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We present the theory, computational implementation, and applications of a density functional 
Gaussian-type-orbital approach called DGauss. For a range of typical organic and small 
inorganic molecules, it is found that this approach results in equilibrium geometries, 
vibrational frequencies, bond dissociation energies, and reaction energies that are in many 
cases significantly closer to experiment than those obtained with Hartree-Fock theory. On the 
local spin density functional level, DGauss predicts equilibrium bond lengths within about 0.02 
A or better compared with experiment, bond angles, and dihedral angles to within l--2”, and 
vibrational frequencies within about 3%-5%. While Hat-tree-Fock optimized basis sets such 
as the 6-3 1 G** set can be used in DGauss calculations to give good geometries, the accurate 
prediction of reaction energies requires the use of density functional optimized Gaussian-type 
basis sets. Nonlocal corrections as proposed by Becke and Perdew for the exchange and 
correlation energies are found to be essential in order to predict bond dissociation energies and 
reaction energies within a few kcal/mol. The computational efficiency of the present method 
together with its accuracy, which is comparable to correlated Hartree-Fock based methods, 
promises a great usefulness of the DGauss approach for the study of large and complex 
molecular structures. 

I. INTRODUCTION 
One of the central tasks in computational chemistry is 

the accurate and efficient prediction of molecular geome- 
tries, vibrational frequencies, and energies of chemical reac- 
tions. Such predictions are of great value in areas such as 
synthetic chemistry, molecular biology, catalysis, and mate- 
rials science. From a great number of systematic calcula- 
tions, mostly on organic molecules, it has been established 
that useful energetic, structural, vibrational, and electronic 
properties can be obtained from Hartree-Fock theory, even 
on the single-configuration self-consistent-field (SCF) lev- 
el.’ Today, molecules with about 10-20 carbonlike atoms 
are being investigated routinely on that level of theory using 
polarized double-zeta basis sets. For smaller molecules, it is 
possible to carry out correlated calculations using single- 
reference as well as multireference wave functions. 

Recent advances in the implementation of direct SCF 
schemes,2*3 combined with the increasing performance of 
computer hardware, are moving the frontier to molecules of 
increasing size and complexity. Although the computational 
requirements for Hartree-Fock theory increase formally 
with a fourth power in the number of basis functions, this 
scaling is significantly less for large molecules, especially 
when their geometry is extended. Novel algorithms for inte- 
gral evaluations have been pursued and implemented suc- 
cessfully.- Nevertheless, the calculation of four-index, 
two-electron integrals remains a major computational bot- 
tleneck. Recent developments of pseudospectral methods 
make it possible to carry out Hartree-Fock calculations with 
an algorithm that scales with a third power in the number of 
basis functions.’ 

However, these advances in the implementation of Har- 
tree-Fock calculations do not address the fundamental issue 

of electron correlation and the need for multireference repre- 
sentations, which is known to be important for many sys- 
tems such as transition metal complexes and organometal- 
lies, but also for relatively simple molecules such as 
nitromethane. Inclusion of correlation typically increases 
the computational requirements dramatically thus limiting 
the range of correlated methods to rather small molecules. 
For these reasons, there is an urgent need to explore and 
develop new theoretical and computational methods that in- 
clude electron correlation and, at the same time, are practi- 
cal for large systems. 

Today, there is increasing evidence’-” that density 
functional theory (DFT) 12-15 offers a promising alternative 
to the Hartree-Fock approach. DFT includes electron cor- 
relation in a form that does not lead to the scaling problem of 
Hartree-Fock-based methods. Thus, DFT has the potential 
to be applicable to fairly large systems. While there is suffi- 
cient evidence that DFT provides an accurate description of 
electronic and structural properties of solids, surfaces, and 
interfaces,16 relatively little is known about the systematic 
performance of DFT applied to typical organic molecules. 

One of the reasons for this lack of knowledge is the fact 
that analytic gradient calculations, which are critical for mo- 
lecular geometry optimizations, have only been developed 
recently for molecular DFT calculations, while this feature 
has been available and used widely in Hartree-Fock calcula- 
tions for well over a decade.’ Furthermore, a number of 
well-tested Hartree-Fock-based programs are available to 
the scientific community, which is not the case for molecular 
DFT programs. There are also other obstacles and limiting 
factors: (i) There is no systematic theoretical way to im- 
prove the accuracy of the so-called local spin density (LSD) 
approximation; (ii) besides the expansion of molecular orbi- 

1280 J. Chem. Phys. 96 (2), 15 January 1992 0021-9606/92/021280-24$06.00 0 1992 American Institute of Physics 

Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Andzelm and E. Wimmer: Molecular geometries, vibrations, and energies 1281 

tals in finite basis sets, there are issues of adequate represen- 
tations of the electron density and the exchange-correlation 
potential; (iii) more than one explicit form for the exchange- 
correlation potential have been proposed; and (iv) in the 
past, simplifications in the shape of the potential such as the 
muffin tin potential have introduced a somewhat uncon- 
trolled approximation and an element of arbitrariness. 

Many of the obstacles mentioned above have now been 
overcome and there is the opportunity for molecular DFT 
methods to become a useful and accurate tool in the investi- 
gation of molecular structures and chemical reactions. The 
practical implementation of DFT leads to effective one-elec- 
tron Schr6dinger equations or “Kohn-Sham equations” 
which are very similar to the Hartree-Fock equations, ex- 
cept that in the Kohn-Sham equations, the orbital-depen- 
dent exchange operator of the Hartree-Fock equations are 
formally replaced by an exchange-correlation operator that 
depends only on the total electron density (and spin density 
in spin-polarized calculations). This makes the form of the 
matrix elements simpler and the one-particle wave functions 
can be represented not only by Gaussian-type orbitals, but 
also by a variety of other functions such as Slater-type orbi- 
tals 17*‘8 numerical functions,19-*’ plane waves,22*23 2 or aug- 
mented plane waves. 24-26 Completely numerical (“basis set 
free”) solutions of the density functional equations have 
been proposed as well. 27 It turns out, however, that Gaus- 
sian-type basis functions are appealing in molecular DFT 
calculations for the same reasons as in Hartree-Fock theory. 
The calculation of multiple-center integrals is fast and con- 
tracted basis sets can be found which are accurate, but still 
relatively small and efficient. The simple analytic form of the 
wave functions enables the analytic calculation of energy 
gradients. Furthermore, there is a wealth of experience from 
Hartree-Fock calculations on the choice of basis sets. This 
experience can be transferred directly to molecular DFT cal- 
culations. As pointed out earlier, there is a great need for 
systematic comparisons between Hartree-Fock-based re- 
sults and DFT results. Using the same type of basis set facili- 
tates this comparison. 

For these reasons, we have developed a highly efficient 
molecular density functional implementation using a linear 
combination of Gaussian-type orbitals (LCGTO) and an 
overall approach that is amenable to systematic comparisons 
with existing Hartree-Fock and correlated ab initio meth- 
ods. In this way, we hope a bridge can be built between the 
wealth of experience gained from molecular Hartree-Fock 
calculations and the newer molecular DFT approach. This 
similarity should help gain a clearer picture of the strengths 
and weaknesses of both the Hartree-Fock and the density 
functional approaches so that each method can be applied in 
the best possible way to address the many challenging prob- 
lems of theoretical and computational molecular science. 
The present work builds conceptually on previous efforts, 
especially by Sambe and Felton,** Dunlap, and Salahub.30 
Currently, the use of Gaussian-type orbitals in density func- 
tional calculations is also pursued by a number of 
groups.29-39 For the present implementation, many algorith- 
mic and computational aspects have been reconsidered, 
further developed, and coded in a new computer program, 

which is called DGauss. In essence, the present LCGTO 
density functional approach relies on a variational, analytic 
representation of the electron density and the fact that the 
exchange-correlation terms are a smooth function of the 
density, which can be accurately fitted by using a numerical 
integration. Together with efficient algorithms for integral 
and gradient evaluations, all basic computational compo- 
nents are thus in place for accurate geometry optimizations, 
evaluation of vibrational frequencies, and computation of 
reaction energies. 

In the following sections of this paper, we will first pres- 
ent the theoretical background and the computational im- 
plementation of the present density functional Gaussian- 
type-orbital approach. Then, various computational levels, 
including basis sets and grid resolutions, are defined and the 
sensitivity of the computed molecular properties to these lev- 
els is tested for methylamine. The accuracy and reliability of 
this approach is then illustrated for a number of typical mol- 
ecules containing C, N, 0, H, and F atoms. The results in- 
clude optimized molecular structures, vibrational frequen- 
cies and IR intensities, bond dissociation energies, 
hydrogenation reactions, and energies of isodesmic reac- 
tions. In addition, results are presented for two molecular 
systems CH,NO, and C,F,, where correlation effects are 
known to be important. While the present approach is tar- 
geted for the study of large molecular structures requiring 
1000 basis functions and more, the aim of the present work is 
the assessment of the accuracy of DGauss. To this end, var- 
ious classes of small molecules are investigated where sys- 
tematic comparisons with experiment, Hartree-Fock, and 
correlated methods are possible. 

II. THEORETICAL ASPECTS 
A. SCF equations and single point energies 

In density functional theory,‘*-l5 the total energy, in- 
cluding electron correlation effects, is written in the form 

E[pl = T[pl + U[Pl +K,bl. (1) 
Here, Tis a kinetic energy term, U is the electrostatic inter- 
action energy between all electrons and nuclei, and E,, is the 
exchange-correlation energy of the system. 

The total electron densityp in Eq. ( 1) can be related to 
single-particle wave functions by 

p(r) = 2 Iqi(r) I*, (2) 
002 

where the summation extends over all occupied electronic 
levels. 

A variational principle applied to Eq. ( 1 ), together with 
the definition of the one-particle wave functions (2)) leads to 
effective one-particle Schrijdinger equations, usually re- 
ferred to as Kohn-Sham equations, of the form 

H$i = l itlrit (3) 
where H represents a one-particle Hamiltonian operator, rji 
are one-electron wave functions [molecular orbitals 
( MOs) 1, and ei can be interpreted as one-electron energies 
(MO energies). DFT can be generalized to spin-unrestricted 
systems. In that case, the Hamiltonian operator also depends 
on the spin and separate MOs and MO energies are obtained 
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for the spin-up and spin-down levels. For simplicity, we dis- fg,; s = l,...,N,] in the form 
cuss here only the spin-restricted case, although both the 
spin-restricted and the spin-unrestricted cases are imple- kc (r) = C kg,. 
mented in the present program. 5 

As a consequence of the form for the total energy 
expression in Eq. ( 1)) the effective one-particle Hamiltonian 
operator H can be written as 

(12) 

H=[ - 1/2V*+ V,(r) +p,,(r)]. (4) 
Hartree atomic units are used here with h */(4$m) = 1 and 
e* = 1. V, is the electrostatic (or Coulomb) potential 

v, = v, + v, (5) 
consisting of the electron-nuclear attraction 

Substituting expressions (4)-( 12) in Eq. (3) and ap- 
plying a variational principle analogous to that used in Har- 
tree-Fock theory leads to a system of equations that deter- 
mines the coefficients in expansion ( 10) : 

(H, - EiSw )Ciq = 0. (13) 
These equations have to be solved in a self-consistent proce- 
dure. The matrix elements in Eq ( 13) are given as follows: 

V,,,(r) = - C ZJIR, - rl 
a 

(6) 

and the electron+lectron repulsion 

V,(r) = p(r’)l/Jr --‘I&‘. 
I 

(7) 

Here, R, denotes the position of atom a with the atomic 
number Z, . The sum in Eq. (6) extends over all atoms of the 
molecular system. 

Hpp = h, + 2 P, bdlrl + C P, [wl (14) 
r s 

and 

s, = [PQI- (15) 
Equations ( 13) and ( 14) contain one-electron and two-elec- 
tron integrals defined by 

The exchange-correlation potential is expressed by the 
termpXc which is related to the exchange-correlation energy 
by 

kc = swap. (8) 
In the so-called local density approximation (LDA) ,I3 the 
total exchange-correlation energy is approximated by 

h,=Jg,(r)( - 1/2V*-ZZJIR, -rl)gq(r)dr, (16) 
ci 

hllrl =J J gp (r)g, (r) (l/jr - r’l )g,(r’)dr dr’, (17) 

WI =sg, b-k, (rk, (r)dr, (18) 

hl =sgp (rk, (r)dr. (19) 

E xc =: 
s 

p(rk,, [p(r) I& (9) 

where E,, [p(r) ]dr is the exchange-correlation energy in a 
volume element dr in which the local density isp( r); exe [p] 
is the exchange-correlation energy per electron in a correlat- 
ed (i.e., interacting) electron system of constant density p. 
In the present implementation, we use the form for E,, [p] as 
given by Vosko, Wilk, and Nusair.40 It is generally believed 
that this represents one of the best analytic functional forms 
available for LDA potentials. It should be noted that no 
empirically adjustable parameters are incorporated in this 
potential. 

