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An expression has been derived for the analytical evaluation of the energy gradient within the
linear combination of Gaussian-type orbitals—local spin density method. This expression is
valid for any exchange-correlation energy functional which can be represented in a density
gradient expansion. In practice, because the exchange-correlation terms are fitted with
auxiliary functions, one has to introduce an approximation. Results are reported of tests on
diatomics that show that it is possible to attain a typical accuracy of 4 0.01 a.u. on
equilibrium distances, relative to the energy minimum. The formulas for molecular integral
derivatives that we implemented are based on the highly efficient recurrence formulas of Obara
and Saika. We report here an additional formula for angular momentum transfer which is very
useful for efficient programming of the gradient. In all cases studied, the time required to
compute the gradient is a fraction of the time spent to solve the self-consistent-field Kohn—

Sham equations.

I. INTRODUCTION

The last 15 years has seen the emergence of many effi-
cient methods for locating extrema of potential-energy sur-
faces (PES) in ab initio quantum chemistry.' These methods
are based on the evaluation of the analytical gradient of the
energy with respect to nuclear coordinates.>* Several groups
have developed working equations and/or computer pro-
grams for gradient evaluation within the framework of var-
ious ab initio quantum chemical methods: Hartree-Fock,**
Méller—Plesset perturbation theory,® configuration interac-
tion,”'° multiconfiguration SCF'""* and coupled clus-
ter.'*!* These methods have been of invaluable importance
in the systematic search of equilibrium geometries'® and re-
action pathways,'” and computation of vibrational frequen-
cies'® for molecules containing “light” atoms (roughly H to
Cl). The wealth of applications of gradient techniques has
been largely documented in review articles.'°

Similar studies for “heavy” atom containing systems
with ab initio methods are much more difficult (especially if
the heavy atoms have open d shells). For transition metal
atoms, Hartree—Fock theory is typically a bad first approxi-
mation.”® The standard way to correct Hartree—Fock for its
neglect of correlation is to expand the wave function in a
combination of many determinantal functions. Such an ex-
pansion is known to have a slow convergence on the number
of determinants and the cost in computer time grows rapidly
with the number of electrons. This has limited the successful
application of multideterminantal methods to fairly small
systems when transition metal atoms are involved.?!

Modern density functional theory (DFT) which has its
roots in the work of Hohenberg, Kohn, and Sham? offers a
practical alternative for such heavy atom systems. Most cal-
culations have made use of the local spin density (LSD)
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approximation.”*?* Accumulated experience shows that
within this framework, DFT gives consistently good equilib-
rium geometries, even when open d-shell atoms are in-
volved.?*%® In particular, the LCGTO-LSD method has
provided good results for complex systems where ab initio
methods would be difficult or practically impossible to ap-
ply.26

Development of analytical gradient techniques in DFT
isin a rather early stage when contrasted with ab initio meth-
ods. Nevertheless, most interesting and encouraging prog-
ress has already been made in this area.?’ In what follows, we
will give an account of the implementation of an analytical
gradient technique for the linear combination of Gaussian-
type orbitals—local spin density (LCGTO-LSD) method
originally suggested by Sambe and Felton?” and further de-
veloped by Dunlap ez al.?® and by others.

The rest of this paper is divided into four sections. In
Sec. 11, we give a short overview of the LCGTO-LSD meth-
od and a derivation of the equations for gradient evalua-
tion.?®3° Special care is taken to underline the approxima-
tions involved and the domain of applicability of these
equations. In Sec. III we give a brief description of the strate-
gy adopted to program the equations of Sec. II. In Sec. IV the
results of tests for diatomics are discussed as are the implica-
tions for future applications of the method.

