigate the per-
formance of the multigrid iteration on the diagonally orientated hierarchy
introduced in this paper compared to a conventional multigrid hierarchy.

First consider the discretisation on the hierarchy of grids. The dynamical
analysis developed in [9, §3] for time-dependent problems suggests that good
finite difference approximation to the advection-diffusion problem (12) should
have enhanced diffusivity on coarse grids, namely

ν1

h2
δ2ui,j − c

h
µδui,j = fi,j where ν1 =

ch

2
coth

(
ch

2

)
(13)

and δ2/h2 and µδ/h are centred difference operators approximating to the
Laplacian and ∂x respectively. Such coarse grid approximations may be par-
ticularly good for multigrid methods due to the wide range of grid length
scales. Here ν1 smoothly turns the centred difference approximations on fine
grids into upwind approximations on coarse grids.

The simplest modification of the proposed diagonal multigrid method is
simply to modify the Jacobi prolongation appropriately. For simplicity we
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use unchanged the restriction (3–4) and again there is no need for an inter-
polation step on the diagonal hierarchy. To account for the advection in the
x-direction, at 45◦ to the red grid in Figure 3(a), the Jacobi prolongation (6–
7) is modified to

v`
i,j =

1

4

(
−2h2

ν1

{
r`
i,j +

c

4h

[
v`−1

i+1,j+1 − v`−1
i−1,j−1 + v`−1

i+1,j−1 − v`−1
i−1,j+1

]}

+ v`−1
i−1,j−1 + v`−1

i+1,j−1 + v`−1
i+1,j+1 + v`−1

i−1,j+1

)
, (14)

at the red nodes and then on the blue,

v`
i,j =

1

4

(
−2h2

ν1

{
r`
i,j +

c

4h

[
v`

i+1,j+1 − v`
i−1,j−1 + v`

i+1,j−1 − v`
i−1,j+1

]}

+ v`
i−1,j−1 + v`

i+1,j−1 + v`
i+1,j+1 + v`

i−1,j+1

)
. (15)

The advection on the finer green grid of Figure 3(b) is a little simpler and
leads to the Jacobi prolongation

v`
i,j =

1

4

(
−h2

ν1

{
r`
i,j +

c

2h

[
v`−1

i+1,j − v`−1
i−1,j

]}
+ v`−1

i−1,j + v`−1
i,j−1 + v`−1

i+1,j + v`−1
i,j+1

)
,

(16)
on the green nodes and then on the red

v`
i,j =

1

4

(
−h2

ν1

{
r`
i,j +

c

2h

[
v`

i+1,j − v`
i−1,j

]}
+ v`

i−1,j + v`
i,j−1 + v`

i+1,j + v`
i,j+1

)
.

(17)
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For the purpose of comparison, a conventional multigrid algorithm was mod-
ified by simply replacing its Jacobi iteration step by (16–17).

The modified multigrid algorithms were tried on a number of problems
on the unit square. Both algorithms converged for all advection speeds tried
(up to c = 105); without the enhanced dissipation engendered by ν1 the
methods only converge for |c| < 25 approximately. For almost all advection
speeds c the diagonally based multigrid converged at least twice as quickly.
To quantify the rate of convergence I plot in Figure 4 the decay rate per iter-
ation, ρ̄0, of the mode of slowest decay for each of the two methods. See that
the diagonal multigrid method proposed here, although converging slower for
larger advection speed c, is always significantly better than the corresponding
conventional multigrid, up to five times as fast for large advection speeds.

The diagonal hierarchy of grids appears to work well for advection-diffu-
sion problems as well as Poisson problems.

3 A diagonal multigrid for the 3D Poisson

equation

The hierarchy of grids we investigate for solving Poisson’s equation (2) in
3D is significantly more complicated than that in 2D. Figure 5 shows the
three steps between levels that will be taken to go from a fine standard grid
(green) of spacing h, via two intermediate grids (red and magenta), to a
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Figure 4: the largest eigenvalue of the diagonal (blue solid) and ordinary
(green dashed) multigrid algorithms as a function of advection speed c show-
ing the diagonal multigrid is always significantly better. The eigenvalues
were determined on a 65 × 65 grid.
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Figure 5: one cell of an amalgam of four levels of the hierarchy of grids
used to form the multigrid V-cycle in 3D: green is the finest grid shown; red
is the next level coarser grid; magenta shows the next coarser grid; and the
blue cube is the coarsest to be shown. This stereoscopic view is to be viewed
cross-eyed as this seems to be more robust to changes of viewing scale.

coarser regular grid (blue) of spacing 2h. Although the number of nodes
exactly halves in going from one level to another, as we discuss below, there
is an unusual aspect in the hierarchy that needs special treatment.
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3.1 The smoothing restriction steps

The restriction operation in averaging the residuals from one grid to the next
coarser grid is reasonably straightforward.