It should be noted that the one-electron integrals h,, as well 
as the overlap integrals S,, are identical to those found in 
the Roothaan-Hartree-Fock equations.’ Without the den- 
sity expansion of Eq. ( 1 1 ), the term Z,p, (pqllr) of Eq. ( 14) 
would contain 

T circis JJ gp(rkg(r)(l/lr- r’l)g,(r’)g,(r’)drdr’, 

(20) 

The molecular orbitals $i are represented by Gaussians 
in the same way as in the Hartree-Fock method 

*i = C cipgp (10) 
P 

with &,;p = l,..., N} being a set of contracted Gaussian ba- 
sis functions. 

which represent the familiar four-index, two-electron Cou- 
lomb integrals of the Hat-tree-Fock theory. The last term in 
Eq. ( 14) can be compared formally with the exchange inte- 
grals of the Hat-tree-Fock theory. However, as discussed 
above, the term includes correlation effects. 

Following Dunlap, the density fitting coefficients p, 
in Eq. ( 11) are defined such that the Coulomb energy 

Following Sambe and Felton, the electron density is 
also expanded in a set of Gaussian-type functions. Because of 
the finite number of Gaussians in this auxiliary set, this rep- 
resentation amounts to the approximation 

p(r) =p’(r) = Cp,g, (11) 
r 

with&;r= 1 ,...,N,} being a set of auxiliary basis functions. 
Similarly, the exchange-correlation potential ,uu,, (r) is ex- 
panded in another auxiliary set of Gaussian-type functions 

AS 
ss 

&p(r) ( l/lr - r’l )Sp(r’)dr dr’ (21) 

arising from the difference between the fitted and original 
density 

Sp(r) =p(r) -p’(r) (22) 
is minimized while maintaining charge conservation. Using 
the definition of the density matrix P, 

ppq = 2 cipciq 
i 

(23) 

with the summation extending over all occupied molecular 
orbitals, we find the coefficients pr to be determined by 
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~&&??ll~‘l -* 
w 

j-g, (l,m) . (24) 

The Lagrange multipliers A guarantee charge conserva- 
tion.29 The matrix C is defined by its elements 

G = [4lr’l g-J g,(r) ( l/lr - r’j )g, (r’ldr dr’. 

(25) 
All the integrals necessary to calculate the density fitting 
coefficientsp, can be obtained from analytic, Coulomb-type 
integrals. 

The fitting coefficients for the exchange-correlation po- 
tential in Eq. ( 11) are given by the following relations: 

P, =p;’ s 
g, (r)pu,, (r)dr (26) 

d 

with S, being overlap matrix elements defined in Eq. ( 12). 
The evaluation of the integrals in Eq. (26) is done numeri- 
cally as will be discussed below. Recently, a method for the 
variational fitting of the exchange-correlation potential has 
been formulated,41 but not yet implemented in the present 
approach. 

Based on the self-consistent charge density, Dunlap 
derived an expression for the LDA total energy which is 
exact to second order in the error of the density fit of Eq. 
( 11) . The explicit form, which resembles the corresponding 
expression of the Hartree-Fock theory, is 

E LDA =;p&tq +~/%b~~~rl +~dfd) 
I s 

(27) 

Similar to the expansion of the exchange-correlation po- 
tential given in Eq. ( 12), the exchange-correlation energy 
needed for the total energy expression (27) is expanded in a 
set of Gaussian-type functions in the form 

c,(r) =Cv,. (28) 

In fact, the Sam: set of functions &,} is used as in the expan- 
sion of ,u,, . The integrals [ rllr’] are defined in Eq. (25) 

U, = l/2 C Z,Z,./jR, - R,. 1 (29) aa 

denotes the Coulomb repulsion energy between all nuclei. 

B. Analytic energy gradients 
One of the advantages in using Gaussian-type basis 

functions is the possibility of evaluating the first derivatives 
of the total energy with respect to nuclear displacements 
analytically. 4’d7 The energy gradient can be written as 

aELsD/aX = FHFB + F,, (30) 
where FHFB is the Hellman-Feynman force with a correc- 
tion arising from the incompleteness of the orbital basis 

Face = z PM (a4da~ + pr [a(pqvaxllr] 

+ wwax p,,(r)]]+auJax 

3 ~,ahi/ax. w 

1283 

(31) 

The term F,, originates from the incompleteness of the den- 
sity fit 

h = cpr mwxll(p +I I 

= &[~i~Wl(~ p,d?I - p,T)] + (32) 

Expressions (3 1) and (32) contain in essence deriva- 
tives of three-index integrals, which can be calculated ana- 
lytically in the same way as the integrals in the SCF calcula- 
tions. The exchange-correlation term in Eq. (31) is 
evaluated by a numerical integration (33) which turns out to 
be more accurate than using the fitted form (34) ofpXc pro- 
vided a sufficiently accurate grid is used for the numerical 
integration 

W~d~ax~xc (r) 1 = s 
a/ax[& (r)g, (r)]pxc (r)dr (33) 

a/ax[t& (rk, (r)]gs (rldr. 

(34) 

Spurious one-center contributions to the exchange-correla- 
tion forces are eliminated in a similar way as has been done 
by Versluis and Ziegler.48 The matrix W is an energy weight- 
ed density matrix similar to that used in the gradients in the 
Hartree-Fock theory. 

C. Nonlocal exchange-correlation corrections 

It is known that the local density approximation tends 
to overestimate binding energies.‘-” One way to correct for 
this error is the inclusion of nonlocal correction terms using 
the density gradient. To this end, the exchange-correlation 
energy is written in the form 

E -&SD +E,G+E,G, NLSD - (35) 
where E ,” and E ,” are gradient corrections to the exchange 
and the correlation energies, respectively. Two different 
forms for these gradient corrections are considered here. 

One form uses a correction to the exchange energy pro- 
posed by Becke49*50 and an expression for the correlation 
corrections given by Langreth and Mehl, which was later 
refined by Perdew.” This approach is referred to as the 
Becke-Perdew (BP) gradient correction. In the BP correc- 
tion, the exchange part is written in the form 

E’,” = b C 
s 

pqxi/( 1 + 6bx, sinhh ‘x,)dr, (36) 
I7 

where 

x, FE Ivpl/p4,/3. (37) 
The label (7 denotes spin up or spin down. Expression (36) 
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has the correct asymptotic behavior and contains a constant 
b, which is determined by fitting the exact exchange energies 
of inert gases. The correlation part in the BP correction has 
the form 

E,G= f(p,,ps) exp{[ --g(p>lIVpI~IVp12dr. (38) 
s 

The definition of the functions f and g is given by Perdew.” 
The other form of the nonlocal corrections to the total 

energy is based on the work of Becke’* and Stoll, Pavlidou, 
and Preuss53 and thus is referred to as the BSPP approach. 
Here the exchange energy is due to Becke.” It is asymptoti- 
cally correct and contains two parameters b and c in the form 

E,G = b C s 
p”,‘“x”,/< 1 + cxz)dr. (39) 

D 
The parameters b and c are determined by fitting the exact 
atomic exchange energies for all atoms in the Periodic Table 
and using an appropriate average to make the expression 
independent of any particular atom. The correlation energy 
in this correction has the form53 

EZ= - p,c(p,,Wr- 
s 

ppcCO,paW, (4) 

where E, is the LSD correlation energy. 

III. COMPUTATIONAL IMPLEMENTATION 
A. Basis sets 

While Gaussian basis sets are convenient for the calcula- 
tion of multicenter integrals, great care has to be used in the 
construction of these basis sets in order to find the right 
balance between accuracy and efficiency. While the familiar 
Hartree-Fock optimized basis sets such as Pople’s 6-3 lG** 
basis set”54 give reasonable molecular geometries when used 
in molecular DFT calculations, reaction energies are more 
sensitive and Hartree-Fock optimized basis sets are inade- 
quate. To this end, new all-electron LSD optimized basis sets 
have been developed” for all elements from H to Xe and are 
used in the present investigation. The optimization proce- 
dure is based on the work of Tatewaki and Huzinaga56 as 
implemented for LSD optimization by Andzelm et al.57 For 
the elements B to Ne, this double-zeta basis set with polar- 
ization functions (DZVP) is built from nine s-type and five 
p-type primitive Cartesian Gaussians, augmented by one d- 
type polarization function. These primitives, written as 
(621/41/l), are contracted to three s-type and twop-type 
functions. Together with the polarization functions, this re- 
sults in a [3/2/l ] contracted set. For hydrogen, a (41) set is 
used in this DZVP set. These LSD-optimized Gaussian basis 
sets cause only small basis set superposition errors (BSSE) 
and exhibit a high quality for the valence orbitals, as judged 
by comparison with energies and orbitals obtained from a 
numerical procedure.47T57 

By adding p-polarization functions to the H basis and 
using the DZVP basis sets for the other atoms, a so-called 
DZVPP basis is defined. A more accurate basis set, called 
DZVP2, is obtained by adding one s- and one p-type primi- 
tive to the set for the atoms B to Ne. This results in a 
(721/51/l) basis set. In the DZVP2 basis, polarization 
functions are also added to H atoms resulting in a (41/l ) 
basis for hydrogen. 

Corresponding to these orbital basis sets are auxiliary 
basis sets to represent the electron density [ Eq. ( 11) 1, the 
exchange-correlation potential [Eq. ( 12) ] and the ex- 
change-correlation energy [Eq. (28)]. It was found that 
even-tempered expansions of uncontracted s, p, and d func- 
tions provide a flexible enough representation. Following a 
suggestion of Dunlap, 29 the first term in the even-tempered 
expansion corresponds to the most diffuse orbital function. 
For carbonlike atoms, seven s-type, threep-type, and three 
d-type functions are found to be adequate. The same number 
of functions is also used to represent the exchange-correla- 
tion terms. Since the most diffuse auxiliary s, p, and d func- 
tions are used to fit the same region in the valence space, it is 
possible to construct auxiliary basis sets with shared expo- 
nents.58 This facilitates the calculation of molecular inte- 
grals. The auxiliary basis sets corresponding to the DZVP 
and DZVP2 orbital basis sets are called A 1 and A 2, respec- 
tively. 

B. Analytical integrals 
In contrast to the usual implementations of the Har- 

tree-Fock method, the present DFT method requires the 
evaluation of only two- and three-index integrals. A recur- 
sive scheme, developed originally by Obara and Saika (OS ) 4 
for the computation of four-index integrals over Cartesian 
Gaussian functions, has been reformulated for three-index 
integrals to meet the needs of DFT.42,43 The resulting 
scheme turns out to be computationally highly efficient on 
vector and parallel computers. 

Two kinds of three-index integrals are needed-cou- 
lomb integrals I, and overlaplike integrals I,, for the evalua- 
tion of exchange-correlation terms. Following the notation 
of OS, these two types of integrals have the form 

1, = [a(l)b(l)llc(2)1 (41) 
and 

I,, = [dl)b(lk(l)l (42) 
with a and b denoting orbital basis functions and c represent- 
ing an auxiliary basis function used in the expansion of the 
electron density, the exchange-correlation potential, and the 
exchange-correlation energy. Again, the symbol ]I stands for 
the Coulomb operator l/lr - r’l. 

Equation (39) of OS can be rewritten for three-index 
Coulomb integrals to give the following recursive expres- 
sion: 

[abII(c+li)](m)=(CVi-Qi)[abII(c)l cm+“+ 1/2qNi(c){[abl((c- li)]‘“‘- (p/v)[abIJ(c- li)]“““)) 

+ 1/2(c+77)CNi(a)[(a- li)bIl(c)]‘“‘+Ni(b)[a(b- li)J(~](~+‘)). (43) 
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Here, Ii denotes a px, pv, or p, function and the function 
c + li has an angular momentum number one order higher 
than c. The superscript (m) refers to the order of the incom- 
plete F function which is needed in the evaluation of electron 
repulsion integrals. The prefactors Wand Q are determined 
by the distances between the centers of the Gaussian func- 
tions and their exponents. The values for 7, {, and p depend 
only on the Gaussian exponents. Ni is a generalized Kron- 
ecker delta as defined by OS. Following a procedure imple- 
mented in the Aster-ix program,59 the incomplete I function 
is evaluated from an efficient four-term interpolation formu- 
la yielding an accuracy of 10 - ‘* in the integrals. 

In essence, Eq. (43 ), together with “transfer formulas” 
of the type 

[ ta + l, lb [ICI (m) = [ a(b + li ) IIc] (m) 

- (Aj - Bi) [ab (Icp 

(4.4) 
and explicit formulas for integrals with low angular mo- 
menta, allow the evaluation of all Coulomb integrals involv- 
ing higher angular momentum quantum numbers. For ex- 
ample, integrals containing d functions can be built from 
integrals with only s and p functions. Similar relationships 
can be obtained for the overlaplike integrals needed in the 
exchange-correlation terms. For the integrals in the gradient 
calculations, a modified OS method due to Head-Gordon 
and Pople’ has been used. 