Il. DERIVATION OF THE EQUATIONS

The total energy in the LCGTO-LSD method is given
by the following expression:

E= ZP#V[hW + ;Ck [pvirz 'k ]]
IJV

1 -
—— C.C.lk|r5' |k’ E_+V,., (1
zgzkk[llz|]+ (1)
where u1,v denote atomic orbital basis functions, P,, denotes
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the associated density matrix element, and 4,,, is the core
Hamiltonian matrix element including kinetic energy and
external potential (nuclear attraction plus, possibly, an ex-
ternal field ). Density fitting basis functions are denoted by k&
and k' and the C; ’s (C ;) are the associated density fit coeffi-
cients:

Z,Z,

Vin= ) —— (2)
AZB |RA - RBl

is the nuclear energy and

E,. =fp(r)é,c(r)dr (3)

is the exchange-correlation (xc) energy. The tilde indicates
a fitted function [e.g., €, ()] or a quantity which depends
directly on such a function (e.g., E‘,c ). The expression (3)
embodies a large class of xc energy functionals, the simplest
of which have an ¢, of the form:

€ (1) = €, (p%(r) PP (r)) . 4)
Equation (4) means that €, at a point r depends only on the
spin up, p(r), and spin down, p?(r), electron densities at
that point. Equations (3) and (4) define the local spin den-
sity approximation. We will also consider the case where €,
also depends on rotationally invariant combinations of de-
rivatives of various orders of these spin-up and spin-down
densities, that is, €,.’s of the form®

€. (1) = €, (p%(r),0° (1),| V5 (D) |,|VE () |,...) - (3

The fit to the exact €, (r) corresponding to a given den-
sity, €,. (r), is written as

& (1) =S Cil(r) . (6)
1

The reader is referred to the paper by Dunlap et al.?® for the
description of how the fits are actually made. From here on,
the equations will be written for the non-spin-polarized case,
for simplicity. A generalization to the spin-polarized case is
straightforward. The electron density is given in terms of the
spin orbitals ¢, (r) by

p(r) = Snlg, (M, @)

where the n,’s are occupation numbers, or alternatively, in
terms of the atom-centered basis functions

p(r) = Y P, u*(r)v(r) (8)
uv
with
P, = ZniC:ij‘ . 9

In the LCGTO-LSD method, the coefficients for expansion
of the spin orbitals satisfy a set of equations analogous to the
Hartree equations:

szva' = GizSyvai ’ (10)

where S, is the usual overlap integral and F,,, is the matrix
element of our effective one electron Hamiltonian given by

Fo=@lF vy =hyy + [plrz '] + el ) (D)

with p and 3, given by

p(r) = Sepk(r) (12)
k

by (1) = Y Cil(r) . (13)
[}

Simply taking the derivative of Eq. (1) with respecttoa
parameter A (later a nuclear coordinate) would yield an
expression involving derivatives of two and three index inte-
grals over Cartesian Gaussian functions and derivatives of
the coefficients C,,;, C;, and C;. Evaluation of derivatives of
integrals can be handled with standard techniques with mi-
nor modifications and this subject will be deferred until Sec.
II1. Our concern here is thus to evaluate terms involving
derivatives of the various coefficients. First, we follow Pu-
lay*'" and using Eqgs. (10) and (11) together with the nor-
malization constraint

ZC:,.SWCW. =1 Vi, (14)
Hv
we obtain, after differentiation, the following:
ZP,“’PFM = — ZW,WS ,‘jﬁ’ . (15)
Hv

nv

The superscript (A) indicates differentiation with re-
spect to A. The right-hand side of Eq. (15) is usually called
the density force but we prefer to call it the energy-weighted
overlap force (EOF). W, is the so-called energy weighted
density matrix:

.. =Zni€iC:ini . (16)

Equations (15) and (16) take care of the derivatives of
the C,; ’s in much the same way as in standard ab initio meth-
ods. Thanks to the clever choice of fitting procedure of p(r)
described in Ref. 28, when we make use of the fitting equa-
tion

—a—([(P —-Pra'le—p)] — VZCLfk’(r)dr) =0,
ac, &
(17

where y is a Lagrange multiplier, and the normalization con-
dition:

fﬁ(r)dr =N,

we obtain, after some algebra

;cw(zp,w [vlr k] = 3 CLlk 7 ‘lk’]) —0.
l“V
(19)

