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A method for solving the Poisson equation is presented for systems with three- or
two-dimensional translational lattice symmetry, the latter applying to surfaces,
interfaces or slabs. Special attention is given to the so-called near field correction
(NFC), namely to a correction to the electrostatic potential arising from
neighbouring (or near) cells, that is inherent, e.g. to the full-potential KKR
method. The results of numerical tests presented serve to illustrate the effect of
the NFC. Furthermore, the question of the convergence of ‘internal’ angular
momentum sums is addressed and discussed in detail.

1. Introduction

The Screened Korringa–Kohn–Rostoker method (SKKR) which was developed
about ten years ago [1] has been successfully applied in the past to a large number
of problems. This method is especially suitable for systems with a two-dimensional
lattice translational symmetry such as surfaces or interfaces but can also be used to
calculate bulk properties. In order to extend the SKKR method to a full potential
description, by partitioning the configuration space into non-overlapping but space-
filling cells to which the individual potentials and the charge densities are confined,
an appropriate method for solving Poisson’s equation needs to be developed.

Within multiple scattering theory [2] the charge density is evaluated in terms of
the Green’s function of the system and the electrostatic part of the potential subse-
quently by solving Poisson’s equation. According to the requirements of density
functional theory this procedure has to be repeated until convergence of the potential
is reached. Since it is an underlying feature of multiple scattering methods to
expand quantities like the charge density and the potential at cell centres located
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at positions R into a series of (complex) spherical harmonics, a solution of Poisson’s
equation consequently also has to be based on a corresponding expansion of the
1=jRþ r� R

0
� r
0
j-like terms, which, however, do not converge for neighbouring

sites R and R
0 at certain points inside a given cell.

This so-called ‘near cell’ problem has already been the subject of several
publications. Gonis et al. [3] developed a method (later applied by Vitos et al. [4])
based on shifting (and back-shifting) the neighbouring cells with a displacement
vector b. Although, in principle, this method should work it suffers from the fact
that it results in a conditionally convergent double angular momentum sum from
which the convergence of the internal sum seems to be rather slow.

Another method was presented by Zhang et al. [5] in which the internal angular
momentum summations are replaced by surface integrals, which, however, may turn
out to be quite tedious to calculate for more complex geometries. Furthermore, there
are still open questions concerning the fact that the system of linear equations is
degenerate (reflecting that an arbitrary constant can be added to the electrostatic
potential). The recipe provided in [5], therefore, turns out not to work for certain
combinations of multi-atom unit cells and cell shapes. A further method to solve the
electrostatic problem was recently proposed in [6]. It is conceptually easy and com-
putationally very effective, however, it might contain numerical convergence pro-
blems if used with the characteristic shape functions of a cell. A more detailed
comparison of this method and the one proposed in this paper will be presented
later on.

The method presented in this paper is based on the idea that the electrostatic
potential in one specified cell is the sum of an intracell potential, which is the
contribution from the charge density within the chosen cell and an intercell potential
which results from the charge distributions in all other cells of the system:

Vel
RðrÞ ¼ VInter

R ðrÞ þ VIntra
R ðrÞ , r 2 �R , ð1Þ

where �R denotes the Wigner–Seitz cell around lattice site R. While obtaining the
intracell potential is straightforward, a calculation of the intercell part is more
complicated. In the following for systems with three-dimensional periodic boundary
conditions Ewald’s method is applied, while in the case of only two-dimensional
translational symmetry we followed a derivation similar to that explored by
Kambe [7] for the calculation of the structure constants used in LEED theory. In
both cases a summation with respect to real and reciprocal lattice vectors is used
which leads to rapidly converging series. If the potential is calculated in this way one
assumes that the following geometric conditions

r < jr0 � Rþ R
0
j and r0 < jR� R

0
j ð2Þ

apply, which of course are not fulfilled by the so-called near cells. Therefore, incor-
rect contributions arise from neighbouring cells which have to be corrected for. This
can be achieved precisely by noting that the intercell potential of a given cell R is the
sum of intracell potentials, centred at their respective origins, over all other cells R0,

VInter
R ðrÞ ¼

X
R0 6¼R

VIntra
R0 ðR� R

0
þ rÞ: ð3Þ
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By summing up only the contributions of the near cells, while at the same time
subtracting the incorrect ones calculated by the combined real and reciprocal
space methods (Ewald or Kambe), the true intercell potential can be obtained.
These corrected contributions to the intercell potential will be referred to as near
field corrections throughout this work.

The paper is structured in the following way: section 2 deals in a very condensed
manner with the general solution of Poisson’s equation for systems with two- or
three-dimensional translational symmetry neglecting the near field corrections
(a more detailed derivation can be found in [2] and [8]). In section 3 a method for
the calculation of the near field corrections is discussed while section 4 is concerned
with numerical tests of the method presented here.