The evaluation of the Coulomb and exchange-correla- 
tion integrals as needed in the construction of the Hamilto- 
nian matrix elements ( 14) lends itself to parallelism in the 
index rof Eq. ( 14). To this end, shared exponents ofs,p, and 
d fitting functions are highly advantageous. A similar strate- 
gy for parallelism is used in the evaluation of the density 
fitting coefficients given in Eqs. (24) and (25). 

The computing times for calculating the Coulomb inte- 
grals for the Hamiltonian matrix elements ( 14) and for cal- 
culating the integrals for the density fits (24) and (25) is 
approximately the same, whereas the evaluation of the over- 
laplike integrals for the exchange-correlation fit (18) re- 
quires about half that time. In the current vectorized and 
parallel implementation of a direct SCF scheme, approxi- 
mately 15 million three-index integrals per second can be 
generated on an eight-processor CRAY Y-MP system at a 
sustained computational rate of over 1 billion floating point 
operations per second (GFLOPS) .60 Compared with a one- 
processor system, a speedup of approximately 7.3 has been 
observed. Thus, the evaluation of about 350 million integrals 
for a molecular system with about 1000 basis functions can 
be accomplished in about 160 s of real time by using all eight 
processors of a CRAY Y-MP system simultaneously. 

C. Grid design and numerical integrations 
Numerical integrations are used to determine the ex- 

change-correlation terms in Eqs. (12), (26), (28), (31), 
and (34). Furthermore, in the present program, the multi- 
pole moments are obtained by using a numerical integration. 
These integrations use a finite adaptive grid which is con- 

strutted in the following way2tr6r : around each atom, a polar 
coordinate system is defined. Within these local coordinate 
systems, a radial mesh is constructed leading to a sequence of 
radial shells. On each shell, an angular grid is defined such 
that its resolution is adapted to the variation of the exchange- 
correlation potential. For example, close to the nuclei, the 
radial shells are densely spaced, but each shell contains rela- 
tively few angular points. Further away from the nuclei, the 
situation is reversed and a higher number of angular points is 
required, while the radial shells might be more widely 
spaced. 

Using this kind of grid, any three-dimensional molecu- 
lar multicenter integral I with the integrand F(r) can be 
decomposed into a sum of one-center integrals of the follow- 
ing form: 

I= 
s 

F(r)dr=CI,., =~~mA(r)F(r)dr. (45) 
A A 

The weighting function wA is close to 1 near the center A and 
diminishes in the vicinity of other centers. At every point of 
real space, the weighting functions have to be normalized to 
1, 

F @A(r) = 1. (46) 

The one-center integrals are then solved within a polar coor- 
dinate system using the finite grid described above 

IA = 
ss 

wA(r,R)F(r,il)r2drdt2. (47) 

Here, the radial integration is accomplished using a method 
by Becke6’ applying a Gauss-Chebyshev quadrature, while 
a Stroud-Lebedev quadrature is employed for the angular 
integration.62s63 

The angular grid is constructed in the following adap- 
tive way: at the beginning of a calculation, the atomic elec- 
tron densities are superposed resulting in an electron density 
which has in essence the shape of the molecular density. 
Then, polar coordinate systems are defined around each 
atom center and radial grids are defined to meet the criteria 
for the Gauss-Chebyshev quadrature. On each radial shell, a 
set of angular points is created. These sets correspond to the 
Stroud-Lebedev quadrature and contain the following num- 
ber of points: 12, 32, 50, 72, 110, 194, and 302. Once a set is 
selected, the values of the exchange-correlation energy 
E,, (r) corresponding to the superposed electron densities 
are calculated and an assessment is made how accurately the 
current angular grid can integrate the function E,, (r) . An- 
gular grids of increasing resolution are chosen until the inte- 
gration is guaranteed to have an error of less than 10 - ‘. In 
order to minimize any sensitivity of the numerical integra- 
tion on the specific orientation of the molecule, angular grids 
on subsequent radial shells are rotated with respect to each 
other.47 Typically, about 1000 grid points per atom are ob- 
tained from this procedure. 

The weighting function of Eqs. (45)-( 47) is chosen to 
be 
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@A tr) ‘pi tr)/cpi b) 
A 

(48) [dd (Idd] are not calculated explicitly, but estimated by the 
simple formula3s4 

with pA (r) being the atomic density of center A. est([ab]]a6])=N,N, exp[ -uab/(u+b)lA-Bjp2], 
(57) 

D. Direct SCF procedure 
The SCF procedure involves the following sequence: 

where N, and Nb are normalization factors, a and b expo- 
nents, and A and B the positions of Gaussian functions. 

P (0) -pi:’ --t Hco’ + {~I”‘}-P’~‘-~~~‘-H”‘-{~~“}..., 

(49) 

An estimate of the values for the three-index overlaplike 
integrals [pqs] in Eq. (54) is obtained from the prefactors 
occurring in the calculation of these integrals.4 

or in terms of the expansion coefficients given by Eqs. ( lO)- 
(121, 
~~“‘>~~~“‘}~{C~‘}-*~~‘~}~~~“}~{C~’}-* . . . . 

(50) 

A similar strategy as used for the update of the Hamilto- 
nian matrix elements can also be employed for the fitting 
coefficients p, as given by Eq. (24). An update of a density 
fitting coefficient is not necessary if 

The procedure (see Ref. 47 for a preliminary descrip- 
tion) is started with a superposition of atomic densities 
which defines the coefficients @:“‘}. In the case of a geome- 
try optimization, the SCF results from the previous geome- 
try are taken as a SCF starting point for the new geometry. 

The Hamiltonian matrix elements of two subsequent 
iterations i and i + 1 can be written in the form 

(Pci+ ‘) - P$) est( [pqjlr] ) < Td. w (58) 
Expression ( 58) contains the same types of three-index Cou- 
lomb integrals as in Eq. (54) and hence the same procedure 
for estimating their values is used. In the present calculation, 
the value for Td is set to 10 - lo. This concept for updating as 
used in the direct SCF can also be applied to the evaluation of 
the total energy. 

H(i+ 1) =H(i) + m(i+ 1) 

Using &. (14), 
P4 P4 * (51) E. Geometry optimizations and vibrational analysis 

MCi-i- 1) 
w = c w+ ‘) - PY 1 iP4llrl r 

+c (p:i+1’-/4i’)[pq~l. 
I 

(52) 

An update of a Hamiltonian matrix element Hpq is not 
necessary if AH,, is smaller than a certain numerical thresh- 
old. In the present calculations, a threshold of 10 - lo is used, 
although it was found that a value of 10 - ’ still leads to 
acceptable molecular properties of chemical accuracy. 

In order to determine the threshold, only an upper 
bound or estimate and not the exact values for the integrals 
are required. This fact leads to significant savings in the com- 
putational effort. The following conditions for the thresh- 
olds are obtained from Eq. ( 52) : 

(Pi’+ ‘) -p?)) est( [pqllrl) < TP, (53) 

wul’+ ” -pii’) est( [pqsl) < T,, (54) 
where the symbol est [ ] denotes an estimate of an integral. 
Hence, a Hamiltonian matrix element of a new iteration is 
updated only if it can be expected to be larger than TP and TP 
defined by Eqs. (53) and (54). 

The geometry optimizations and the calculation of vi- 
brational frequencies follow well-established techniques of 
quantum chemistry.- Specifically, the present approach 
uses a procedure for geometry optimizations as implemented 
in the GRADSCF program. 65 Three differences compared 
with HartreeFock calculations are important to mention: 
(i) Because of the nonvariational character of the present 
formulation of energy gradients, the energy minimum does 
not coincide strictly with vanishing gradients. The resulting 
inconsistencies are tolerable. For example, for equilibrium 
bond lengths, this discrepancy is only several thousands of 
one Angstrom, which is one order of magnitude smaller than 
the accuracy of the method compared with experiment. (ii) 
Gradient calculations are faster than SCF calculations and 
thus gradients are evaluated for each new geometry in the 
optimization procedure. (iii) Due to the numerical integra- 
tions, there is residual numerical noise in the total energy. 
Close to equilibrium, this noise is relatively smaller for the 
gradients than for the total energy. Therefore, the final steps 
in the geometry optimization are based on the gradient 
alone. 

The estimation of the integral (pqllr) is based on the 
Schwarz inequality3 

b?llrl G [P4llP41 [~ll~l- (55) 
By definition,29 [rllr] = 1 and Eq. (55) becomes 

[Psllrl G [P411p41 =est( b4W 1, (56) 
where [pqj1pq] represents a standard four-index, two-elec- 
tron integral. Since there are only N2 integrals of this type, 
their calculation is inexpensive while leading to an accurate 
upper bound for the three-index integrals [pqllr]. In the 
present implementation, integrals of the type [dplldp] and 

The vibrational frequencies are calculated by a finite 
difference technique using a displacement of 0.02 a.u. The 
infrared intensities are evaluated also by finite differences in 
the dipole moments. In the present program, dipole mo- 
ments are calculated by straight numerical integrations us- 
ing the same grid as for the gradients, which is finer than that 
used for the SCF energies. 

IV. COMPUTATIONAL LEVELS AND NUMERICAL 
SENSITIVITY 

In the present implementation, the following major 
computational parameters need to be defined: the orbital ba- 
sis set; the auxiliary basis sets; the grid resolution for the 
numerical integrations; the accuracy in the analytical inte- 
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grak; the convergence in the SCF procedure; and the con- 
vergence in the gradient optimization. 

In order to enable systematic comparisons, we define 
several computational levels, as given in Table I. The DZVP 
level is characterized by a double-zeta orbital basis set with 
polarization functions except for hydrogen atoms. On this 
level, a set of auxiliary functions, called A 1, is used as defined 
in Table I. The grid resolution, the integral accuracy, the 
SCF convergence, and the gradient convergence are chosen 
to be on a medium level as explained in Table I. The DZVPP 
level differs from the DZVP level only in the orbital basis sets 
for hydrogen, where p-polarization functions are included 
on the DZVPP level. Most of the calculations repc-ted in 
this paper were carried out on this level. 

A somewhat cruder level is denoted DZVP-lc. Here, 
the same orbital and auxiliary basis sets are used as on the 
DZVP level, but a coarser grid is used for the numerical 
integration resulting in about half the number of grid points 
as on the DZVP level. The integral accuracy is lower and the 
convergence criteria for the SCF procedure and the gradient 
optimizations are less stringent than those of the DZVP lev- 
el. An even more economic level is obtained by reducing the 
number of auxiliary functions used in the fitting of the elec- 
tron density and the exchange-correlation terms. This level 
is denoted DZVP-3c since a so-called d 3 auxiliary basis set is 
used (cf. Table I. ) 

DZVP-lf denotes a level which has the same orbital and 
auxiliary sets as the DZVP level, but applies more stringent 
criteria for the grid resolution, the integral accuracy, and the 
SCF and gradient convergence criteria. Note that about four 
times more grid points are used for the numerical integration 
as on the DZVP- lc level. The DZVP2-2f level can be consid- 
ered to be close to the limits of a double-zeta orbital basis set 
with one polarization function. Here, a larger auxiliary basis 

set, denoted A 2, is used than on the DZVP level. The grid 
resolution, integral accuracy, and the convergence criteria 
are the same as on the DZVP-lf level. 

Table II shows the sensitivity of calculated geometric, 
vibrational, and energetic properties on the computational 
levels for Omethylamine. The calculated bond lengths differ 
by 0.004 A or less comparing the various levels listed in Ta- 
ble I. The largest variation in the bond angles is 1.4” for the 
hypemetted chain (HNC) angle. Overall, there is relatively 
little sensitivity of geometric variables on the choice of com- 
putational levels. This is gratifying since, e.g., the numerical 
grid resolution varies by a factor of four between DZVP- lc 
and DVPP-lf. It should be pointed out, though, that the 
gradient convergence criterion may have to be tightened 
from the default value of 8 x 10 - 4 to about 5 X 10 - ’ a.u. in 
order to obtain accurate dihedral angles and vibrational fre- 
quencies for low frequency or strongly anharmonic torsional 
modes. 

The frequencies reported in Table II were obtained by a 
finite difference technique using nuclear displacements of 
0.02 bohr and analytic first derivatives. For all but the lowest 
frequency modes, the different computational levels give fre- 
quencies that are consistent to within better than 4% which 
is approximately the same size as the difference between the- 
ory and experiment (note that the experimental values are 
not the harmonic frequencies and a direct comparison can be 
misleading). For the lowest frequency, the DZVP-3c and 
DZVP-lc levels deviate substantially from the other results. 
The vibrational zero point energy provides a convenient 
measure for the quality of the vibrational frequencies. While 
the results from DZVP and higher are very consistent, some 
deviations are found for the calculations using fairly rough 
numerical grids and convergence criteria. However, even for 
these economic choices of computational parameters, the 

TABLE I. The definition of computational levels including orbital basis sets, auxiliary basis sets, grid resolu- 
tions, integral accuracies, SCF convergence thresholds, and gradient convergence criteria. The most common 
levels are DZVP and DZVPP with A 1 auxiliary basis sets and medium selections for the numerical grid, inte- 
gral accuracy, and convergence criteria. 