• The nodes of the red grid are at the corners of the cube and the centre
of each of the faces as seen in Figure 6. They each have six neighbours
on the green grid so the natural restriction averaging of the residuals
onto the red grid is

r`−1
i,j,k =

1

12

(
6r`

i,j,k + r`
i+1,j,k + r`

i−1,j,k + r`
i,j+1,k + r`

i,j−1,k+

+ r`
i,j,k+1 + r`

i,j,k−1

)
, (18)

for (i, j, k) corresponding to the (red) corners and faces of the coarse
(blue) grid. When the fine green grid is n × n × n so that there are
N = n3 unknowns on the fine green grid, this average takes 8 flops for
each of the approximately N/2 red nodes. This operation count totals
4N flops.

Note that throughout this discussion of restriction from the green to
blue grids via the red and magenta, we index variables using subscripts
appropriate to the fine green grid. This also holds for the subsequent
discussion of the prolongation from blue to green grids.

• The nodes of the next coarser grid, magenta, are at the corners and
centres of the cube as seen in Figure 7. Observe that the centre nodes
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Figure 6: the green and red grids superimposed showing the nodes of the
red grid at the corners and faces of the cube, and their relationship to their
six neighbouring nodes on the finer green grid.



3 A diagonal multigrid for the 3D Poisson equation E22

Figure 7: the red and magenta grids superimposed showing the nodes of
the magenta grid at the corners and the centre of the (blue) cube.
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of the magenta grid are not also nodes of the finer red grid; this causes
some complications in the treatment of the two different types of ma-
genta nodes. The magenta nodes at the corners are connected to twelve
neighbours on the red grid so the natural average of the residuals is

r`−1
i,j,k =

1

24

(
12r`

i,j,k + r`
i+1,j+1,k + r`

i+1,j−1,k + r`
i−1,j−1,k + r`

i−1,j+1,k+

+ r`
i+1,j,k+1 + r`

i+1,j,k−1 + r`
i−1,j,k−1 + r`

i−1,j,k+1+

+ r`
i,j+1,k+1 + r`

i,j+1,k−1 + r`
i,j−1,k−1 + r`

i,j−1,k+1

)
, (19)

for (i, j, k) corresponding to the magenta corner nodes. This average
takes 14 flops for each of N/8 nodes. The magenta nodes at the centre
of the coarse (blue) cube is not connected to red nodes by the red grid,
see Figure 7. However, it has six red nodes in close proximity, those at
the centre of the faces, so the natural average is

r`−1
i,j,k =

1

6

(
r`
i+1,j,k + r`

i−1,j,k + r`
i,j+1,k + r`

i,j−1,k + r`
i,j,k+1 + r`

i,j,k−1

)
,

(20)
for (i, j, k) corresponding to the magenta centre nodes. This averaging
takes 6 flops for each of N/8 nodes. The operation count for all of this
restriction step from red to magenta is 2 1

2
N flops.

Now compare this restriction with the algebraic multigrid principles of
Reusken [8] or Wagner [11, p41]. See that the red nodes are a maximally
independent set on the green grid and so could be found by an algebraic
multigrid method, and similarly as we see next the blue nodes are a
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maximally independent set on the magenta grid. However, the centre
magenta nodes are not on the red grid and so the magenta grid could
not be found by an algebraic multigrid method. This 3D geometrically
inspired multigrid method will not be found using algebraic multigrid
algorithms.