Equation (19) shows exact cancellation of the only two
terms involving C {*. An easy way to see why all terms in-
volving C (¥’ add to zero is to realize that the sum of these
terms can be written as

JE cw.
k aCk
But the fitting procedure of Ref. 28 was precisely chosen
because it minimizes the error on the Coulomb energy and

(18)
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satisfies JE /3C, = 0. Moreover, the derivative of the con-
straint (18) introduces no new term. Substitution of Egs.
(15) and (19) in the expression we would obtain by direct
differentiation of Eq. (1) gives an intermediate expression in
which all terms depend only on derivatives of molecular in-
tegrals except the following:

— PP (b, ) . (20)
uv

In order to progress, we now have to find some useful rela-
tion to rewrite these two terms. We first assume that the
functional E,_ is of the form given by Eqs. (3) and (5). This
includes of course all functionals encountered in the LSD
approximation. For such a functional, it can be shown that*>

E é6E

a xc= xc[p] ap !l'
ar Sp 94

Moreover, in density functional theory the functional

derivative of the xc energy is, by definition, the xc potential
v,. (r), so that Eq. (21) becomes

9E. _ [ dp(r)

dA dA

This last equation deserves three remarks.

(1) It is valid for any functional E,_[p] of the form
(3) + (5), not only local functionals of the form (3) + (4).

(2) Although the exact (unknown) functional E,_[p]
may not be of the form (3) + (5), this is of little practical
importance for us since, in our methodology, the functionals
that we use must be of this form.

(3) Given a functional, in actual calculations, we do not
know the precise E, and v, corresponding to a given den-
sity. Instead, we obtain estimates of E,, and v, through a
fitting procedure and Eq. (22) then becomes approximate.
If we now use the approximate form of Eq. (22),

aExc f ap(l')..

A=E®

(21)

v, (r)dr. (22)

b, (r)dr, (23)
with Eqs. (8), (15), and (19), we obtain
EW = z (h “y 4 ECk [uv|rs |k ]('“)

5 SOCLlklr ]

- zWva;(ti) + Vflﬁ)

+ 3P, [P0 V) + (p]Fc [V*) ] - (24)
f734

This equation is amenable to efficient computation as it
involves no derivative of coefficients. It is useful to regroup
some terms and rewrite Eq. (24) as

E® =(SPutuln @) +Vi2)
+ (z S7,CC. P F—e)|w)
i pv

+ complex conjugate)

+(Sark s le-1)

In Eq. (25), F¥F is the Hellmann—-Feynman force
which would be the exact force if the basis sets were com-
plete. F °PC and F PBC stands for “orbital basis correction”
force and “density fit basis correction” force. They can be
viewed as “artificial forces™ correcting for the fact that these
bases are incomplete. The corresponding xc basis correction
force is absent as a result of approximation (23). That is, in
practice, the gradient calculated with Eq. (24) will only be
accurate if the xc basis is “good.” The quality of commonly
used bases is examined below. Instead of using this approxi-
mation, it may be interesting to write a formally exact
expression. For this purpose, we define the errors on fits,
A€, and Av,, through

€xc(r) =&, (r) + A€ (), (26)

Ve (r) =0, (r) + Av, (1) . 27)

One can then derive the equivalent of Eq. (24) with an
extra term A:

3A
A= f P (Av, — Ae, )dr — f Cxe g (28)
with the LSD approximation, this becomes
dA
A= f (Av,‘c — A€, —p - e )dr. (29)
dp

Approximation (23) amounts to the approximation
A=0. A good fit as judged by the accuracy of the gradient
expressed as Eq. (24) is one which minimizes A as given by
Eq. (28) or (29). Equation (29) stresses the importance of
having small fitting errors Av,_ (r) and A€, (r) close to nu-
clei where dp(r)/dA is large.