2. The Poisson equation and the generalized Madelung problem for two- and

three-dimensional translationally invariant systems

Using atomic Rydberg units, in particular, e2 ¼ 2, the Poisson equation is given by

DVðrÞ ¼ �8p�ðrÞ , ð4Þ

and the corresponding Green’s function by

G0ðr, r
0
Þ ¼

1

jr� r0j
, DG0ðr, r

0
Þ ¼ �4p�ðr� r

0
Þ, ð5Þ

such that

VðrÞ ¼ 2

ð
dr0Gðr, r0Þ�ðr0Þ ¼ 2

ð
dr0

�ðr0Þ

jr� r0j
: ð6Þ

At a particular lattice site R the intercell contribution to the electrostatic potential is
then given by

VInter
R ðrÞ ¼ 2

X
R0

ðR0 6¼RÞ

ð
�R0

dr0G0 rþ R, r0 þ R
0

� �
�R0 ðr

0
Þ; r 2 �R, ð7Þ

and the intracell contribution to the electrostatic potential by

VIntra
R ðrÞ ¼ 2

ð
�R

dr0G0ðr, r
0
Þ�Rðr

0
Þ; r 2 �R: ð8Þ

2.1. Intracell contribution

Let ���ðrÞ be the (shape truncated) charge density in the cell of a chosen origin R0 in an
arbitrary ensemble of scatterers,

���ðrÞ ¼ �ðrÞ��0
ðrÞ ¼

X
L

���LðrÞY
�
Lðr̂rÞ, ð9Þ
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where the index �0 ¼ �R0
refers to the domain around R0, L is a combined orbital

angular momentum index ð‘,mÞ and the YLðr̂rÞ are (complex) spherical harmonics [9].

The function ��0
ðrÞ is called the characteristic or shape function of cell �R0

, the

calculation of the expansion coefficients �LðrÞ of which is extensively documented

in the literature [10–12]. By using the well-known angular momentum expansion for

1=jr� r
0
j, the potential due to the charge distribution inside a particular cell,

VIntra
ðrÞ ¼ 2

ð
�0

1

jr� r0j
���ðr0Þdr0, ð10Þ

can be written as

VIntra
ðrÞ ¼

X
L

8p
2‘þ 1

r‘
ðrBS
r

���Lðr
0
Þ

ðr0Þ‘�1
dr0 þ

1

r‘þ1

ðr
0

ðr0Þ‘þ2 ���Lðr
0
Þdr0

� �
Y�Lðr̂rÞ: ð11Þ

The coefficients of the shape truncated charge density ���LðrÞ are given explicitly by

���LðrÞ ¼
X
L
0
L
00

CL0

L00L�L0 ðrÞ�L00 ðrÞ, ð12Þ

where the CL0

L00L are the well-known Gaunt coefficients. The expansion coefficients of

the intracell potential can therefore be written as

VIntra
L ðrÞ ¼

8p
2‘þ 1

r‘
ðrBS
r

1

ðr0Þ‘�1

X
L
0
L
00

CL0

L00L�L0 ðr
0
Þ�L00 ðr

0
Þ

0@ 1Adr0
24

þ
1

r‘þ1

ðr
0

ðr0Þ‘þ2
X
L
0
L
00

CL0

L00L�L0 ðr
0
Þ�L00 ðr

0
Þ

0@ 1Adr0
35�: ð13Þ

2.2. Multipole expansion in real-space

Clearly the total charge density is the sum over all local densities ���RðrÞ centred at

positions R,

�ðrÞ ¼
X
R

���Rðr� RÞ, ���Rðr� RÞ ¼ �ðrÞ�
�R
ðr� RÞ, ð14Þ

which in turn can be expanded as

���RðrÞ ¼
X
L

���R,LðrÞY
�
Lðr̂rÞ: ð15Þ

The corresponding spherical multipole moments are then defined by

QL
R ¼
ð4pÞ1=2

2‘þ 1

ð
�R

r‘ ���RðrÞYLðr̂rÞdr, ð16Þ
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or, expressed in terms of the expansion coefficients of the untruncated charge

density, �R,LðrÞ, by

QL
R ¼
ð4pÞ1=2

2‘þ 1

X
L
0
L
00

CL0

L00L

ðrBS
0

r‘þ2�R,L0 ðrÞ�R,L00 ðrÞdr: ð17Þ

2.3. Green’s functions and Madelung constants

For

r < jr0 � Rþ R
0
j and r0 < jR� R

0
j, ð18Þ

the Green’s function,

G0ðrþ R, r0 þ R
0
Þ ¼

1

jrþ R� r0 � R0j
, ð19Þ

can be reformulated by using angular momentum expansions for 1=jr� r
0
j as

G0ðrþ R, r0 þ R
0
Þ ¼

X
LL0

ð4pÞ1=2

2‘þ 1
r‘Y�Lðbrr ÞALL0

RR0
ð4pÞ1=2

2‘0 þ 1
ðr0Þ‘

0

YL0 ðbrr 0 Þ, ð20Þ

where the matrix elements ALL0

RR0 ,

ALL0

RR0 ¼ ð�1Þ
‘ 4p½2ð‘þ ‘0Þ � 1�!!

ð2‘� 1Þ!!ð2‘0 � 1Þ!!
C‘
0m0

‘m, ð‘þ‘0Þðm0�mÞ

Y�ð‘þ‘0Þðm0�mÞ
dR� R0R� R0

� �
jR� R0j‘þ‘

0þ1
, ð21Þ

are usually called the real-space Madelung constants for two centres. The assumption

(18) implies that the bounding spheres of the cells at R and R
0 must not overlap. By

neglecting near field corrections, to which section 3 is devoted, the intercell potential

in (7) can then be expressed as

VInter
R ðrÞ ¼ 2

X
R0ð6¼RÞ

X
LL0

ð4pÞ1=2

2‘þ 1
r‘Y�Lðbrr ÞALL0

RR0 Q
L0

R0

¼
X
L

VInter
R,L ðrÞ

�Y�Lðbrr Þ ¼X
L

VInter
R,L ðrÞYLðbrr Þ, ð22Þ

where

VInter
R,L ðrÞ ¼

4p1=2

2‘þ 1

X
R0ð6¼RÞ

X
L0

ALL0

RR0 Q
L0

R0

0@ 1A�r‘: ð23Þ
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Evidently equation (21) can be reformulated asy

ALL0

RR0 ¼ ð�1Þ
‘0 ½2ð‘þ ‘

0
Þ þ 1�!!