Level Basis’ Aux.~ Grid’ Int.d CVSCF CVGRAD’ 

DZVP-3c DZVP A3 C 1 1 1 
DZVP-lc DZVP Al C 1 1 1 
DZVP DZVP Al m m m m 
DZVPP DZVPP Al m m m m 
DZVP- 1 f DZVP Al f h t t 
DZVPZ-2f DZVP2 A2 f h t t 

‘Following the notation of Huzinaga, the basis sets for carbonlike atoms are: DZVP-(621/41/1)/[ 3/2/l]; 
DZVPZ-( 72 l/5 l/l )/[ 3/2/l 1. The basis set denoted DZVPP is the same as DZVP except that p-polariza- 
tion functions are added for H atoms. The corresponding Pople basis sets are 6-3 lG* (DZVP) and 6-3 lG** 
(DZVPP). 

bThe auxiliary basis sets are uncontracted and defined as follows: A 1 (7/3/3); A 2 (8/4/4); A 3 (7/3/2). 
‘The grid selection can be coarse (c) with about 500 points/atom, medium (m) with about 1100 points per 

atom, or fine (f) with about 2500 points/atom. 
dThe accuracy in the analytical integral evaluation is low (1) at 10 - *, medium (m) at lo- lo, or high (h) at 

10 - “; the corresponding accuracy in the numerical integration is 10 - I”, 10 - I*, or 10 14, respectively. 
‘The SCF convergence threshold for the density (total energy) is loose (1) at 10 - 4( 10 - 6), medium (m) at 

5~ IO-‘(5x IO-‘), or tight (t) at 10-5(10-7). 
‘The convergence criterion for the largest gradient component is loose (1) at 10 - 3, medium (m) at 8 x 10 -4, 
and tight (t) at 5x IO-‘. 
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TABLE II. Ground-state geometries, vibrational frequencies, dipole momenta, and C-N bond dissociation energies of methylamine obtained with various 
basis sets and selections of computational parameters. An explanation of the computational levels is given in Table I. 

DZVP-3c DZVP-lc DZVP DZVPP DZVP-If DZVP2-2f Expt.” 

Bond lengths (b;) 
CN 
CH, 
CH, 
NH 

1.456 1.453 1.452 1.452 1.453 1.454 1.471 
1.117 1.114 1.116 1.115 1.116 1.114 1.099 
1.106 1.105 1.106 1.105 1.107 1.105 1.099 
1.026 1.026 1.027 1.025 1.027 1.025 1.010 

Bond angles (degrees) 
HNC 109.1 109.3 
HNH 107.0 107.1 

109.4 109.4 109.4 109.5 110.3 
107.1 107.2 107.0 107.4 107.1 

Angle between methyl top axis and CN bond (degrees) 
e 7.3 7.1 7.1 6.9 7.0 6.4 3.0 

Frequencies (cm - ’ ) 
NH, a stretch 
NH, s stretch 
CH, d stretch 

CH, s stretch 
NH, scissor 
CH, d deform 

CH, s deform 
NH, twist 

CN stretch 
CH, rock 
NH, wag 
Torsion 
ZPE 

Dipole moment ( D ) 

Total energies (hartree) 
CH, NH, 
LSD 
NLSD 

CH, (doublet ) 
LSD 
NLSD 

NH, (doublet) 
LSD 
NLSD 

C-N bond dissociation 
energy (kcal/mol) 
LSD 
NLSD 
Expt. 

3524 3543 3516 3533 3514 3551 
3432 3428 3418 3445 3417 3461 
3058 3067 3048 3049 3043 3058 
3009 3009 2998 3004 2995 3013 
2878 2895 2880 2893 2878 2906 
1624 1602 1621 1588 1620 1591 
1458 1493 1453 1450 1450 1438 
1442 1439 1430 1423 1430 1420 
1377 1382 1396 1385 1395 1382 
1311 1296 1300 1281 1297 1274 
1132 1133 1131 1127 1130 1119 
1074 1077 1085 1084 1084 1085 
963 877 948 939 941 934 
789 809 810 785 811 777 
342 331 306 309 308 302 

39.19 39.14 39.08 39.00 39.04 39.04 

3427 
3361 
2985 
2961 
2820 
1623 
1483 
1473 
1430 
1419 
1195 
1130 
1044 
780 
268 

1.52 1.49 1.50 1.41 1.51 1.46 

- 95.023 12 - 95.025 50 - 95.025 50 - 95.028 98 - 95.025 59 - 95.036 10 
- 95.879 50 - 95.877 67 - 95.876 75 - 95.881 55 - 95.876 56 - 95.890 37 

- 39.436 07 - 39.435 73 - 39.435 71 - 39.437 47 - 39.435 70 - 39.439 02 
- 39.845 96 - 39.843 16 - 39.843 03 - 39.845 00 - 39.842 89 - 39.848 11 

- 55.408 80 - 55.405 7 1 - 55.405 70 - 55.409 36 - 55.405 68 - 55.414 88 
- 55.891 63 - 55.888 71 - 55.888 13 - 55.892 31 - 55.888 07 - 55.898 41 

111.9 
89.1 
93 

115.5 
91.5 

115.5 
91.4 

114.3 115.6 114.3 
90.5 91.4 90.3 

‘From Ref. 1; geometric data from M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Lafferty, and A. 
G. Maki, J. Phys. Chem. Ref. Data 8,619 (1979). 
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results are still reasonable. 
The calculated dipole moment ranges between 1.41 and 

1.52 D. A significant changes arises from the inclusion ofp- 
polarization functions on the hydrogen atoms. In fact, the 
sensitivity on the orbital basis set is larger than on the resolu- 
tion of the grid or the choice for auxiliary basis sets. 

The C-N bond dissociation energy provides a gauge for 
the sensitivity of calculated reaction energies as a function of 
the computational level. This energy is calculated by sepa- 
rately optimizing the fragments ‘CH, and *NH, as well as 
the complete molecule and then subtracting the total energy 
of the complete molecule from the sum of the total energies 
of the fragments. In these calculations, the methylamine 
molecule is in a singlet state, whereas the fragments are in a 
doublet state. The step from the compact A 3 auxiliary basis 
set, used in the DZVP-3c calculation, to the more flexible A 1 
set, employed in the DZVP-lc results, causes a significant 
change in the calculated bond dissociation energy. The other 
modifications of basis sets and computational parameters 
lead to changes of less than 1.2 kcal/mol. 

In summary, both the DZVP and DZVPP levels of com- 
putational parameters provide accurate and computational- 
ly efficient choices of orbital basis sets, auxiliary basis sets, 
grid resolutions, integral accuracies, and SCF and gradient 
convergence criteria. While bond distances, bond angles, di- 
pole moments, and total energy differences are fairly insensi- 
tive within the range of computational levels defined in Ta- 
ble I, low frequency modes deserve special attention if a high 
accuracy is needed. 

V. RESULTS FOR MOLECULES CONTAINING C, N, 0, H, 
AND F 
A. Ground state geometries 

Table III shows calculated and experimental ground 
state geometries of small molecules and fragments contain- 
ing the elements C, N, 0, H, and F. All calculations were 
done within local spin density functional theory using a 
DZVPP computational level as described in the previous 
section. For the cases in which the spin state is other than a 
singlet, the multiplicity is given explicitly in Table III. 

The calculated C-C single bond lengths are typically 
0.01-0.02 8, too short compared with experiment. The for- 
mal C-C single bond in cyclopropene is an exception. In this 
case, theory and experiment agree to within 0.001 A. The 
C = C double bond and the aromatic C-C bond are very well 
described by this level of theory and agree typically within a 
few thousandths of an A with experiment. For example, the 
computed C = C bond lengths in propene and butadiene 
agree to within 0.003 and 0.002 A with experiment. LSD 
theory on the DZVPP level overestimates the C=C triple 
bond in acetylene by 0.014 A. Also, the theoretical bond 
length in the carbon dimer is too long by about 0.02 A. 

In many cases, the calculated C-H bond length is too 
long’Op’ I by about 0.01 to 0.02 A, which is also found, possi- 
bly even more pronounced, for O-H, N-H, and H-F dis- 
tances. The overestimation of the C-H bond length is par- 
ticularly noticeable in the small fragments CH, CH,, and 
CH,. These systems contain only a few electrons and the 

electron gas approximation underlying the LSD theory can 
be expected to be less appropriate than for bonds with more 
electrons (such as double bonds and aromatic systems). 

For single and double bonds between carbon and oxy- 
gen atoms, similar trends are found as between carbon 
atoms. The computed lengths for the C-O single bonds in 
methanol and dimethylether are too short by about 0.01 A. 
In contrast, the C = 0 bond in formaldehyde is close to ex- 
periment (0.004 A too long) and about 0.01 A too long in 
formic acid and carbon dioxide. The C = 0 bond length in 
ketene is overestimated by 0.016 A and by the surprising 
amount of 0.030 A in formamide. The calculated C = 0 bond 
in the CO molecule is 0.016 A too long. 

The bonds between C and N seem to repeat this pattern. 
The single C-N bond in methylamine is too short by about 
0.02 A, by 0.012 A in trimethylamine, and by 0.018 A in 
formamide. The C G N bond in hydrogen cyanide is too long 
by 0.012 A and by 0.022 A in methyl isocyanide. The polar 
C-F bonds in CH,F, CHF,, and CF, fluoromethane are 
within 0.007 A of experiment. The bonds between N and 0 
in NO, NO,, and HNO, are within 0.016 A of experiment. 
On the other hand, the N-O distance in nitrosyl fluoride is 
too long by 0.025 A and the N-F distance in NF, is too long 
by the unusual amount of 0.064 A. 

The equilibrium distances in the molecules 0, , N, , and 
F, are fairly well described by the LSD/DZVPP approa$h 
and deviate from experiment by 0.007, 0.021, and 0.020 A, 
respectively. The ambiguity in the experimental values for 
the O-O distance in hydrogen peroxide make an assessment 
of the theoretical value difficult. 

Calculated bond angles deviate in many cases by less 
than 1” from the experimental values. A notable exception is 
the O-N-O angle in nitrogen dioxide, where the present 
theoretical approach yields a value which is 2.5” smaller than 
experiment ( 133.5” vs 136.0”). Possibly, LDF theory does 
not include enough repulsion between the 0 atoms in NO,. 

6. Vibrational frequencies 

Table IV provides a comparison of computed and mea- 
sured vibrational frequencies for typical small molecules. As 
is well known,’ Hartree-Fock theory on the SCF level fairly 
systematically overestimates vibrational frequencies by 
about 10%. The MP2 level of theory provides vibrational 
frequencies which are closer to experiment, but still mostly 
too high. On the other hand, LSD theory on the DZVPP 
level yields frequencies which are overall too low, but at least 
as close to experiment as those obtained from second-order 
MQller-Plesset (MP2) theory. 

The present calculations give C-C and C = C bond 
stretching frequencies which are remarkably close to the 
harmonic frequencies deduced from experiment. The fre- 
quency of the single C-C bond stretching mode is about 1% 
too high, which might be related to the fact that the present 
calculations result in a C-C bond length which is slightly too 
short compared with experiment (cf. Table III). The LSD 
C-H stretching frequencies are typically too low by about 
I%-2%, which might be related to the overestimation of the 
C-H equilibrium bond length. In many cases, but not all, the 
low frequency modes involving bending and torsion are cal- 
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TABLE III. A comparison of calculated and experimental ground state geometries of small molecules contain- 
ing C, N, 0, H, and F. The LSD calculations were carried out on the DZVPP level of accuracy as defined in 
Table I. 