• The nodes of the coarse blue grid are at the corners of the shown
cube, see Figure 8. On the magenta grid they are connected to eight
neighbours, one for each octant, so the natural average of residuals
from the magenta to the blue grid is

r`−1
i,j,k =

1

16

(
8r`

i,j,k + r`
i+1,j+1,k+1 + r`

i+1,j+1,k−1 + r`
i+1,j−1,k+1+

+ r`
i+1,j−1,k−1 + r`

i−1,j+1,k+1 + r`
i−1,j+1,k−1+

+ r`
i−1,j−1,k+1 + r`

i−1,j−1,k−1

)
, (21)

for (i, j, k) corresponding to the blue corner nodes. This averaging
takes 10 flops for each of N/8 blue nodes which thus totals 11

4
N flops.

These three restriction steps, to go up three levels of grids, thus total ap-
proximately 73

4
N flops. Hence, the entire restriction process, averaging the

residuals, from a finest grid of spacing h up 3L levels to the coarsest grid of
spacing H = 2Lh takes

Kr ≈ 62

7
N
(
1 − 1

8L

)
flops ≈ 86

7
N flops . (22)
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Figure 8: the magenta and blue grids superimposed showing the common
nodes at the corners of the blue grid and the connections to the magenta
centre node.
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The simplest standard one-step restriction direct from the fine green grid to
the blue grid takes approximately 33

4
N flops. Over the whole hierarchy this

totals 42
7
N flops which is roughly half that of the proposed method. We an-

ticipate that rapid convergence of the V-cycle makes the increase worthwhile.

3.2 The Jacobi prolongation steps

As in 2D, with this rich structure of grids we have no need to interpolate when
prolongating from a coarse grid onto a finer grid; an appropriate “red-black”
Jacobi iteration of the residual equation (2) avoids interpolation. Given an
estimate of corrections v`

i,j,k at some blue level grid we proceed to the finer
green grid via the following three prolongation steps.

• Perform a magenta-blue Jacobi iteration on the nodes of the magenta
grid shown in Figure 8. See that each node on the magenta grid is
connected to eight neighbours distributed symmetrically about it, each
contributes to an estimate of the Laplacian at the node. Thus, given
initial approximations on the blue nodes from the coarser blue grid,

v`
i,j,k =

1

8

(
−4pmh2r`

i,j,k + v`−1
i+1,j+1,k+1 + v`−1

i+1,j+1,k−1 + v`−1
i+1,j−1,k+1+

+ v`−1
i+1,j−1,k−1 + v`−1

i−1,j+1,k+1 + v`−1
i−1,j+1,k−1+

+ v`−1
i−1,j−1,k+1 + v`−1

i−1,j−1,k−1

)
, (23)
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for (i, j, k) on the centre magenta nodes. The following blue-Jacobi
iteration uses these updated values in the similar formula

v`
i,j,k =

1

8

(
−4pmh2r`

i,j,k + v`
i+1,j+1,k+1 + v`

i+1,j+1,k−1 + v`
i+1,j−1,k+1+

+ v`
i+1,j−1,k−1 + v`

i−1,j+1,k+1 + v`
i−1,j+1,k−1+

+ v`
i−1,j−1,k+1 + v`

i−1,j−1,k−1

)
, (24)

for (i, j, k) on the corner blue nodes. In these formulae the over relax-
ation parameter pm has been introduced for later fine tuning; initially
take pm = 1. The operation count for this magenta-blue Jacobi itera-
tion is 10 flops on each of N/4 nodes giving a total of 21

2
N flops.

• Perform a red-magenta Jacobi iteration on the nodes of the red grid
shown in Figure 7. However, because the centre node (magenta) is
not on the red grid, two features follow: it is not updated in this
prolongation step; and it introduces a little asymmetry into the weights
used for values at the nodes. The red nodes in the middle of each face
are surrounded by four magenta nodes at the corners and two magenta
nodes at the centres of the cube. However, the nodes at the centres are
closer and so have twice the weight in the estimate of the Laplacian.
Hence, given initial approximations on the magenta nodes from the
coarser grid,

v`
i,j,k =

1

8

(
−2pr1h

2r`
i,j,k + 2

[
v`−1

i,j,k+1 + v`−1
i,j,k−1

]
+

+ v`−1
i+1,j+1,k + v`−1

i+1,j−1,k + v`−1
i−1,j−1,k + v`−1

i−1,j+1,k

)
, (25)
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for (i, j, k) corresponding to the red nodes on the centre of faces nor-
mal to the z-direction. Similar formulae apply for red nodes on other
faces, cyclically permute the role of the indices. The over relaxation
parameters pr1 and pr2 are introduced for later fine tuning; initially
take pr1 = pr2 = 1. The following magenta-Jacobi iteration uses these
updated values. Each magenta corner node in Figure 7 is connected to
twelve red nodes and so is updated according to