ð2‘� 1Þ!!ð2‘0 � 1Þ!!
C‘
0m0

‘m, ð‘þ‘0Þðm0�mÞG
ð‘þ‘0Þðm0�mÞ
RR0

¼ 2p1=2ð�1Þ‘
0 �ð‘þ ‘0 þ 3

2Þ

�ð‘þ 1
2Þ�ð‘

0 þ 1
2Þ
C‘
0m0

‘m, ð‘þ‘0Þðm0�mÞG
ð‘þ‘0Þðm0�mÞ
RR0

, ð24Þ

with

GL
RR0 ¼

4p
2‘þ 1

Y�L
dR0�RR0�R

� �
jR� R0j‘þ1

¼
4p �1ð Þ‘

2‘þ 1

Y�L
dR� R0R� R0

� �
jR� R0j‘þ1

: ð25Þ

In principle the coefficients VInter
R,L ðrÞ can be evaluated by means of the direct space

summation in (23), which (if at all) leads to a slowly converging series. In the

following therefore use of the underlying two- or three-dimensional translational

invariance is made. Because of the relationship in equation (24), in the following

all expressions will be formulated in terms of reduced Madelung constants GL
RR0 .

2.4. Three-dimensional complex lattices

Let Rn� denote the positions in a (in general) complex three-dimensional lattice (Lð3Þ)

Rn� ¼ tn þ a�, ð26Þ

where the tn 2 L
ð3Þ are lattice translations, the a� refer to inequivalent atomic posi-

tions and Lð3Þ denotes the 3D translational lattice. The total electrostatic potential

then obviously depends only on the ‘sublattice’ index �, i.e. is independent of n,

VðRn�þrÞ ¼ Vða� þ rÞ ¼ V�ðrÞ

¼ 2
X
n, �

ð
��

dr0G0ða�þr, a� þ tnþr
0
Þ��ðr

0
Þ, r 2 ��, ð27Þ

where

��ðrÞ ¼ �Rn�
ðrÞ: ð28Þ

In this case � picks up the meaning of a periodically repeated cell in sublattice �.
In order to separate those parts in (27) that are independent of the charge

density, one first performs a summation over all n, i.e. over all tn 2 L
ð3Þ,

G��ðr, r
0
Þ ¼

X
tn

ð�¼�, tn 6¼0Þ

G0ðrþ a�, r
0
þ tn þ a�Þ, ð29Þ

yAll standard functions used are defined in [13] and [14].
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and only then sums over all sublattices

VInter
� ðrÞ ¼ 2

X
�

ð
��

dr0G��ðr, r
0
Þ��ðr

0
Þ, r 2 ��: ð30Þ

Applying the Ewald technique by combining real and reciprocal summations leads to

an absolute convergent series (with a�� ¼ a� � a�):

G��ðrÞ ¼
4p
V

X
gj 6¼0

exp ðigjrÞ expðigja��Þ
expð�g2j �

2
Þ

g2j

þ
X
tn

�¼�tn 6¼0ð Þ

1

rþ a�� � tn
�� �� erfc rþ a���tn

�� ��=2�� �

� ���
erf ð rj j=2�Þ

rj j
�
4p�2

V
, ð31Þ

where � is the Ewald parameter and the coefficients of the expansion,

G��ðrÞ ¼
X
L

GL
��jrj

‘YLðr̂rÞ, ð32Þ

are given by

GL
��ðrÞ ¼

4pð Þ2p1=2i‘

V2‘þ1�ð‘þ 3
2Þ

X
gj 6¼0

Y�LðĝgjÞ expðigja��Þ gj

��� ���‘�2 exp ð�g2j �2Þ
þ
2pð�1Þ‘

�ð‘þ 3
2Þ

X
tn

�¼�tn 6¼0ð Þ

Y�L da���tna���tn

� �� ‘þ ð1=2Þ, a���tn
�� ��2=4�2� �

a���tn
�� ��‘þ1

� �L, ð0, 0Þ
ð4pÞ3=2�2

V
þ ���

2

�

 !
: ð33Þ

In terms of these quantities the potential can now be written as

VInter
� ðrÞ ¼

X
L

VInter
�,L ðrÞYLðr̂rÞ, ð34Þ

with coefficients VInter
�,L ðrÞ ¼ VInter

�, ‘mðrÞ,

VInter
�, ‘mðrÞ

¼
4p

�ð‘þ 3
2Þ

 X
L0

ð�1Þ‘
0

� ‘þ ‘0 þ 3
2

� �
� ‘0 þ 1

2

� � C‘
0m0

‘m, ð‘þ‘0Þðm0�mÞ

X
�

G‘þ‘
0,m0�m

�� QL0

�

!�
r‘:

ð35Þ
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It should be recalled that one only needs to evaluate VInter
�, ‘mðrÞ for m� 0, since the

intercell potential VInter
� ðrÞ is real.