Molecule Variable LSD Expt.” Expt.b 

CH 
CH, 

CH, 

CH, 
C2 
G Hz 

G H, 

Doublet 
Methylene, triplet 

Methyl, doublet 

Methane 
Carbon dimer 
Acetylene 

Ethylene 

G H, Ethane 

C, H, Cyclopropene 

GH, 

C,H, 

Cyclopropane 

Propene 

C, H, Propane 

Cd% 1,3-butadiene 

W-b Cyclobutane 

C,K, n-butane 

CH(CH, )3 Isobutane 
C(CH, )4 Neopentane 

Cc.& 

co 
CH, 0 

Benzene 

Carbon monoxide 
Formaldehyde 

CH, OH Methanol 

CH, CO Ketene 

CH 1.148 1.120 
CH 1.094 1.029 
HCH 137.0 144.7 
CH 1.093 1.079 
HCH 120.0 120.0 
CH 1.101 1.094 
cc 1.263 1.242 
cc 1.217 1.203 
CH 1.081 1.060 
cc 1.336 1.339 
CH 1.098 1.086 
HCC 121.4 121.2 
cc 1.519 1.536 
CH 1.104 1.091 
HCC 111.6 110.9 
ClC2 1.305 1.296 
C2C3 1.510 1.509 
ClH 1.091 1.072 
HClC2 149.5 149.9 
cc 1.504 1.510 
CH 1.095 1.089 
c=c 1.339 1.336 
C-C 1.487 1.501 
ClH 1.098 1.091 
C2H 1.101 1.090 
C3H 1.106 1.085 
ccc 125.8 124.3 
C2C3H 110.7 111.2 
ClC2H 118.3 119.0 
CZCIH 121.0 121.5 
cc 1.517 1.526 
ClH 1.103 1.096 
C2H 1.106 1.115 
ccc 112.9 112.4 
ClC2H 109.5 109.5 
C2ClH 111.9 111.8 
ClC2 1.346 1.344 
C2C3 1.446 1.461 
ccc 122.5 122.9 
cc 1.541 1.548 
CH 1.104 1.105 
ClC2C3C4 152.6 153.0 
ClC2 1.517 1.533 
C2C3 1.532 1.533 
ccc 113.1 112.8 
cc 1.518 1.525 
cc 1.523 1.539 
CH 1.107 1.120 
HCC 110.2 110.0 
cc 1.396 1.399 
CH 1.098 1.084 
co 1.144 1.128 
co 1.212 1.208 
CH 1.124 1.116 
HCO 121.9 121.8 
co 1.411 1.425 
CH 1.104 1.094 
OH 0.974 0.945 
HCO 106.8 108.5 
COH 108.8 108.0 
co 1.177 1.161 
cc 1.316 1.314 
CH 1.094 1.083 
CCH 119.6 118.7 

1.078 
136.0 

1.531 
1.096 

1.421 
1.094 
0.963 

107.2 
108.0 
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TABLE III. (Continued.) 

Molecule Variable LSD Expt.” Expt.b 

CH,OCH, Dimethyl ether 

w 
HCOOH 

Carbon dioxide 
Formic acid 

CN 
HCN 

CH,CN 

Cyanide 
Hydrogen cyanide 

Methyl isocyanide 

(CH, ),N 

HCONHr 

Trimethylamine 

Formamide 

C, H, N, Pyrimidine 

CH,F Fluoromethane 

CHF, Trifluoromethane 

CF, 
Hz0 

02 
NH, 

NO 
NO, 

HNO, 

N* Nitrogen 
HF Hydrogen fluoride 
NOF Nitrosyl fluoride 

F* Fluorine 
NF, Nitrogen trifluorine 

Carbon tetratluoride 
Water 

Hydrogen peroxide 

Oxygen, triplet 
Ammonia 

Nitrogen oxide 
Nitrogen dioxide 

Nitric acid 

co 1.401 1.410 
cot 110.7 111.3 
co 1.175 1.162 
c=o 1.212 1.202 
C-O 1.342 1.343 
CH 1.115 1.097 
OH 0.988 0.972 
oco 124.7 124.9 
HOC 106.5 106.3 
HC-O 125.6 124.1 
CN 1.183 1.175 
CN 1.166 1.154 
CH 1.085 1.063 
CN 1.446 1.424 
CH 1.103 1.101 
CN 1.170 1.166 
HCN 110.2 109.1 
CN 1.439 1.451 
CNC 111.8 110.9 
CN 1.358 1.376 
NH 1.022 1.002 
CH 1.122 1.102 
co 1.223 1.193 
OCN 124.5 123.8 
c4c5 1.393 1.393 
N3C4 1.336 1.350 
C2N3 1.336 1.328 
C2H 1.101 1.082 
C5H 1.102 1.087 
C6H 1.098 1.079 
N3C4C5 122.2 121.2 
CH 1.106 1.098 
CF 1.378 1.382 
FCH 109.2 108.5 
CH 1.108 1.098 
CF 1.340 1.333 
FCH 110.5 110.3 
CF 1.326 1.321 
OH 0.974 0.957 
HOH 105.2 104.5 
00 1.441 1.475 
OH 0.981 0.950 
HO0 100.4 94.8 
HOOH 117.8 119.8 
00 1.223 1.216 
NH 1.025 1.012 
HNH 107.3 106.7 
NO 1.167 1.151 
NO 1.208 1.197 
ON0 133.5 136.0 
N=O 1.222 1.206 
N-O 1.402 1.405 
OH 0.988 0.960 
O=N=O 130.4 130.0 
NOH 101.5 102.0 
NN 1.114 1.094 
HF 0.935 0.917 
NF 1.499 1.520 
NO 1.155 1.130 
FNO 110.4 110.2 
FF 1.392 1.412 
NF 1.381 1.317 
FNF 101.7 102.2 

1.452 
0.965 

100.0 
119.1 

1291 

‘From J. I. P. Stewart, J. Computer-Aided Mol. Design 4, 1 ( 1990), Table 10. 
bFrom Ref. 1, Table 6.6. 

J. Chem. Phys., Vol. 96, No. 2,15 January 1992 
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1292 J. Andzelm and E. Wimmer: Molecular geometries, vibrations, and energies 

TABLE IV. A comparison of calculated and experimental vibrational frequencies in cm - ’ for small molecules 
containing C, N, 0, H, and F. The LSD calculations were carried out on the DZVPP level as defined in Table I. 
The last column gives the harmonic frequencies derived from experiment. The following abbreviations are used 
to characterize the vibrational modes: antisymmetric stretch (as), bend (b), d deform (dd), d stretch (ds), 
rock (r), stretch (s), scissor (SC), symmetricstretch (ss), twist (t), and wag (w). ZPEdenotes the vibrational 
contribution to the zero point energy in kcal/mol. 

Molecule Mode HF MP2” LSD Expt.” 

C, H, 

GH, 

HCN 

HNC 

CH, NH 

CH, NH, 

CH, 

cc* 
CH, 

ZPE 
CH, 

CHss 

cc* 
C&c 

CH,, 

C&t 
CH,, 

ZPE 
CH, 

CHw, 

CL 

C&r 

cc, 
Torsion 
ZPE 
CHs 
CN, 
Bend 
ZPE 
NH, 
NC, 
Bend 
ZPE 
NH, 
C&s 
C&as 
W 
Bend 

Torsion 
Bend 
ZPE 
NH, 
NH,, 
CH,, 

CL 
NH, 
CH,,, 

CL 

3719 3593 3441 3374 
3607 3516 3343 3289 
2247 2006 2011 1974 

883 783 705 730 
794 444 560 612 

la.5 16.5 16.2 16.2 
3420 3323 3181 3106 
3394 3297 3156 3103 
3344 3231 3081 3026 
3321 3222 3067 2989 
1856 1724 1654 1623 
1610 1523 1388 1444 
1499 1425 1320 1342 
1353 1265 1177 1236 

897 873 799 826 
1155 1083 1019 1023 
1095 980 910 949 
1099 931 909 943 

34.4 32.7 31.0 30.9 
3271 3215 3048 2985 
3242 3228 3070 2969 
3194 3104 2978 2986 
3201 3086 2975 2954 
1646 1520 1432 1469 
1652 1604 1428 1468 
1584 1493 1358 1388 
1546 1494 1332 1375 
1338 1264 1155 1190 
894 783 190 822 

1063 1040 1024 995 
331 452 316 289 

50.0 48.5 45.5 45.5 
3679 3517 3376 3311 
2438 2038 2139 2097 

889 702 692 712 
11.3 9.9 9.9 9.8 

4092 3844 3718 3620 
2311 2038 2041 2029 

519 389 494 477 
10.6 9.5 9.6 9.4 

3719 3463 3355 3297 
3347 3254 3040 3036 
3254 3116 2937 2924 
1901 1724 1690 1640 
1628 1542 1426 1453 
1496 1412 1289 1347 
1164 1100 1116 1059 
1270 1159 1040 1123 
1223 1107 1025 1063 

27.2 25.6 24.2 24.2 
3813 3641 3533 3427 
3730 3508 3445 3361 
3281 3228 3049 2985 
3245 3155 3004 2961 
3156 3063 2893 2820 
is41 1745 1588 1623 
1665 1596 1450 1483 
1648 1539 1423 1473 
1607 1469 1385 1430 

3497 
3415 
2011 

747 
624 

16.7 
3234 
3233 
3153 
3147 
1655 
1473 
1370 
1245 

843 
1044 
969 
959 

31.9 
3140 
3175 
3061 
3043 
1526 
1552 
1449 
1438 
1246 
822 

1016 
303 

47.5 
3442 
2129 

727 
10.0 

3842 
2067 

490 
9.8 

J. Chem. Phys., Vol. 96, No. 2,15 January 1992 
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Andzelm and E. Wimmer: Molecular geometries, vibrations, and energies 

TABLE IV. (Continued. ) 

1293 

Molecule Mode HP MP2” LSD Ekpt.” 

Hril?tl. 

H,CO 

CH,OH 

CH,F 

N,H, 

HNO 

H,O, 

NH,, 
CK, 

-4 
NH,, 
Torsion 
ZPE 
CH, 
CL 
CO‘ 
CL 
CH,, 
CH,, 
ZPE 
OH, 
W, 

CH,, 
CH,c+, 

CH,, 
OH, 
CH,, 

co, 
Torsion 
ZPE 
CH,.+e 
CL 
C%i, 
CH,, 
CH,, 
CF, 
ZPE 
NH, 
NH, 
NH, 

NY 
Torsion 
ZPE 
NH, 
Bend 
NO, 
ZPE 
OK 

0% 

w 
Torsion 
ZPE 

1479 1405 1281 1419 
1052 915 939 1195 
1289 1237 1127 1130 
1149 1113 1084 1044 
946 941 785 780 
341 351 309 268 
43.2 41.3 39.0 39.2 

3231 3064 2877 2843 
3159 3019 2815 2783 
2028 1786 1794 1746 
1680 1567 1449 1500 
1384 1249 1196 1249 
1336 1194 1120 1167 

la.3 17.0 16.1 16.1 
4117 3785 3759 3681 
3305 3201 3048 3ooo 
3231 3140 2964 2960 
3185 3065 2901 2844 
1664 1552 1440 1477 
1652 1562 1425 1477 
1638 1542 1413 1455 
1508 1424 1308 1345 
1289 1160 1121 1165 
1187 1120 1026 1060 
1164 1082 1100 1033 
348 250 317 295 

34.7 32.7 31.2 31.1 
3312 3205 3048 3006 
3232 3110 2951 2930 
1653 1556 1419 1467 
1652 1549 1414 1464 
1312 1213 1140 1182 
1186 1102 1095 1049 

26.6 25.3 23.8 23.9 
3613 3334 3144 3131 
3578 3386 3125 3128 
1911 1749 1635 1583 
1472 1308 1276 1286 
1763 1523 1517 1529 
1472 1328 1291 1359 

19.7 18.1 17.1 17.2 
1551 2999 2709 3039 
1979 1586 1657 1593 
1733 1479 1479 1505 

10.4 a.7 a.4 8.8 
4095 3731 3661 3608 
4091 3710 3658 3599 
1630 1390 1387 1402 
1494 1294 1269 1266 
1161 926 968 877 
397 329 397 371 

la.4 16.3 16.2 15.9 

3009 
2944 
1764 
1563 
1287 
1191 

16.8 

3132 
3031 
1498 
1490 
1206 
1059 

24.7 

3039 
1505 
1564 

a.7 

‘From Ref. 1, Table 6.41. 

culated to be too low on the LSD/DZVPP level of theory. periment. The values obtained from the LSD calculations 
A comparison of the vibrational zero point energies ob- are consistently smaller than those obtained from Hartree- 

tained from experiment and various levels of theory provide Fock and MP2 computations. The differences between the 
a global measure for the agreement between theory and ex- LSD results and experiment are about the same as between 
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the MP2 calculations and experiment. For C,H,, C, H,, 
H, CO, and CH, F, the LSD and MP2 values for the zero 
point energies bracket the (harmonic) experimental values. 

It should be noted that the values reported in Table IV 
were obtained by a finite difference technique using analytic 
first derivatives and atomic displacements of 0.02 a.u. Given 
the numerical sensitivity in this method, there is a residual 
uncertainty in the values. Given the evidence from Table II, 
this uncertainty should be less than about 30 cm - ‘. 

C. C-H bond energies 
In order to compute the bond energies for the successive 

removal of H atoms from methane, calculations have been 
performed on the H ( *S) and C ( 3P) atoms and the molecules 
CH(311), CH, (38), CH, (*A), and CH,(‘A). Full geome- 
try optimizations were carried out leading to the structures 
reported in Table V. As in the previous cases, all calculations 
were performed on the LSD/DZVPP level. For the final 
geometries, nonlocal corrections to the total energy 
(NLSD) were evaluated using the functional forms pro- 
posed by Becke and Perdew (BP) as discussed in Sec. II C. 

In Table V, the LSD and NLSD bond energies are com- 
pared with results from Hartree-Fock and correlated ab ini- 
tie methods.‘*66 This comparison is meaningful since the 
same type of basis sets, namely a valence double-zeta basis 
with polarization functions, has been used in all calculations 
given in Table V. 