v`
i,j,k =

1

12

(
−4pr2h

2r`
i,j,k+

+ v`
i+1,j+1,k + v`

i+1,j−1,k + v`
i−1,j−1,k + v`

i−1,j+1,k+

+ v`
i+1,j,k+1 + v`

i+1,j,k−1 + v`
i−1,j,k−1 + v`

i−1,j,k+1+

+ v`
i,j+1,k+1 + v`

i,j+1,k−1 + v`
i,j−1,k−1 + v`

i,j−1,k+1

)
, (26)

for all (i, j, k) corresponding to corner magenta nodes. The operation
count for this red-magenta Jacobi iteration is 9 flops on each of 3N/8
nodes and 14 flops on each of N/8 nodes. These total 5 1

8
N flops.

• Perform a green-red Jacobi iteration on the nodes of the fine green grid
shown in Figure 6. The green grid is a standard rectangular grid so the
Jacobi iteration is also standard. Given initial approximations on the
red nodes from the coarser red grid,

v`
i,j,k =

1

6

(
−pgh

2r`
i,j,k + v`−1

i+1,j,k + v`−1
i−1,j,k + v`−1

i,j+1,k + v`−1
i,j−1,k+

+ v`−1
i,j,k+1 + v`−1

i,j,k−1

)
, (27)
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for (i, j, k) corresponding to the green nodes (edges and centre of the
cube). The over relaxation parameter pg, initially pg = 1, is introduced
for later fine tuning. The red-Jacobi iteration uses these updated values
in the similar formula

v`
i,j,k =

1

6

(
−pgh

2r`
i,j,k + v`

i+1,j,k + v`
i−1,j,k + v`

i,j+1,k + v`
i,j−1,k+

+ v`
i,j,k+1 + v`

i,j,k−1

)
, (28)

for the red nodes in Figure 6. This prolongation step is a standard
Jacobi iteration and takes 8 flops on each of N nodes for a total of
8N flops.

These three prolongation steps together thus total 15 5
8
N flops. To prolongate

over ` = 3L levels from the coarsest grid of spacing H = 2Lh to the finest
grid thus takes

Kp ≈ 125

7
N
(
1 − 1

8L

)
flops ≈ 176

7
N flops . (29)

The simplest trilinear interpolation direct from the blue grid to the green grid
would take approximately 31

4
N flops, to be followed by 8N flops for a Jacobi

iteration on the fine green grid. Over the whole hierarchy this standard
prolongation takes approximately 126

7
N flops. This total is smaller, but the

proposed diagonal grid achieves virtually three Jacobi iterations instead of
one and so is more effective.
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Table 2: comparison of cost, in flops, and performance for unoptimised
algorithms for solving Poisson’s equation in three spatial dimensions on a
173 grid. The column headed “per iter” shows the number of flops per iter-
ation, whereas column showing “per dig” is flops/ log10 ρ̄0 and indicates the
number of flops needed to compute each decimal digit of accuracy.

algorithm per iter ρ̄0 per dig
diagonal, O(h2) 35.7N 0.140 42N
standard, O(h2) 26.1N 0.477 81N
diagonal, O(h4) 48.7N 0.659 269N
standard, O(h4) 39.1N 0.651 210N

3.3 The V-cycle converges well

Numerical investigation shows that, as in 2D, although the operation count
of the proposed algorithm is a little higher, the speed of convergence is much
better. Both algorithms use 9N flops to compute second-order accurate resid-
uals on the finest grid. Thus the proposed method takes approximately
355

7
N flops for one V-cycle, some 37% more than the 261

7
N flops of the sim-

plest standard algorithm. It achieves a mean factor of convergence ρ̄ ≈ 0.140.
This rapid rate of convergence easily compensates for the small increase in
computations taking half the number of flops per decimal digit accuracy
determined.