2.5. Complex two-dimensional lattices

In the case of two-dimensional translational invariance (Lð2Þ) all atomic positions can

be written as

Rnp ¼ tn þ cp, ð36Þ

where tn 2 L
ð2Þ is a lattice translation and cp are inequivalent atomic positions, also

called layer position vectors. As before the charge density is independent of lattice

translations,

�Rnp
ðrÞ ¼ �pðrÞ, 8tn 2 L

2ð Þ, ð37Þ

and, therefore, the potential depends again only on the layer index p,

VpðrÞ ¼ Vðcp þ rÞ ¼ 2
X
q

ð
�q

dr0Gpqðr, r
0
Þ�qðr

0
Þ, r 2 �p ð38Þ

Gpqðr, r
0
Þ ¼ Gpqðr� r

0
Þ ¼

X
tn

ðp¼q, tn 6¼0Þ

G0ðrþ cp, r
0
þ tn þ cqÞ: ð39Þ

A method similar to the one of Kambe for the LEED structure constants [7] leads to

an expression for Gpqðr� r
0
Þ and the expansion,

GpqðrÞ ¼
X
L

GL
pqjrj

‘YLðr̂rÞ, ð40Þ

yields the reduced Madelung structure constants GL
pq for a 2D lattice [8]. They are

given by the following expressions

GL
pq ¼

X
i¼0, 1, 2a, 2b, 3

DL
i, pq ¼ DL

0, pq þDL
1, pq þDL

2a, pq þDL
2b, pq þDL

3, pq, ð41Þ

for the various contributions DL
i, pq:

DL
0, pq ¼ � 1� �cpq?, 0

� �
�m0

4p
A

�‘0p
1=2 cpq?
�� ��þ �‘1 ð3pÞ1=23

signðcpq?Þ

 !
, ð42Þ

where A is the area of the 2D unit cell and cpq ¼ cp � cq.
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With reciprocal lattice vectors gj ¼ ðgj cos ð�jÞ, gj sin ð�jÞÞ the reciprocal sum

contribution can be written as

DL
1, pq ¼

p3=2i�m

22‘�1A

2‘þ 1ð Þ� ‘þ mj j þ 1ð Þ� ‘� mj j þ 1ð Þ½ �
1=2

� ‘þ 3
2

� �
�
X
gj
ðgj 6¼0Þ

(
expð�im�jÞ exp igj � cpqk

� �

�
X‘�jmj=2
k¼0

X‘� mj j�2k

n¼ð‘�jmj=2Þ�k

In gj�,
cpq?
�� ��gj

2

� 	

�
ð�1Þnc2n�‘þjmjþ2kpq?

� 2n� ‘þ mj j þ 2kþ 1ð Þ� ‘� mj j � n� 2kþ 1ð Þ

�
g2nþjmjþ2k�1j

� kþ 1ð Þ� mj j þ kþ 1ð Þ

)
, ð43Þ

where the occurring integral

In gj�,
cpq?
�� ��gj

2

� 	
¼

ð1
g2j �

2

dxxð�1=2Þ�n exp �
c2pq?g

2
j

4x
� x

 !
, ð44Þ

can be evaluated recursively in terms of error functions.
The expression for the direct sum terms DL

2a, pq is given by

DL
2a, pq ¼

2pð�1Þ‘

�ð‘þ 3
2Þ

X
tn

ðtn¼cpq 6¼0Þ

Y�Lð dcpq�tnÞcpq�tnÞ
� ‘þ 1

2 , cpq�tn
�� ��2=4�2� �

jcpq�tn
��‘þ1: ð45Þ

For DL
2b, pq and cpq? 6¼ 0 one obtains

DL
2b, pq ¼ ��m0 sign cpq?

� � p
A

p 2‘þ 1ð Þ½ �
1=2

4‘c‘�1pq?

�ð‘þ 1Þ

�ð‘þ 3
2Þ

�
X

‘=2�n�‘

ð�1Þn4n

� ‘� nþ 1ð Þ� 2n� ‘þ 1ð Þ
� n�

1

2
, c2pq?=4�

2

� 	
, ð46Þ

while for cpq? ¼ 0DL
2b, pq is given by

DL
2b, pq ¼

�m0 2p=Að Þ �1ð Þnð4nþ 1Þ1=2= 4n�2n� 1
� �
 �

��ðn� 1
2Þ=�ð2nþ

3
2Þ, ‘ ¼ 2n, even,

0, ‘ odd:

8>>><>>>: ð47Þ
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Finally for DL
3, pq the expression

DL
3, pq ¼ ��pq�L, ð0, 0Þ

2

�

is found. The potential can eventually be written in the following compact form as

VInter
p ðrÞ ¼

X
L

VInter
p,L ðrÞYLðr̂rÞ

¼
X
L

V
Inter
p, ‘mðrÞYLðr̂rÞ þ A

4p
3

� 	1=2

rY10ðr̂rÞ þ Acp? þ B
� �

ð4pÞ1=2Y00ðr̂rÞ, ð48Þ

where for matters of similarity with the three-dimensional translationally invariant

case the expansion coefficients V
Inter
p, ‘mðrÞ are regrouped such that

V
Inter
p, ‘mðrÞ

¼
4p

�ð‘þ 3
2Þ

X
L0

ð�1Þ‘
0

�ð‘þ ‘0 þ 3
2Þ

�ð‘0 þ 1
2Þ

C‘
0m0

‘m, ð‘þ‘0Þðm0�mÞ

 X
q

G‘þ‘
0,m0�m

pq QL0

q

!�
r‘,

ð49Þ

and the constants A and B are fixed by the boundary conditions appropriate to the

system investigated, namely on whether a surface or an interface is considered [8].