In the case of the CH-H bond, the LSD level of theory 
overestimates the experimental value by as much as 15 kcal/ 
mol. In contrast, the NLSD approach agrees with the experi- 
mental values within 6 kcal/mol for the CH fragment and 2 
kcal/mol for CH,-H and CH,-H. All correlated ab initio 
methods experience difficulties in calculating the bond ener- 
gy of the CH radical. The best approach closed-coupled con- 
figuration interaction (CCCI), underestimates the energy 
by 6 kcal/mol. 

In order to compare the various methods, the error (de- 
fined here as the average absolute deviation from experi- 
ment) is presented in the last column of Table V. While the 
LSD bond energies are consistently overestimated by about 
10 kcal, the results show that, nevertheless, the energies ob- 
tained from LSD theory are closer to experiment than those 
computed at the Hartree-Fock level. A dramatic improve- 
ment in the calculated bond energies is found when nonlocal 
corrections are included. In fact, the NLSD energies are sub- 
stantially better than the Hartree-Fock and ground valence 
bond (GVB) results, and are comparable with the sophisti- 
cated and computationally demanding MP4 and CCC1 
treatments. The vibrational frequencies obtained with LSD 
theory give vibrational zero point energies (ZPE) within 0.2 
kcal/mol of the corresponding experimental values. 

D. C-C bond energies and dissociation potential curves 
for ethylene 

Table VI provides bond energies for the single, double, 
and triple bonds between carbon atoms in ethane, ethylene, 
and acetylene obtained with Hartree-Fock based meth- 
ods’,= and density functional theory. Again, all density 

TABLE V. Calculated and experimental bond energies De for CH,-H, 
CH,-H, CH-H, and C-H defined with respect to the ground statea of the 
corresponding fragments. The DGauss calculations were carried out on the 
DZVPP level. ZPE stands for the vibrational zero point energy. All energies 
are given in kcal/mol. 

-l-hew CH,-H CH,-H CH-H C-H ErroZ 

HFb 
MP2b 
MP4b 
CISD’ 
GVB-PP 
CCCI’ 
LSD 
NLSD (BP) 
Expt.6 
ZPE 

LSD 
Expt. 

a7 88 101 55 
109 110 109 73 
110 112 107 76 
106 109 107 74 
98 98 91 66 

111 113 102 78 
124 127 122 93 
114 ii8 113 90 
112 116 107 a4 

27 18 11 4 
27 la 11 4 

22.0 
5.5 
3.5 
6.5 

16.5 
3.8 

ii.8 
3.8 

“The average over absolute deviations between calculated and experimental 
results. 

b6-31G**//6-31G* results from Hehre etal. (Ref. 1, p. 274). 
‘From Ref. 66. 

functional calculations were carried out on the 
LSD/DZVPP level of theory with nonlocal corrections eval- 
uated for the optimized LSD geometries. The CH,, CH,, 
and CH fragments were calculated in their electronic ground 
state as discussed above. 

Whereas the LSD level of theory gives bond energies 
which are too large by 20-30 kcal/mol, the NLSD results 
lead to a surprising agreement with experiment. In fact, none 
of the correlated Hartree-Fock based methods shown in Ta- 
ble VI comes as close to experiment as the present NLSD 
approach. 

An important aspect in the study of chemical bonding is 
a theory’s ability to describe the entire energy hypersurface 
throughout a bond dissociation or bond formation process. 
To this end, the potential curve for the dissociation of the 
reaction 

H2C=CH2(‘A)-+H,C:(3B) +:CH,(3B) 

has been calculated using LSD and NLSD theory (cf. Fig. 
1). The C-C bond distance was varied in steps between 1 .O 

TABLE VI. Calculated and experimental C-C bond energies 0. in kcal/ 
mol for H, C-CH, , H, C = CH, , and HC = CH. The DGauss calculations 
were carried out on the DZVPP level. 

-=w H, C-CH, H,C=CH, HC=CH 

HF 
CISD’ 
GVB-PP” 
CCCI” 
LSD 
NLSD 
Expt.” 

69 

115 
95 
97 

122 132 
154 194 
146 165 
174 214 
204 268 
178 235 
179 236 

“From Refs. 1 and 66. 
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(singlet spin restricted) 
no spin localization 

experiment 

spin localization 
singlet spin unrestricted) 

no spin localization 

- NLSD 

- LSD 

-250:.... a.. . .I =. - s ’ = “. I ‘..‘.‘.” 1 ‘-. * - = *‘- 

0 1 
C-C distke (A) 

3 

and 4.0 A and for each C-C distance, all other geometric 
parameters were optimized. As can be seen from Fig. 1, the 
overall shape of the potential curve is the same for both the 
LSD and NLSD approaches with the LSD energies being 
consistently lower than the NLSD values. 

The assumption of a singlet state within a spin-restricted 
calculation and maintaining D,, symmetry of the system 
throughout the dissociation process leads to a wrong disso- 
ciation limit. In fact, using this artificial restriction, SCF 
convergence problems appear at a C-C separation of about 4 
A, while the total energy energy is still rising with increasing 
C-C separation (cf. Fig. 1). A similar problem occurs for 
GVP-PP calculations as reported by Carter and Goddard.66 

In local spin density functional theory, the spin state of a 
molecule is defined by the occupation numbers of the spin a 
and /? one-particle eigenstates.‘,“‘” For example, a state is 
formally denoted quintet (S = 2) when there is an excess of 
four electrons in one of the spin manifolds. Calculations on 
the dissociated ethylene molecule in the quintet spin state (in 
the above mentioned sense) lead to the correct dissociation 

4 

1295 

FIG. 1. The main panel shows the 
bond dissociation curves for the re- 
action CH, = CH, -2CH, ob- 
tained from LSD and NLSD cal- 
culations on the DZVPP level. 
“Singlet spin restricted” does not 
allow any spin polarization. “Sing- 
let spin unrestricted” provides spin 
polarization (antiparallel spin) for 
C-C distances larger than about 
2.0 A. The “quintet” calculations 
assume spin polarization with par- 
allel spin. The upper panel gives 
the number of unpaired electrons 
(negative sign for /3 spin) on the 
two CH, fragments as obtained 
from Mulliken populations. 

limit since the cr and r electrons of each CH, fragment are 
now, correctly, triplet coupled. However, as the separation 
between the two C atoms diminishes, the energy of the quin- 
tet state of ethylene is higher than that of the singlet state (cf. 
Fig. 1). An antiparallel coupling of the triplet states of the 
CH, fragments is needed to describe correctly the dissocia- 
tion process of ethylene. Spin unrestricted LSD calculations 
assuming a formal singlet state achieves this goal. In these 
calculations, the a and fi spin densities around the two car- 
bon atoms turn out to be different as the distance is in- 
creased. As a consequence, the symmetry of the system is 
reduced to C,, . Now, at large distances, each fragment goes 
locally into a triplet state, but the spin densities on the two 
fragments have opposite signs and hence the spin state of the 
total system is formally still a singlet. As the two fragments 
approach each other, the magnitude of the spin density on 
each fragment diminishes until it vanishes for C-C distances 
smaller than 2.0 A. 

The upper panel in Fig. 1 shows the number of unpaired 
electrons on each CH, fragment as a function of C-C separa- 
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TABLE VII. Mulliken charges for the H,C = CH, dissociation reaction as a function of the C = C bond 
distance R (CC) in Angstroms. 

R(CC) 1.8 2.0 2.2 2.5 2.8 3.0 3.2 3.5 4.0 

Cl 3.18 3.37 3.67 3.86 4.03 4.10 4.15 4.19 4.2 1 
Hl 0.41 0.40 0.39 0.39 0.39 0.39 0.39 0.39 0.39 
c2 3.18 3.00 2.71 2.52 2.35 2.27 2.22 2.18 2.16 
H2 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.43 0.43 
AEb 0.0 0.1 2.3 9.2 17.8 24.0 38.5 

’ Mulliken charges for spin cz are given; charges for spinflcan be obtained from the ones for spin (x interchang- 
ing the atom numbers. 

bEnergy gain due to the localization of the spins ELSo (localized)-,!&, (nonlocalized) in kcal/mol. 

tion. Starting from the equilibrium distance of 1.336 A, the 
spin densities are zero up to a separation of about 2 A. For 
increasing distances, the number of unpaired electrons on 
each fragment rises quickly to a value close to 2 near 4 A. At 
this point, there are essentially two CH, fragments, each in a 
triplet state, but with antiparallel spin. This spin localization 
effect can be monitored conveniently by examining the Mul- 
liken charges for spin a and p obtained from spin polarized 
calculations (cf. Table VII). Near the equilibrium distance, 
the Mulliken charge from the a electrons is the same on both 
carbon atoms. At larger distances, this charge increases on 
one carbon atom while it diminishes on the other. The oppo- 
site is true of the Mulliken charge from thep electrons. This 
spin separation is practically completed for a distance of 
about 4.0 A. There is a considerable gain in energy due to this 
spin localization as can be seen from Table VII amounting to 
about 40 kcal/mol at a separation of 3.5 A. 

It is computationally advantageous to start this series of 
calculations with large C-C distances where the localization 
of the spins occurs spontaneously and then to diminish the 
separation step by step, using the densities of a and B elec- 
trons from the previous step as input for the smaller distance. 
It is gratifying to see that LSD theory describes this “anti- 
parallel” spin system correctly. In fact, a somewhat similar 
case has been found for the Cr, molecule, where the spins on 

the two Cr atoms have opposite signs (antiferromagnetic 
coupling). Also in the case of Cr,, LSD theory correctly 
describes the binding curve.67 

E. Bond dissociation energies involving the atoms C, N, 
0, and F 

The direct calculation of dissociation energies for pro- 
cesses of the form A - B-+A + B is known to be a difficult 
task for ab initio approaches. In fact, Hartree-Fock theory 
yields bond energies which are in a very poor agreement with 
experiment. In some cases, such as the dissociation of the F, 
molecule, Hartree-Fock theory predicts a negative dissocia- 
tion energy and the use of correlated methods is mandatory. 
Often, the MP2 level of theory is sufficient to bring the agree- 
ment between calculated and experimental data within a few 
kcal/mol. 

Table VIII provides a comparison of calculated and ex- 
perimental bond dissociation energies. The LSD and NLSD 
results using the DZVPP computational level are presented 
together with HF, MP2, and MP4 results. The DZVPP basis 
set used in the density functional calculations is comparable 
to the 6-31G** basis underlying the HF and MP calcula- 
tions. 

The LSD results are too large by about the same amount 
as the HF results are too small. Both the LSD and HF levels 

TABLE VIII. Bond dissociation energies De involving the atoms C, N, 0, and F. The LSD and NLSD calcula- 
tions were carried on the DZVPP level. All energies are given in kcal/mol. 

Reaction HF MP2a MP4” LSD NLSDb Expt.” 

CH,-CH, + CH, + CH, 
CH, -NH, -t .CH, + .NH, 
CH,-OH-+CH, + .OH 
CH,-F+CH, + *F 
NH,-NH, + .NH, + .NH, 
HO-OH- .OH + .OH 
HO-F-+.OH + .F 
F-F-+.F + .F 
BE (Expt.)c 

69 99 97 115 
58 93 88 114 
58 98 92 122 
69 113 108 141 
34 73 67 101 

0 53 47 88 
- 11 48 43 86 
- 33 35 30 75 

47 2 6 28 

95 97 
91 93 
98 98 

123 (117) 114 
74 73 
61 55 

67 (61) 54 
63 (51) 38 

7 (5) 0 

‘6-31G**//6-31G* and experimental results from Hehre et al. (Ref. 1, Table 6.61). 
“The values in parentheses refer to nonspherically symmetric F atoms as explained in the text. 
‘The average error in bond energies comparing calculated and experimental results. 
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of theory are inadequate for quantitative statements about 
bond dissociation energies. The NLSD results, with the ex- 
ception of molecules containing F, are comparable to the 
results from MP2 and MP4 calculations. On average, the 
NLSD values are comparable with the MP4 results. The F, 
molecule is a noticeable exception. It is possible that the limi- 
tations in the present basis set for F causes the relatively 
large error. 48*50 In addition, the assumption of spherical 
symmetry in the F atom used in atomic calculations leads to 
a higher energy than in the case when this spherical symme- 
try is removed. If this effect is taken into account, the energy 
per fluorine atom is reduced by about 6 kcal, which improves 
the values for the bond dissociation energies significantly. 