As in 2D, fourth-order accurate solvers may be obtained simply by using
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the above second-order accurate V-cycle on the fourth-order accurate resid-
uals evaluated on the finest grid. A compact fourth-order accurate scheme
for the residuals is the 19 point formula

ri,j,k =
1

12
(6fi,j,k + fi+1,j,k + fi,j+1,k + fi−1,j,k + fi,j−1,k + fi,j,k+1+

+ fi,j,k−1) − 1

6h2
[−24ui,j,k + 2 (ui,j−1,k + ui,j+1,k + ui−1,j,k+

+ ui+1,j,k + ui,j,k+1 + ui,j,k−1) + ui+1,j+1,k + ui−1,j+1,k+

+ ui−1,j−1,k + ui+1,j−1,k + ui,j+1,k+1 + ui,j+1,k−1 + ui,j−1,k−1+

+ ui,j−1,k+1 + ui+1,j,k+1 + ui−1,j,k+1 + ui−1,j,k−1 + ui+1,j,k−1] .(30)

Then using the V-cycle described above to determine corrections v to the
field u leads to an increase in the operation count of 13N flops solely from
the extra computation in finding the finest residuals. Numerical investiga-
tions show that the multigrid iteration still converges, albeit much slower,
with ρ̄ ≈ 0.659. Table 2 shows that the rate of convergence on the diagonal
hierarchy of grids is little different than that for the simplest standard multi-
grid algorithm. As in 2D, high accuracy, fourth-order solutions to Poisson’s
equation are best found by employing a first stage that finds second-order
accurate solutions which are then refined in a second stage.
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Table 3: comparison of cost, in flops, and performance for optimised al-
gorithms for solving Poisson’s equation in three spatial dimensions on a
173 grid varying over relaxation parameters to determine the best rate of
convergence. The column headed “per iter” shows the number of flops per
iteration, whereas column showing “per dig” is flops/ log10 ρ̄ and indicates
the number of flops needed to compute each decimal digit of accuracy.

algorithm per iter pm pr1 pr2 pg ρ̄ per dig
diag, O(h2) 35.7N 1.11 1.42 1.08 0.99 0.043 26N
standard, O(h2) 26.1N 1.30 0.31 51N
diag, O(h4) 48.7N 0.91 0.80 0.70 1.77 0.39 119N
standard, O(h4) 39.1N 1.70 0.41 101N

3.4 Optimise parameters of the V-cycle

As in 2D, the multigrid algorithms are improved by introducing some relax-
ation in the Jacobi iterations. The four parameters pm, pr1, pr2 and pg were
introduced in the Jacobi iterations (23–28) to do this, values bigger than 1
correspond to some over relaxation.

The search for the optimum parameter set used the Nelder-Mead simplex
method encoded in the procedure fmins in Matlab. Searches were started
from optimum parameters found for coarser grids. As tabulated in Table 3
the optimum parameters on a 173 grid1 were pm = 1.11, pr1 = 1.42, pr2 =

1Systematic searches on a finer grid were infeasible within one days computer time



4 Conclusion E33

1.08 and pg = 0.99 and achieve an astonishingly fast rate of convergence of
ρ̄ ≈ 0.043. This ensures convergence to a specified precision at half the cost
of the similarly optimised, simple conventional multigrid algorithm.

For the fourth-order accurate residuals an optimised diagonal multigrid
performs similarly to the optimised conventional multigrid with a rate of
convergence of ρ̄ ≈ 0.39. Again fourth-order accuracy is best obtained after
an initial stage in which second-order accuracy is used.

4 Conclusion

The use of a hierarchy of grids at angles to each other can halve the cost of
solving Poisson’s equation to second-order accuracy in grid spacing. Each
iteration of the optimised simplest multigrid algorithm decreases errors by
a factor of at least 20. This is true in both two and three dimensional
problems. Further research is needed to investigate the effective of extra
Jacobi iterations at each level of the diagonal grid.

When compared with the amazingly rapid convergence obtained for the
second-order scheme, the rate of convergence when using the fourth-order
residuals is relatively pedestrian. This suggests that a multigrid V-cycle

due to the large number of unknowns: approximately 30,000 components occur in the
eigenvectors on a 333 grid.



References E34

specifically tailored on these diagonal grids for the fourth-order accurate
problem may improve convergence markedly.

There is more scope for W-cycles to be effective using these diagonal
grids because there are many more levels in the multigrid hierarchy. An
exploration of this aspect of the algorithm is also left for further research.
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