3. ‘Near field’ corrections

The problem of ‘near field’ corrections arises from the fact that by solving the

Poisson equation in terms of an expansion in terms of multipole moments [15]

only, this expansion a priori is no longer valid for near cells. By definition a cell

centred at position R
0 is called a near cell of a cell centred at R if

jR� R
0
j < rBS þ r0BS, ð50Þ

where rBS denotes the radius of the bounding sphere (BS).
A real-space method which yields the exact intercell potential of neighbouring or

near cells consists of: (1) an evaluation of the contributions to the intercell potential

arising from near cells via a coordinate transformation of their respective intracell

potentials, and (2) a sum over all near cells, the expansion coefficients of which in

an angular momentum series being evaluated by means of a numerical angular

integration.
The intracell potential of a particular charge distribution inside a cell with

respect to the coordinate system centred in the same cell is given by equation (11)

where the expansion coefficients of the shape truncated charge density are defined in

equation (12). For r lying outside the bounding sphere this potential can be written

in terms of multipole moments QL
R,

VIntra
R ðrÞ ¼

X
L

4p1=2

r‘þ1
QL

R

� ��
YLðr̂rÞ, r > rBS: ð51Þ
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The intracell potential of a cell �0 centred at position R
0 contributes then to the

intercell potential of a cell � centred at R as follows

Vnf
RR0 ðrÞ ¼ VIntra

R0 ðR� R
0
þ rÞ ð52Þ

¼
X
L

Vnf
RR0,LðrÞYLðr̂rÞ ð53Þ

¼
X
L

8p
2‘þ 1

 
jR� R

0
þ rj

‘

ðrBS
jR�R0þrj

dr0 r0
� ��‘þ1

���R0Lðr
0
Þ

þ jR� R
0
þ rj

�‘�1

ðjR�R0þrj
0

dr0 r0
� �‘þ2

���R0Lðr
0
Þ

!�
YL

dR� R0 þ rR� R0 þ r
� �

ð54Þ

¼
X
L

VIntra
R0,L ðjR� R

0
þ rjÞYL

dR� R0 þ rR� R0 þ r
� �

, ð55Þ

where the expansion coefficients can be obtained in terms of the following angular

integral

Vnf
RR0,LðrÞ ¼

ð
�

dr̂rVnf
RR0 ðrÞY

�
Lðr̂rÞ ð56Þ

¼

ð
�

dr̂r
X
L0

VIntra
R0L0 ðjR� R

0
þ rjÞYL0

dR� R0 þ rR� R0 þ r
� �

Y�Lðr̂rÞ: ð57Þ

By applying a rotation of the coordinate system such that the z axis points in the

direction of the respective near cell, the above two-dimensional angular integral can

be reduced to a one-dimensional integral [9],

Vnf
RR0,LðrÞ ¼

2pC‘m
r R� R0
�� �� ð R�R

0j jþr

R�R0j j�r
du

"
uP mj j

‘

r2 þ R� R
0

�� ��2�u2
2r R� R0
�� ��

 !

�
X‘0max

‘0¼ mj j

C‘0mP
mj j
‘0

r2 � R� R
0

�� ��2�u2
2u R� R0
�� ��

 !
VIntra

R0, ‘0m uð Þ

#
, ð58Þ

where u ¼ ðjR� R
0
j
2
þ r2 � 2rjR� R

0
jsÞ1=2 > 0, s ¼ cos � 2 �1, 1½ �. Clearly enough

in a practical application the summation over ‘0 can only be performed up to a

certain ‘0max.
Then by summing up the contributions from all near cells an expression for the

near field corrections is found,

Vnf
R,LðrÞ ¼

X
R02nc

Vnf
RR0 0,LðrÞ: ð59Þ

In figure 1 the geometrical arrangement for this procedure is illustrated: one can see

that the corrections arise only outside a sphere of radius rcor ¼ jR� R
0
j � r0BS. For a

less symmetric neighbourhood, however, one has to define

rcor ¼ min
R0
jR� R

0
j � r0BS

� �
: ð60Þ
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Consequently, the quantities Vnf
L ðrÞ have to be calculated only for points r > rcor

(and inside a sphere of radius rBS).

3.1. Corrections to the intercell potential

The correct intercell potential ~VVInter finally results from adding the near field correc-

tion term Vnf and subtracting the (incorrect) contributions from the near cells Vnc,

implicitly contained in the previously derived Madelung potential VInter,

~VVInter
R ðrÞ ¼ VInter

R ðrÞ þ Vnf
R ðrÞ � Vnc

R ðrÞ
� �

, ð61Þ

where the differences Vnf
R ðrÞ � Vnc

R ðrÞ are the actual near field corrections to

the intercell potential. In order to calculate Vnc
R ðrÞ the following real-space sum

has to be evaluated

Vnc
R rð Þ ¼ 2

X
R02ncðRÞ

X
L

ð4pÞ1=2

2‘þ 1

X
L0

ALL0

RR0Q
L0

R0

 !�
r‘YL brr� �, ð62Þ

where the real space summation includes all near cells and the ALL0

RRnc
are the

corresponding real space Madelung constants (21). Figure 2 illustrates the angular

momentum components of the potential arising from the near field corrections

defined in equation (58) and the near cell potential in equation (62) for the case

of fcc bulk Ag. In particular, the bottom of this figure demonstrates that the

corrections indeed vanish for r < rcor and that all angular momentum components

are rather small up to the muffin-tin radius. Beyond the muffin-tin region the

rBS

r co
r

Ω’