F. Energies of hydrogenation reactions 
It is known that Hartree-Fock theory is quite successful 

in predicting the hydrogenation energies of compounds con- 
taining first row elements.’ For many systems, the 6-31G* 
level of HF theory yields hydrogenation energies that are 
within 3-5 kcal/mol of the experimental values. The MP2 
calculations bring improvements to the energetics, although 
there exist cases where even the MP4 level of theory gives 
errors of over 10 kcal/mol, e.g., in the reaction of hydrogen 
and oxygen. In Table IX, LSD and NLSD (BP) energies of 
selected hydrogenation reactions are presented as calculated 
using the DZVPP computational level. The resulting ener- 
gies are compared with the HF, MP2, MP4, and experimen- 

tal values as reported by Hehre ef al.’ Becke-Perdew (BP) 
corrected NLSD energies are listed in Table IX. The results 
obtained with Beck+Perdew-Pavlidou-Stoll corrections 
(cf. Sec. II C) show a somewhat larger error compared with 
experiment than the BP corrections.47 

The results given in Table IX are grouped into reactions 
involving single, double, and triple bonds, respectively. With 
the exception of a few reactions, notably the hydrogenation 
of 0,, ab initio methods reproduce experimental values 
within -4 kcal/mol. Surprisingly, the HF energies are on 
the average better than correlated results. In fact, the hydro- 
genation energies for molecules with single bonds seem to be 
particularly well captured by Hartree-Fock theory, al- 
though it is rather disturbing that systematic improvements 
over the single determinant description provided by MP2 
and MP4 calculations increase the discrepancy between the- 
ory and experiment. 

The LSD approach shows serious deficiencies for reac- 
tions involving triple bonds, while the hydrogenation of sin- 
gle bonds is fairly well described. On the other hand, the 
NLSD (BP) method provides a more uniform account for 
exchange and correlation for a variety of different bonds. On 
average, the NLSD approach performs as well as the corre- 
lated MP2 and MP4 methods. The energetics obtained with 
the NLSD approach are much closer to MP4 results than 
those obtained using the LSD method. 

The comparison with experimental data cannot be done 

TABLE 1~. Energies ofhydrogenation reactions involving C, N, 0, and F atoms in units of kcal/mol. All LSD and NLSD calculations were carried out on 
the DZVPP level as defined in Table I. 

Reaction 

CH,-CH, + H, -2CH, 
CH,-NH, + H, -+CH, + NH, 
CH,-OH + H, +CH, + H,O 
CH,-F + H, -+CH, + HF 
NH,-NH, + H, -+2NH, 
HO-OH+H,+2H,O 
F-F + H, + 2HF 
AEd 

HF MP2” MP4” LSD NLSDb 

21 18 18 18 19 (16) 
28 25 25 24 26 (23) 
30 28 29 28 28 (25) 
27 26 25 27 26 (23) 
48 46 45 43 44 (W 
87 83 82 80 77 (73) 

134 126 121 129 122( 118) 
1.1 2.7 3.7 3.1 4.1 

Expt.a*e 

19 (16) 
26 (23) 
30 (27) 
29 (27) 
48 (45) 
86 (83) 

133( 130) 

CH, = CH, + 2H, -+2CH, 64 61 60 67 60 (48) 57 (48) 
CH, = NH + 2H, -CH, + NH, 62 58 57 67 59 (47) 64 (55) 
CH, = 0 + 2H, -+CH, + H,O 58 55 52 67 57 (45) 59 (50) 
HN = NH + 2H, -2NH, 80 76 72 89 77 (64) 68 (58) 
HN=O+2H,+NH, +H,O 105 100 95 114 100 (86) 103 (93) 
0, + 2H, +2H,O 105 114 109 127 110 (98) 125( 116) 
H,C = CH, + 3H, +2CH, 118 111 111 131 114 (93) 105 (90) 
AEd 7.1 5.4 7.7 10.0 6.1 

HC=N + 3H, -CH, + NH, 79 71 70 102 81 (61) 76 (61) 
CEO + 3H, +CH, + H,O 59 58 54 93 70 (51) 63 (49) 
NzN + 3H, +2NH, 33 28 26 71 46 (25) 37 (22) 
AEd 3.7 6.3 8.7 30.0 7.0 

‘6-3lG**//6-3lG* results from Ref. 1, Table 6.65. 
’ NLSD (BP) energies corrected for vibrational zero point energies are given in parentheses. 
‘Heats of reaction corrected for zero point energies and extrapolated to 0 K are given in parentheses (from Ref. 1). 
‘The average error with respect to experimental data. 
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TABLE X. Energies, in kcal/mol, of reactions relating multiple and single bonds. All LSD and NLSD calculations were carried out on the DZVPP level. 

Reaction HF MP2” MP4” LSD NLSD” Expt.“.’ 

CH, = CH, + 2CH, +2CH, - CH, 
CH, = NH + CH, + NH, +2CH, - NH, 
CH, = 0 + CH, + H,O+ZCH, - OH 
HN = NH + 2NH, -+2NH, - NH, 
0 = 0 + 2H,0-+2HO - OH 
HC=CH + 4CH, - 3CH, - CH, 
HC=N + 2CH, + 2NH, + 3CH, - NH, 
C=O + 2CH, + 2H,O+3CH, -OH 
NeN + 4NH, +3NH, -NH, 
AEd 

- 22 
-7 

16 
70 

- 54 
4 

30 
110 

6 

- 26 - 24 - 32 - 22 ( 17) - -2O( - 17) 
-8 -7 - 20 -8(- 3) -l2(- 9) 

2 6 -II 0 ( 6) I ( 5) 
16 18 4 I7 (19) 28 ( 32) 
52 49 33 44 (48) 47 ( 51) 

- 58 - 57 - 77 - 58 ( 46) - -49(- 44) 
4 5 -29 -5 ( 5) 4 ( 9) 

27 33 -9 14 (24) 27 ( 33) 
109 109 69 93 (97) 107 (112) 

4 5 23 7 ___ 0 

‘6-31G**//6-3lG* results from Ref. I, Table 6.68. 
b NLSD (BP) energies corrected for ZPE are given in parentheses. 
c Heats of reaction corrected for ZPE and extrapolated to 0 K are given in parentheses (from Ref. I ). 
d The average error with respect to experiment. 

exactly since the temperature corrections to vibrations were 
not calculated. We assume that the translational and rota- 
tional temperature contributions for hydrogenation reac- 
tions can effect the energetics by about 1 kcal/mol. The zero 
point energy contributions have been calculated and are 
shown in Table IX. In the earlier discussion of vibrational 
properties, it has been shown that vibrational zero point en- 
ergies obtained with the LSD approach agree very well with 
experimental data for organic molecules (within 1 kcal/ 
mol). Thus, a comparison of the theoretical and experimen- 
tal values (given in parentheses in Table IX), which are cor- 
rected for zero point energies, can be assumed to be signifi- 
cant within about 2 kcal/mol. While the agreement between 
NLSD and experiment is quite reasonable for a substantial 
number of reactions, significant errors of up to about 10% 
do exist including the hydrogenation of H, 0, , F, , and 0,. 

G. Energies of isodesmic and other reactions 
A set of typical organic reactions involving H, C, N, 0 

atoms in various types of bonds are presented in Tables X 
and XI. The reaction energies were calculated by comparing 
reactants and products which were fully optimized at the 
LSD/D;ZVPP level. 

The results reported in Table X confirm that the LSD 
method is not reliable in studying the energetics of reactions 
which are typical for organic chemistry. On the other hand, 
the NLSD approach overcomes most of the deficiencies of 
the local density approximation. In fact, the average error of 
7 kcal/mol (see Table X) is close to the error of Hartree- 
Fock-based methods. In general, the largest error appears 
for reactions involving triple bonds. 

Table XI contains several examples for isodesmic reac- 
tions as calculated by the HF, LSD, and NLSD methods. 
The results are compared with experimental heats of reac- 
tions corrected for zero-point vibrational energy and ex- 
trapolated to 0 K. Uncorrected heats are given in parenthe- 
ses. On average (see Table XI), the NLSD method performs 
much better than the LSD approach. The NLSD results are 
comparable in accuracy to HF calculations. The average er- 
ror of the NLSD approach in this series is 1.7 kcal/mol. The 

largest discrepancy is 8.5 kcal/mol for the reaction with neo- 
pentane. 

There is a need for a more systematic study of the influ- 
ence of different nonlocal gradient corrections and the basis 
sets on the calculated heats of reactions. For example, the 
reaction involving HCN (cf. Table X), when calculated6* 
with a triple-zeta basis for C and N, yields energies of - 24 
and 0 kcal/mol for LSD and NLSD (BP) calculations, re- 
spectively, compared with values of - 29 and - 5 kcal/mol 
which are obtained from the DZVPP level. 

H. Nitro compounds-CH, NO, 
Molecules containing nitro groups are difficult to treat 

using single determinant wave functions. For example, the 
SCF calculation incorrectly predicts the ground state of ni- 
tromethane to be a triplet. Multiconfiguration SCF 
(MCSCF) calculations correctly give the ground state as a 
singlet. In recent studies,69 it was found that the optimized 
geometry obtained from LSD/6-3 lG** calculations agrees 
better with experiment than the results of MCSCF calcula- 
tions using the same basis set. Although Pople’s 6-3 lG* and 
6-31G** basis sets seem to be adequate for LSD geometry 
optimizations, they are inadequate to describe reaction ener- 
gies.38 

To this end, the geometry and energetics of nitrometh- 
ane are studied on the DZVP2 level. The results, given in 
Table XII, are compared with MCSCF calculations and ex- 
periment as reported by Redington and Andzelm.69 For 
comparison, LSD/6-31G** calculations are also presented. 
The small differences in the optimized geometries between 
the present results and those reported in Ref. 69 are due to 
more accurate gradient calculations performed in the pres- 
ent study. 

The geometries obtained using both 6-31G** and 
DZVP2 basis sets are quite similar and compare well with 
MCSCF and experimental data. The differences in the di- 
pole moments are more pronounced. The LSD-optimized 
basis set is more diffuse than the 6-3 lG** set and this leads 
to larger delocalization of the change distributions. Con- 
trary to the energetics of isodesmic reactions, which are im- 
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TABLE XI. Calculated and experimental bond separation energies in kcal/mol. All LSD and NLSD calculations were carried out on the DZVPP level. 

Reaction HP LSD NLSDb Expt.“,’ 

CH,CH,CH, + CH, -2CH,CH, 
CH(CH, ), + 2CH, +3CH,CH, 
C(CH,)+ + 3CH, -4CH,CH, 
CH,CH,NH, + CH, -CH,CH, + CH,NH, 
CH, NHCH, + NH, +2CH, NH, 
(CH,),N + 2NH, +3CH,NH, 
CH,CH,OH + CH,-+CH,CH, + CH,OH 
CH,OCH, + H,O+2CH,OH 
CH,F, + CH, -+2CH,F 
CHF, + 2CH, - 3CH, F 
CF, + 3CH, -+4CH,F 
CH,CHCH, + CH, +CH, CH, + CH, CH, 
CH, CHO + CH, -+ CH, CH, + H, CO 
CH,CN + CH, -CH,CH, + HCN 
CH, CO + CH, + CH, CH, + H, CO 
CH, CHCHCH, + 2CH, +CH,CH, + 2CH, CH, 
C, H, (cyclopropane) + 3CH, + 3CH, CH, 
C, OH, (oxacyclopropane) + 2CH, + H,O -+ CH, CH, + 2CH, OH 
C, H, (cyclopropcne) + 3CH, + 2CH, CH, + CH, CH, 
AE’ 

0.8 3.0 1.3 
1.9 1.5 3.0 
1.3 14.8 4.6 
2.5 4.9 3.2 
2.1 4.2 2.8 
5.2 10.4 6.8 
4.1 6.5 4.1 
2.8 5.1 3.1 

12.5 15.3 12.6 
32.3 37.8 30.6 
49.6 57.0 45.1 

3.9 7.0 5.2 
9.9 13.5 11.8 

11.7 14.0 12.5 
13.3 21.3 18.6 
11.2 17.2 14.7 

- 26.2 - 26.2 - 22.6 
- 19.1 - 19.2 - 13.8 
- 50.4 - 50.1 - 44.8 

2.0 3.4 1.7 

(2.0) (2.6) 
(4.9) (7.5) 
(7.9) (13.1) 
(3.9) 2.9 (3.6) 
(3.5) 3.8 (4.4) 
(8.6) 9.5 (11.1) 
(5.4) 5.0 (5.7) 
(4.1) 4.4 (5.4) 

(13.0) 13.3 (13.9) 
(32.0) 32.9 (34.6) 
(47.9) 49.3 (52.8) 
(6.1) 4.7 (5.4) 

( 12.4) 10.7 (11.4) 
(13.1) 14.4 (14.7) 
(19.2) 15.0 (15.7) 
(15.9) 11.3 (14.2) 

( - 17.5) - 22.7 ( - 19.6) 
( - 8.5) - 13.7 ( - 10.5) 

( - 38.7) - 43.9 ( - 40.5) 
. . . 0 

‘63lG**//STO-3G results from Ref. 1, Table 6.71. 
b NLSD (BP) energies corrected for ZPE are given in parentheses. 
‘Experimental heats of reactions corrected for ZPE and extrapolated to 0 K are given in parentheses (from Ref. 1). 
dThe average error as compared with experimental values. 

TABLE XII. Geometries, dipole moments, and relative energies of singlet and triplet states of CH,NO,, 
comparing LSD, NLSD (using both 6-3 lG ** and DZVPZ basis sets), MCSCF, and experimental results. 