Andzelm et al. incorporated the use of model core po-
tentials within the LCGTO-LSD method.*® With model
core potentials, the effective one-electron Hamiltonian of
Eq. (11) becomes

FL7 = @h™ ) + [pvlri'1B] + b v) —
e

h™PF differs from A in that the nuclear attraction potential is
replaced by an effective potential that includes the effect of
frozen core orbitals. O,, is a matrix element of a projection
operator that ensures orthogonality of valence orbitals to the
core. Specifically,

=Y 2¢,(ula)alv) (31

where a denotes a core orbital. The new terms introduced in
the gradient by the use of model core potentials can be evalu-
ated in just the same way as other terms involving one-elec-
tron operators. Because the error associated with approxi-
mation (23) may contain a substantial contribution from
core electrons, it is expected that the use of model core po-
tentials could improve the accuracy of the computed gradi-
ent.

We have thus obtained in Eq. (24) the necessary work-
ing equation for evaluation of gradients. We stress that one
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approximation was introduced in Eq. (23). If the xc fitting
basis and the grid were complete, &, and b, would be exact
€, and v, and Eq. (23) would be exact. Section III deals
with the more practical aspects of the evaluation of expres-
sion (24).

lil. PROGRAMMING STRATEGY

All the coefficients appearing in Eq. (24), P,,,, W,,, C,,

v are readily available from a self-consistent solution of the

Kohn-Sham Eq. (10). The evaluation of Eq. (24) then boils

down to computation of derivatives of two- and three-index

molecular integrals. In our method, the basis functions of

each of the three sets {|u) }, {|k )}, and {|7 )} are Cartesian
Gaussian functions having the form

g(r,R,l,a)=N( I (ri—R,.)I,.)e—“"—R", (32)

= x5z
where r; and R; are the ith Cartesian components of the
position vector of the electron and center of function, respec-
tively, and /; is the ith component of the angular momentum
vector. N is a normalization factor equal to

2a /4 —1/72
N=(2)" (4a L( 2 —1 !!)
(32) e 1 21—

i=xpz

(33)

with L =1, + 1, + I,. The Cartesian Gaussians have the
property that their derivatives are a combination of two Car-
tesian Gaussians with angular momentum Z + land L — 1:

J
IR,

g(r;RLa) = 2ag(r;R,1 + ¢;,a)

(34)

where e, is a unit vector. From Eq. (34), we see that compu-
tation of derivatives of molecular integrals is no more diffi-
cult than computation of integrals over higher angular mo-
mentum functions. We used the highly efficient recurrence
formulas of Obara and Saika,** which were later generalized
by the same authors,* for evaluation of the various integrals
involved in Eq. (24). We can very easily obtain formulas for
the integrals [uv|ry;'|k ] and [k |ri;'|k '] by setting one or
two exponents to zero in their four-index formulas. We
found it convenient to make use of angular momentum
transfer formulas. In the notation of Ref. 34, and for the case
of 3-center overlap integrals, we have
(a+1,|c|b) =(alc|b+ 1,) + (B, —A4,){alc|b). (35)
Similar formulas are easy to find for other types of inte-
grals simply by permuting indices in the original Obara and
Saika formulas and subtracting. [ For example, Eq. (35) fol-
lows directly from subtraction of integral (@ + 1;|c|b ) and
(alc|b + 1,) as expressed in Eq. (20) of Ref. 34.] Use of
these angular momentum transfer formulas reduces signifi-
cantly the number of operations for computation of all nec-
essary derivatives of molecular integrals, especially for high
angular momentum functions. Moreover, we took advan-
tage of the translational invariance of molecular integrals.*®
The present program was developed on a scalar computer
CDC 855. The work of writing an integral package for a
vector computer is in progress.>” We used the so-called shell
structure in which the set of all functions having the same

- lig(r;R’l - ei9a) ’
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exponent, center and angular momentum L defines a shell.
Substantial savings in the time for integral evaluation are
made if we calculate entire groups of integrals with functions
of the same shells. In particular, we can use fitting basis sets
for the electron density and exchange-correlation potential
with large shells of s, p, and d symmetries. These basis sets
proved to be efficient and accurate.*>*** The program con-
sists of sets of nested loops: over fitting functions and over
pairs of primitive Gaussians. The inner loops have a large
index limit. We avoided the use of logic statements inside the
inner loops by explicitly writing the recurrence formulas for
each pair of functions of a given pair of shells. These two
characteristics (large index limit, absence of logic) are a pre-
requisite for an efficient vectorization of the code. Since we
do not have to store derivatives of molecular integrals, the
time consuming procedure®” of compressing primitive inte-
grals into contracted ones can be avoided.