RR’+
rr

Ω

Figure 1. Illustration of two near cells with overlapping bounding spheres. Dashed circles
denote bounding spheres of other near cells. Also indicated is the radius rcor outside which the
near figeld corrections have to be calculated.
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spherical symmetric component picks up the character of the intracell potential of
a near cell. This feature is also reflected in figure 3 where the near field corrected
intercell potential (cf. equation (61)) and the near field corrections are plotted
along two directions in the Wigner–Seitz cell. Along the nearest neighbour direc-
tion the corrections are small up to the muffin-tin radius and then diverge in the
same manner as the intracell potential of the neighbouring cell. Applying shape
functions this behaviour is suppressed as they force the potential to jump to zero at
the cell boundary. Along the direction of the farthest corner of the cell the correc-
tions are small as compared with the intercell potential up to the bounding sphere
radius.
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Figure 2. Top: the first three non-vanishing angular momentum components of the near field
potential Vnf

‘mðrÞ and the near cell potential Vnc
‘mðrÞ for fcc bulk Ag. The dashed vertical lines

indicate the muffin-tin radius rMT and rcor, respectively. Note the different behaviour of the
spherically symmetric components between rMT and rBS: inside the muffin tin the differences
are quite small, inside a sphere of radius rcor the components are identical. Bottom: angular
momentum components of the near field corrections Vnf

‘mðrÞ � Vnc
‘mðrÞ for fcc bulk Ag.

For r < rcor the corrections are zero.
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4. Numerical tests

In order to test the accuracy of the method described above we have calculated the

electrostatic potential and the electrostatic energy of two different charge distribu-

tions, the analytical and the numerical solutions of which can be directly compared.
As a first test case we considered a homogeneous electron density in a back-

ground of a positively charged point lattice, i.e. a system, which is also known as

jellium or ‘Slater–de Cicco’ test [5].
In our second test a slowly varying, periodic charge density (without point charge

singularities) reflecting the predominant character of the charge distributions in the

interstitial regions was used. Such a density was first discussed by Morgan [16] and is

indeed very useful to test the accuracy of the non-spherical contributions to the

potential. Based on these two well-defined models we want to illustrate the actual

effect of the NFC and to estimate the convergence with respect to the angular

momentum summations. We compare our results to the ones of the recently

proposed removed sphere method (RSM) [6], which provides an alternative to the

present approach.

4.1. Slater–de Cicco (jellium) test

In this case the distribution of positive point charges is given by

�þðrÞ ¼ Z
X
n

�ðr� tnÞ, ð63Þ
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Figure 3. Intercell potential including the near field corrections plotted along two different
directions of a fcc Wigner–Seitz cell for the case of bulk Ag. The solid line illustrates the
potential in direction of the farthest corner (Corner) and the dashed line in direction of a
nearest neighbour (NN). Also shown are the near field corrections Vnf

ðrÞ � Vnc
ðrÞ along the

same directions.
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where Z is the core charge and tn are real space lattice vectors. The electron density

is constant,

��ðrÞ ¼ ��0, �0 ¼
Z

V
, ð64Þ

V being the volume of the unit cell. Consequently, the angular momentum

components of the truncated charge density are given by

���LðrÞ ¼
�0�ð0, 0ÞðrÞ � �ðrÞZ=r

2, L ¼ ð0, 0Þ,

�0�LðrÞ, L 6¼ ð0, 0Þ:

(
ð65Þ

For our test we used a lattice constant of 1 a.u. and a net cell charge of Z¼ 1.
The analytic solution of Poisson’s equation (4) can be obtained by means of

Ewald’s method and is given by

VðrÞ ¼ 2Z
X
tn

1

r� tn
�� �� erfc r� tn

�� ��
2�

� 	
þ
4p
V

X
gj
ðgj 6¼0Þ

exp ��2g2j
� �
g2j

exp igj � r
� �0B@

1CA
� 8p�0�

2
þ V0, ð66Þ

where � is the Ewald parameter and V0 is an arbitrary constant, which is

unimportant since only differences of potentials and energies will be considered.
In figure 4 the difference between the potential in equation (66) and the numeri-

cally calculated electrostatic potential is plotted along different directions inside a fcc

Wigner–Seitz cell. We used ‘max ¼ 2, 3 and 4 in the multiple scattering expansions,
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Figure 4. Difference between the numerically and analytically calculated potentials in the
‘Slater–de Cicco’ test as plotted along the major directions inside a fcc cell. The labelling
of points are as follows: ‘P’ is a near, ‘H’ a far corner, ‘N’ the centre of a plane and ‘�’ the
cell centre. Different line styles refer to different numbers of angular moments used
for the potential and the charge density: dash-dotted line: ‘max ¼ 4, dashed line: ‘max ¼ 6,
solid line: ‘max ¼ 8.
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implying that the charge density and the potential were expanded up to ‘max ¼ 4, 6

and 8. This is the case for the ‘outer’ angular momentum summation, however, there

also have to be ‘inner’ summations performed, as can be seen from equations (13)

and (23) for the intra- and intercell potential, and in equation (17) for the multipole

moments. In principle, by evaluating an angular momentum expansion of the

Green’s function up to ‘max, these inner sums can be extended up to 2‘max.