Triplet Singlet 

LSD 

6-3 lG** DZVPZ 

LSD MCSCF Expt.” 

6-31G** DZVPZ 

Geometry 
C-N 
N-O 
C-HI 
C-H2 
N-C-H 1 
N-C-H2 
O-N-O 

1.441 1.441 1.479 1.476 1.477 1.489 
1.304 1.309 1.225 1.230 1.222 1.224 
1.109 1.108 1.102 1.102 1.080 1.088 
1.105 1.102 1.102 1.097 1.076 1.088 

110.0 109.9 108.4 108.4 108.5 107.2 
108.2 108.2 107.2 107.0 107.1 107.2 
104.4 104.5 126.1 125.7 125.5 125.3 

Dipole moment 3.25 3.54 3.36 3.59 . . . 3.46 

Singlet-triplet energy difference (eV) 
LSD/6-3lG** 
LSD/DZVPZ 
NLSD/DZVPZ 
MCSCF 

2.75b 
2.74 
2.48 
2.52 

‘From Ref. 68. 
‘The value of 3.63 eV reported in Ref. 69 is in error. The correct value within the computational level used in 

Ref. 69 is 2.75 eV. 
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TABLE XIII. Ground state geometries and relative energy differences of F,C = C and FC = CF obtained 
from LSD, Hartree-Fock SCF, CISD, and CCSD calculations using basis sets of double-zeta + polarization 
quality. Bond lengths are given in Angstroms, energy differences in kcal/mol. NLSD refers to the Becke- 
Perdew nonlocal corrections. 

Level” FC=CF F,C=C AE 

cc CF cc CF LSD NLSD 

DZVP-3c 
DZVP-lc 
DZVP 
DZVP-If 
DZVP2-2f 
DZP SCF” 
DZP CISD” 
DZP CCSDb 

I .203 1.286 1.351 
1.204 1.284 1.355 
1.204 1.284 I.355 
1.204 1.284 1.355 
1.205 1.288 1.358 

1.331 
1.348 

1.196 1.296 1.362 

1.317 37.6 25.7 
1.315 39.5 30.8 
1.314 39.2 30.6 
1.315 39.5 30.8 
I .320 39.5 31.3 
1.294 30.0 
I.311 
1.322 25.4 

‘See Table I for an explanation of the computational levels. 
‘From Ref. 71. 

proved significantly when LSD-optimized basis sets are 
used, the difference between singlet and triplet states of ni- 
tromethane does not depend as much on the level of basis set. 
The singlet state is found to be lower in energy than the 
triplet state by 2.74 eV on the LSD level and 2.48 eV on the 
NLSD (BP) level. This result corresponds very well with 
MCSCF results of 2.52 eV by Marynick et aLTo 

I. lsomerization of unsaturated fluorocarbons-F,C=C 
and FC=CF 

Recent accurate DZP CCSD calculations on difluoro- 
vinylidene F, C = C: and difluoroacetylene FC = CF by 
Gallo and Schaefer,‘i together with recent measurements of 
a matrix isolated IR spectrum for FC = CF72 provide an ex- 
cellent reference to assess the accuracy of the present 
DGauss approach. From correlated ab initio calculations,71 
an isomerization energy of about 25 kcal/mol is predicted 
for the following ground state rearrangement: 

“\ 
\ 

C = C:-+FC=CF. 

/ 
F 
In Table XIII, geometric and energetic properties of 

FC= CF and F, C = C are reported, while the vibrational 
frequencies and infrared spectrum are shown in Table XIII. 
In order to establish the dependence of the results on the 
choice of basis sets and accuracy of computational param- 
eters, a series of DGauss calculations have been carried out 
using basis sets and computational parameters as given in 
Table I. 

The examination of the results in Tables XIII and XIV 
lead to the following conclusions: The equilibrium bond dis- 
tances vary by less than 0.01 w within the range of the chosen 
computational parameters. The most economical level 

TABLE XIV. Harmonic vibrational frequencies (in cm - ’ ) and infrared intensities (in km/mol) for F, C = C 
and FC= CF. For the latter molecule, only IR active frequencies are given. The vibrational modes are denoted 
as follows: asymmetric stretch (as); stretch (s); scissor (SC); rock (r); symmetric stretch (~9); and wag (w). 

Level” FCmCF F,C=C 

CF, cc, CF, CF, CL CF, CF,r 

DZVP-3c 1391 1708 1291 941 530 483 265 
355 46 298 60 4 3 37 

DZVP-c I 14.03 1692 1302 940 535 486 257 
362 49 291 62 3 4 32 

DZVP 1406 1693 1298 941 539 491 257 
362 49 288 65 3 4 31 

DZVP-lf 1402 1692 1298 942 539 490 258 
365 48 292 63 3 4 33 

DZVP2-2f 1405 1684 1286 929 535 483 252 
364 44 301 65 3 5 32 

CCSD” 1377 1724 1326 939 540 512 339 
309 71 302 74 5 5 33 

“See Table I for an explanation of the computational levels. 
’ From Ref. 7 I. 
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DZVP-3c performs almost as well as the standard DZVP 
level. Apparently, the choice of orbital basis set influences 
the geometry more than other parameters, including fitting, 
auxiliary functions, and size of the grid. 

The relative energies of difluoracetylene and difluoro- 
vinylidene defined as 

AE = E(F,C = C:) - E(FC=CF) 

show a greater dependence on the choice of computational 
parameters. The computationally economic DZVP-3c level 
is inadequate, whereas the standard DZVP level seems to be 
converged sufficiently within the class of polarized double- 
zeta basis sets. 

The harmonic vibrational frequencies and infrared in- 
tensities (see Table XIV) show satisfactory consistency of 
the results. The largest relative deviation of 6% is found for 
the frequency of the lowest mode, which is a rocking mode of 
the CF, group. Again, the DZVP-3c level may be inade- 
quate especially for lower frequencies. Apparently the auxil- 
iary basis A 3, which is more constrained than the A 1 set, is 
not sufficient to describe the low motion of the CF, group. 
As expected, infrared intensities are more dependent on the 
choice of orbital basis set than the corresponding frequen- 
cies. 

A direct comparison of the DFI calculations with the 
CCSD results of Gallo and Schaefer” is meaningful since 
double-zeta plus polarization functions were used in both 
theoretical approaches. Excluding the crude DZVP-3c level, 
the LSD and CCSD C-C and C-F bond distances agree 
within 0.009 and 0.012 A, respectively. Using the NLSD 
(BP) corrections, the energetics is considerably closer to the 
CCSD results compared with that resulting from the LSD 
level. The difference of 5 kcal/mol between NLSD and 
CCSD theories could be attributed to the incomplete treat- 
ment of correlation by the CCSD method and to the approxi- 
mations inherent in the BP corrections. 

The vibrational frequencies, obtained on the LSD level, 
agree quite well with the CCSD results except for the low 
CF, rocking mode. For this vibration, the LSD results are 
markedly lower than CCSD values. The same main futures 
of the IR spectrum are predicted by both CCSD and LSD 
theories. The infrared intensities of the normal modes also 
agree quite well between the two different theoretical ap- 
proaches with the exception of the CC symmetric stretch of 
F,C = C, for which LSD theory predicts a significantly 
weaker intensity. 

VI. SUMMARY AND FUTURE PERSPECTIVES 

In this work, we have presented the theory, implementa- 
tion, and applications of a density functional Gaussian-type 
orbital approach for the calculation of molecular geome- 
tries, vibrational properties, and reaction energies. The cur- 
rent implementation, called DGauss, uses contracted Gaus- 
sian-type orbitals including d functions as orbital basis. The 
electron density is expanded variationally in auxiliary basis 
sets, which are constructed from even-tempered uncontract- 
ed Gaussians. A similar expansion is used for the exchange- 
correlation terms, where the expansion coefficients are ob- 
tained from numerical integration using a density-adaptive 

grid. A direct SCF method is employed to solve the Kohn- 
Sham equations. Energy gradients are evaluated analytically 
thus allowing the efficient optimization of molecular geome- 
tries. Second derivatives are calculated by a finite difference 
method. An important capability of the present implementa- 
tion is its ability to calculate nonlocal corrections to the ex- 
change-correlation energy. 

The calculations reported here have been performed 
with LSD optimized orbital basis sets of double-zeta quality 
for the valence electrons plus polarization functions. These 
basis sets are known to be necessary for accurate predictions 
of reaction energies. 38,47s7 Together with auxiliary basis sets 
of the type (7/3/3) for C-like atoms, a grid resolution of 
about 1000 points per atom, SCF convergence thresholds of 
5 X 10 - 5 a.u. for the density fitting coefficients and 5 X 10 - 7 
hartree for the total energy, and a gradient convergence 
threshold of 8 x 10 - 4 a.u., an accurate, yet computationally 
efficient computational level is established which is called 
DZVPP. This level corresponds to 6-31G** Hartree-Fock 
calculations. Dropping the polarization functions on the H 
atoms, a DZVP level is defined which is comparable with the 
6-3 lG* level. 

For small molecules containing C, N, 0, H, and F 
atoms, equilibrium bond distances are predicted within 
about 0.01-0.02 A. For example, the DZVPP level typically 
underestimates the single C-C bond and overestimates the 
C=C bond length by about 0.01-0.02 A, while the calculat- 
ed C = C bond distances agree within about 0.001 A. H-X 
bond lengths (X = C, N, 0, F) are typically overestimated 
by about 0.01-0.02 A. Bond angles and dihedral angles are 
predicted with lo-2”. Equilibrium geometries predicted by 
LSD/DZVPP (and also LSD/DZVP) calculations are 
comparable to those obtained from the Hartree-Fock theory 
for typical organic and small inorganic molecules. However, 
LSD theory maintains this level of accuracy also for mole- 
cules such as FOOF,73 C, F, , and nitromethane, where the 
Hartree-Fock theory leads to much larger errors. 

LSD/DZVPP calculations give vibrational frequencies 
which are consistently closer to experiment than those ob- 
tained with Hartree-Fock theory. In fact, the LSD results 
are comparable to MP2 results. In general, LSD/DZVPP 
frequencies are somewhat lower than experiment, while 
Hartree-Fock and MP2 calculations tend to be too high. 

Nonlocal corrections to the total energy are found to be 
essential for the quantitative prediction of dissociation ener- 
gies. For example, the local spin density (LSD) approxima- 
tion gives a dissociation energy of 204 kcal/moI for ethylene, 
whereas the nonlocal corrections (NLSD) proposed by 
Becke and Perdew”*‘* give a value of 178 kcal/mol which is 
almost suspiciously close to the experimental result of 179 
kcal/mol. It is gratifying to see that the complete curve for 
the dissociation of ethylene into two methylene fragments is 
described properly by NLSD calculations, provided that a 
spin unrestricted approach is taken that allows an antiparal- 
lel orientation of the spins in the two ethylene fragments. 

Density functional theory on the NLSD/DZVPP level 
gives absolute bond dissociation energies which are compar- 
able to results from correlated methods such as MP2, MP4, 
and even MCSCF and coupled cluster methods. This accu- 
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racy, combined with the computational efficiency of the 
present density functional implementation, i.e., a scaling 
with less than a third power in the number ofbasis functions, 
promises to make this a powerful approach for the quantita- 
tive study of complex chemical reactions. 

For example, in the current implementation, the direct 
SCF procedure for a system with 119 basis functions takes 55 
s per processor on a CRAY Y-MP computer. In contrast to 
Hartree-Fock methods, the analytic evaluation of energy 
gradients is faster than the SCF. In fact, for the example 
mentioned above, the gradients take only 28 s of processor 
time. A molecule with 55 1 basis functions requires about 20 
min for one SCF and about 8 min for the gradients.47 Both 
the SCF and the gradient calculations lend themselves to 
computational parallelization.60 Thus, it is conceivable to 
use the present implementation of density functional theory 
for the investigation of molecular dynamics, yet without the 
shortcomings of quasiclassical force-field models. Using to- 
day’s computational technology, an energy and force calcu- 
lation for a system consisting of 100 atoms can be done with- 
in about 1 h of computing time. If we assume a gain of three 
orders of magnitude in computing power over the next five 
to ten years by using novel high-speed computer architec- 
tures, a single step (energy and gradient) could then be ac- 
complished within a few seconds. Using time steps of a few 
femtoseconds in a molecular dynamics calculations, the evo- 
lution of a 100 atom system over a few hundred picoseconds 
could be computed within about 100 h of computing time. 

preach for the study of molecular geometries, vibrational 
properties, and reaction energies. The accuracy of this ap- 
proach is comparable to elaborate correlated Hartree-Fock- 
based method while its computational efficiency surpasses 
that of single-reference Hartree-Fock calculations, especial- 
ly for larger molecules. Hopefully, these characteristics will 
make the present approach a significant enrichment to the 
repertoire of quantum chemical methods and enable the in- 
vestigation of complex molecular structures of scientific and 
technological importance. 
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