IV. TESTS

Ultimately, any practical value of Eq. (24) will be
judged by numerical tests. One can expect that improve-
ments in the quality of the fitting of the exchange-correlation
potential and energy would diminish the error in Eq. (24).
This could be achieved by enlarging the size of the xc basis
set, using a better sampling of grid points and/or using mod-
el core potentials. In what follows, we will investigate the
accuracy of the equations and explore some possible im-
provements. We report here the results for some diatomic
and triatomic molecules. These are all-electron calculations
with various quality of xc basis sets and various fitting proce-
dures. Model potential calculations and tests of the accuracy
in such cases are under way and will be reported in the fu-
ture.

Table I shows the equilibrium distance of N, computed
by two methods. R, (fit) is the equilibrium distance obtained
from a third degree polynominal fit of the set of (energy,
distance) points. With enough points chosen in an appropri-
ate range, this method is precise to + 0.001 a.u. R, (grad) is
the distance at which the gradient computed with Eq. (24) is
zero. Because the gradient will eventually be used to search
extrema of PES, we think that such a comparison is more
meaningful than a comparison of exact (finite difference) vs
approximate gradient at some given distance. All calcula-
tions reported in Table I were made with orbital and charge

TABLE 1. Accuracy of the gradient computed with various choices of xc
fitting procedures for the N, molecule.”

R, (fit) r. (grad) AR,

Basis N Weight (a.u.) (a.u.) (a.u.)

1 A 4 R 2.131 2.216 0.085
11 B 10 R? 2.138 2172 0.034
jH C 4 R? 2.133 2.145 0.012
v B 10 R 2.134 2.124 0.010
v C 10 R 2.134 2.124 0.010
Vi B 4 R 2.132 2.124 0.008
VII C 4 R 2.132 2.124 0.008

®See text for the description of basis, fitting parameter N and weight.
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density fit bases of comparable quality. The three xc bases
{|7)} denoted by A,B,C increase in size (and quality) from
A to C and have the following s, p, d patterns®®:

A:7,3,3,
B:7,5,5,
C:12,7,7.

The only difference between A and B is that the latter
has two additional high exponent p and d shells thus giving a
better fit close to the nucleus. Basis C simply has more s, p,
and d shells covering roughly the same range as in basis B.
1/N is the fraction of radial points kept from a Herman-
Skillman-type mesh.*® N = 4 thus gives a grid with more
points than N = 10. Finally a weight is associated with each
point of the grid used in the fitting procedure. We tried two
weights: one which is proportional to R?, the square of the
distance to the nearest nucleus, or equivalently, to the vol-
ume of the grid cell, and one which is proportional to R. This
last weight puts more emphasis for a good fit at points near
the nuclei where the density is high and accordingly the con-
tribution to E,_ is large. Dunlap has proposed a fitting proce-
dure that minimizes the error on the xc energy.*' We expect
that this procedure would bring Egs. (28)-(29) close to a
minimum. His “best” weight, however, has to be recomput-
ed at each iteration and this is not convenient. An approxi-
mation to this weight, which would remain unchanged
through iterations, could be the best practical solution. In-
spection of Table I leads us to make the following comments.

(1) R, (fit) is not very sensitive to the choice of basis
and grid whereas R, (grad) is. This situation is reminiscent
of the assessment of basis set quality from total energy vs
Hellmann—Feynman force accuracy.****3

(2) Case I shows that one has to be careful. A bad choice
of XC basis can be disastrous.

(3) Pairs (ILIV) and (IILVII) seems to favor the
weight proportional to R.

(4) Pairs (IV,V) and (VI, VII) shows that basis Cis no
better than basis B. This seems to indicate that basis B, al-
though not very costly, is practically complete from the cri-
terion set by Eq. (23).