However, it is also possible to take better account of the shape of the truncated

charge density by including higher components of the shape functions, and this in

fact also leads to a convergence of the potential as will be discussed in section 4.2.

Investigating equation (17) one finds that if L0 is extended to 2‘max and L00 to 8‘max,

then one gets multipole moments up to 6‘max. We find this procedure quite reason-

able since the untruncated charge density converges more rapidly than the truncated

charge density. In the latter the essential contributions are due to the shape of the cell

and hence it is quite desirable to include more components of the shape functions.

Similarly, the intracell potential can be evaluated for higher moments and can

(together with the multipoles) be used in the calculation of the near field corrections

in equation (58). Furthermore, the multipole moments can be used to improve the

accuracy of equation (23), where, in addition, only higher terms of the Madelung

constants need to be calculated.
The electrostatic (Coulomb) energy follows from the expression,

U ¼
1

2

ð
�

dr �ðrÞVðrÞ ¼
1

2

ð
�

dr �þðrÞ þ ��ðrÞ
� �

VðrÞ: ð67Þ

Inserting the charge densities in equations (63) and (64) and the potential in

equation (66) one gets,

U ¼ �
Z2

rASA

 !
rASA

a

4p�2

V
þ

1

p1=2�
�

1

2�

X
tn
ðtn 6¼0Þ

2�

tn
�� �� erfc tn

�� ��
2�

� 	0B@
�
4p�2

V

X
gj
ðgj 6¼0Þ

exp ��2g2j
� �
�2g2j

1CA, ð68Þ

with rASA ¼ 3V=4pð Þ
1=3, i.e. an expression that can be calculated as reference value

for different crystal structures.
For fcc and bcc lattices, figure 5 shows the convergence of the numerically calcu-

lated Coulomb energy as a function of ‘max as compared to the exact value given by

equation (68). If the NFCs are neglected and the inner sums are carried out only up to

2‘max the energy tends to a value which differs by about 10�3 (fcc) and 0:5� 10�3 (bcc)

from the exact one. By simply extending the inner angular momentum sums to 6‘max

(but still not including NFCs) the energies now match up to about 10�5. The reason

for this good correlation will be considered in the next section by discussing the other

type of test case. Clearly by including NFCs the converged values are in even better

agreement (about 10�6 for both fcc and bcc) with the exact ones.
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4.2. Morgan test

Consider the following charge density,

�ðrÞ ¼ B
X

gj2NNrð0Þ

eigj�r, ð69Þ

with B being an arbitrary constant. Since the summation runs over the first

reciprocal lattice vector shell NNr
ð0Þ, this charge distribution has the full
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Figure 5. Angular momentum convergence of the electrostatic energy derived from a
constant electron charge density for a fcc (top) and bcc (bottom) lattice. Circles and crosses
depict results with and without near field corrections (NFC), respectively. Dashed lines
indicate that the inner sums are extended up to 2‘max (not converged), solid lines refer to
inner sums up to 6‘max (converged).
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symmetry of the lattice under consideration. By making use of Bauer’s formula [15]

one can find an analytic expression for the expansion coefficients of the charge

density,

�LðrÞ ¼ 4pBi‘j‘ðjgjrÞ
X

gj2NNrð0Þ

YLðĝgjÞ: ð70Þ

The total potential due to such a charge distribution is given by

VðrÞ ¼
8p�ðrÞ
g2
þ V0, ð71Þ

and its angular momentum components as

VLðrÞ ¼ 32p2Bi‘
j‘ðjgjrÞ

g2

X
gj2NNrð0Þ

Y�LðĝgjÞ þ ð4pÞ
1=2V0�L, 00: ð72Þ

For our tests we chose B¼ 1 and the lattice constant a¼ 1 bohr.
Figure 6 illustrates the difference of the calculated electrostatic and the exact

Morgan potential. As in the case of the jellium model (note, however, the different

scales) the quality of agreement between the curves depends on the direction inside

the Wigner–Seitz cell and on ‘max.
In figure 7 the convergence of the potential in terms of the internal angular

momentum summation is illustrated. The potential in this case was calculated up

to ‘max ¼ 6 and the internal angular momentum summation varied up to ‘max ¼ 18.

For this value a reasonable convergence of the potential was achieved. Neglecting

near field corrections and only extending the interior angular momentum summation

of the intra- and intercell potential leads to an improved agreement of the potentials

over a wider range of radial mesh points but is still substantially wrong for

large radii.
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Figure 6. Difference between the numerically calculated and the exact potentials of the
Morgan test along the major directions inside a fcc Wigner–Seitz cell. The labelling of points
is as follows: ‘P’ is a near, ‘H’ a far corner, ‘N’ the centre of a plane and ‘�’ the cell centre.
Different line styles refer to different numbers of angular moments used for the potential and
the charge density: dash-dotted: ‘max ¼ 4, dashed line: ‘max ¼ 6, solid line: ‘max ¼ 8.
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The electrostatic energy is given by

U ¼
4p
g2

B2V
X

gj2NNrð0Þ

1, ð73Þ

and its convergence with respect to ‘max is shown in figure 8. For a fcc cell the
exact value is 2a5=3p and for a bcc cell 3a5=p if a is the lattice constant which has
been set to unity in our test. If the NFCs are not included in the calculation the
energy does not converge to the correct values as is evident from figure 8. The
deviation is of the order of 10mRy. Inclusion of the NFCs then results in a quite
rapid convergence: for ‘max ¼ 3 the exact energy is obtained within 2mRy. As in
the Slater–de Cicco test, without NFCs but by converging the internal angular
momentum sums a good convergence of the energy is observed. Even though
there is a considerable aberration from the exact potential, the electrostatic energy
yields almost the exact value. This is due to the fact that the difference
VðrÞ � VMorganðrÞ tends to oscillate around zero for a given radius as a function
of the angles, resulting thus in contributions which mostly cancel in the necessary
integration over the Wigner–Seitz cell when calculating the energy. We have
illustrated this in figure 9 where the differences to the exact Morgan potential
are plotted for a plane through the cell centre. One can see not only the oscillations
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Figure 7. Convergence of the numerically calculated potential of the Morgan test in terms of
the internal angular momentum summation (Vel

¼ VInter
þ VIntra). For the calculations of the

Green’s function ‘max ¼ 3 has been used. Shown are the differences between the analytical
potential and the numerically calculated electrostatic potential in the direction from the cell
centre to a far corner (�H) in a fcc Wigner–Seitz cell, where the best possible match is
displayed by the solid line. This curve is obtained when the expansion coefficients of the
Morgan potential are calculated by means of equation (72) and then summed up to
2‘max ¼ 6. All other curves refer to the numerically calculated potential where the ‘outer’
summation also extends to 2‘max ¼ 6, but the ‘inner’ angular momentum summation is varied
between 2‘max ¼ 6 and 6‘max ¼ 18. Also shown are curves where the NFC have not been
included in the calculation. One can see that simply by extending the inner summation up
to 6‘max the results are considerably improved.
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around zero but also that with increasing angular momentum the aberrations are

pushed further outwards and become smaller in size thus giving smaller contribu-

tions to the integrals.

4.3. Comparison with RSM method

The recently proposed so-called removed sphere method (RSM) [6] is conceptually

simple and numerically very efficient. It is based on the fact that the electrostatic

potential can also be written in the form

VðrÞ ¼
X
L

Ve
LðrÞ þ aLr

‘
� �

YLðr̂rÞ, r < rBS, ð74Þ

where Ve
LðrÞ is obtained from equation (11) but with the untruncated instead of

the truncated charge density. The coefficients aL are unknown and need to be
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Figure 8. Angular momentum convergence of the electrostatic energy for a fcc (top) and bcc
(bottom) lattice in the Morgan test. Circles depict calculations including NFCs and crosses
those without NFCs.
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calculated. Since for small r < rcor the potential is also given by the sum of intracell

and uncorrected intercell contribution

VðrÞ ¼
X
L

VIntra
L ðrÞ þ VInter

L ðrÞ
� �

YLðr̂rÞ, r < rcor, ð75Þ

(a)

(b)

Figure 9. Difference of the numerical and exact Morgan potentials (in Rydberg) for ‘max ¼ 2
(top) and ‘max ¼ 3 (bottom) where the internal sums have been extended up to 6‘max and the
NFC were not included in the calculation. The plots show the values inside a Wigner–Seitz cell
for a (100) plane through the cell centre where x and y are in units of bohr.
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the coefficients aL can be calculated by setting (74) equal to (75) for small r.
This leads to potentials which are essentially equal compared to the ones obtained
with the method presented here up to ‘ � 10 (cf. figure 10). If one uses up to even
higher ‘max (and the characteristic shape functions of the cells), however, numerical
convergence problems can arise. Due to the shape functions there are non-vanishing
high-L0 multipole moments present (even for constant charge densities) which lead
for near cells and high L to slowly converging L0 sums of the form

P
L0 A

LL0

RR0Q
L0

R0 .
In our method this problem does not arise, because the multipole contributions
from near cells in (23) and (62) cancel exactly. This problem might not occur
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Figure 10. Difference of the calculated and the exact potential due to the Morgan charge
density (69) as a function of ‘max at the farthest corner of a (a) fcc, and (b) bcc Wigner–Seitz
cell. A comparison between the values obtained with the method described in this work and
that of Nicholson et al. [6] is displayed.
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if smoother but overlapping shape functions are used [17]. However, this type
of shape function does not fit to the concept of non-overlapping potentials in
multiple scattering theory [2].

5. Conclusions

We presented an effective tool for calculating the electrostatic potential from a given
charge density which is especially suitable for multiple scattering methods and
systems with two- or three-dimensional translational symmetry. In order to treat
the contributions from near cells (the NFCs) correctly we have developed a
physically intuitive method which relies on the idea that the intercell potential of
one cell is the sum of the intracell potentials of all other cells.

Numerical tests show that the method is applicable and yields the correct results
for two systems for which exact results can be obtained analytically. Our tests
indicate that for methods which are based on angular momentum expansions it is
very important to converge the ‘inner’ sums (or at least carry them further than the
‘outer’ ones). In particular it was shown that in order to calculate the potential it
turns out to be essential to include near field corrections, whereas for the calculation
of the total energy it is more important to converge the interior summations. The
proposed method is in particular meant for semi-infinite systems and the numerical
results shown for bulk systems serve as illustrations with respect to well-known,
analytically solvable test problems.
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