(5) Pairs (IV,VI) and (V,VII) show that the finer grid
is only slightly better. As in Eq. (4), this indicates that accu-
rate gradient calculation is possible with a fitting procedure
which remains economical.

Table II shows R, (fit) and R, (grad) for a few diatom-
ics for two standard choices of basis and grid, “1” and “2”
corresponding roughly to cases II and VI, respectively, of
Table I (explicitly, for case 1: N = 10, weight = R* and an
“ordinary” xc basis was used. For 2: N = 4, weight = R, and
an “extended” basis was used ). The same orbital and density
fit bases (see footnotes to Table IT) were used for both cases.
In addition to R,, we compare the vibrational frequency ob-
tained from the fit, o, (fit), with what we can compute from
finite difference of the gradient at R, (grad), », (grad). R,
(HF) and w,(HF) are the equivalent of
R, (grad) and o, (grad) but computed with the Hellmann—
Feynman gradient instead. [It should perhaps be pointed
out that the results reported for C,, O,, and CH in Table II
are in fairly bad agreement with experimental values. This is

TABLE II. Accuracy of the gradient { Eq. (26) ] and the Hellmann—Feyn-
man gradient for two standard choices of basis and grid for some diato-
mics.”

R, (fit) R, R, . (fit) ®, )

Case (aw.) (grad) (HF) (cm™!) (grad) (HF)

H, 1 1.486 1.472 1.500 4160 4210 4070
2 1.478 1.473 1.500 4250 4210 4300

C, 1 2.578 2.581 3.30 1550 1320 1790
2 2.566 2.569 3.20 1570 1580 1840

0, 1 2.375 2.401 319 1400 1400 2550
2 2.390 2.391 3.24 1410 1420 2470

N, 1 2.138 2.172 3.00 2310 2330 2750
2 2.132 2.124 2.82 2300 2200 2710

CO 1 2.194 2.208 3.14 2040 1940 2407
2 2.195 2.183 3.06 2030 1990 2420

CH 1 2.192 2.440 3.01 2700 2390 2630
2 2.189 2.177 2.74 2690 2710 3250

*The orbital basis set used have the patterns: H: (311/1), C: (5211/411),
N: (5211/411), O: (5211/411). The patterns for the charge-density bases
used are H: (5,2,2), C: (6,3,3), N: (9,6,6), O: (9,6,6). Cases 1 and 2 differ
only in the following choices. Case 1: N = 10, weight = R?, xc bases pat-
terns: H: (6,2,2), C: (6,4,4), N: (7,5,5), O: (7,5,5). Case 2: N =4,
weight = R, XC bases patterns: H: (6,5,5), C: (8,7,7), N: (7,5,5), O:
(10,9,9).

because the calculations were done in the non-spin-polarized
(“closed shell”) option, sometimes with fractional occupa-
tion numbers. Therefore, the aforementioned diatomics in
Table II are in states which do not correspond to pure multi-
plets.]

Table II shows that there is a systematic improvement of
R, (grad) for all diatomics when one goes from a less accu-
rate choice of basis and grid 1 to the better choice 2. On the
other hand, w,(grad) is always fairly good and shows no
systematic improvement from 1 to 2. An interesting feature
of Table II is that while the equilibrium distance computed
from the Hellmann-Feynman force is very bad, the second
derivative computed from it is reasonably good (except for
0, ) and systematically larger than the exact value. This ob-
servation might eventually be helpful in developing a meth-
od for approximate evaluation of second derivatives.

Various terms contributing to the gradient near the
equilibrium distance are shown in Table IlI. The quantities
E@ FHF FOBC and FPPC are defined by Eq. (25). Any
error in the computed gradient can be ascribed to xc basis
incompleteness and this error is thus denoted by — F***€in
analogy with the denominations — F°®*©and — FP5C. The
values of — F*°B€ reported in Table III are estimates calcu-
lated from the force constant and the error made on equilib-
rium distance (see Table II, case 2). The precise values re-
ported are not exact but the order of magnitude is right.
What we call the energy-weight overlap force (EOF) and
the exchange-correlation overlap force (xcOF) are just the
absolute values of the third and fifth terms of Eq. (24). First,
it should be noted that both F °B< and F PBC are large and
must be computed exactly otherwise the gradient would be
inaccurate. The fact that the force due to incompleteness of
the xc basis, which is neglected in E‘*’, is much smaller than
the force due to incompleteness of the charge density fit basis
reflects the relative smoothness of the xc energy function and
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TABLE III. Basis correction force and overlap force contributions to the gradient for some diatomics close to

their equilibrium distance. (All values in a.u.)

E® — FHF — FoBC — FPEC — FreBC EOF xcOF
H, —00017 —00220  +00563 —00361  +00017  0.2767 0.4520
C, —00835  —1.092 —2.249 +3258 —0.0017  0.459 0.6794
0, —00142  —3.233 —4.943 +8.162  —00006  0.7115 0.6048
N, +00151  —2.712 —3.959 +6686  +0.0103 1.017 1.399
co +00352  —2.646 —2.249 +4930  +00125 1.049 1.361
CH +00016 —04146 —03283 407445  +00032 02093 0.3191

the relative ease of its fitting. Various authors noted that the
use of a basis that includes derivatives of *““parent functions”
(those of a usual basis) can improve very much the accuracy
of the Hellmann-Feynman force.?®*** However, this meth-
od has a major drawback; the basis needed is much larger
than the usual basis and this is very expensive at the SCF step
because the matrix to be diagonalized is then 2-3 times larg-
er. Second, it may be interesting to note that EOF and xcOF
scale roughly with the bond order of the molecule, not with
the total energy. Because xcOF is just the approximation to
the two terms of Eq. (20), we can hope that, contrary to the
“Hellmann-Feynman force only” approximation, our ap-
proximation will not deteriorate as we go to heavier ele-
ments. ,

In Table IV we show the results of geometry optimiz-
ation for three molecules (HCN, H, O, O, ). HCN was con-
strained to be linear and H, O and O, were constrained to
have C,, symmetry. The basis and grid chosen for these
cases were similar to choice IV of Table I, which seems to be
a good compromise between accuracy and economy. The
agreement between the geometry predicted from the crite-
rion of minimizing the energy on one hand, and minimizing
the gradient norm on the other, is satisfactory. The experi-
mental values** given for comparison, show how accurate
the geometries calculated with the LCGTO-LSD method
can be. The results for ozone can be considered satisfactory
as the geometry of this molecule seems to be very sensitive to
the choice of basis set.*® Indeed, ozone is an interesting case
for which the Hartree~Fock method gives poor results but

TABLE IV. Equilibrium geometries obtained by minimizing the energy
(E) and by minimizing the norm of the gradient E® *°

E E® Experiment®
HCN R(HC) 2.04 2.01 2.0107
R(CN) 2.20 2.18 2.1845
H,0 R(OH) 1.835 1.824 1.810
[ 105.3 105.5 104.45
0, R(00") 2.37 2.36 2.415
6 118.1 120.6 116.8

*The orbital basis set used have the patterns: H: (311/1), C: (521/41/1),
N: (5211/411/1), O: (521/41/1). The charge density fit basis and ex-
change-correlation fit basis are as described for case 2 of Table II. For all
three molecules, we used & = 10 and weight = R.

®Distances are in atomic units, angles in degrees.

°Reference 45.

LSD methods give reasonably accurate geometries and exci-
tation energy. The quality of the LSD wave function for O,
has been previously discussed.*

Finally, Table V shows the time for one SCF iteration
and the time needed to compute the gradient. The time re-
quired to compute the integrals is not shown as the program
used is inefficient. It is currently being rewritten and we ex-
pect that evaluation of integrals will roughly be twice as fast
as the evaluation of the gradient, on a scalar computer.*’ On
a vector computer, the new integral package has been writ-
ten and it runs at about 100 M flops per processor with 96%
of the code being multitasked.’® The essential thing to be.
seen in Table V is that, because we do not have to evaluate
numerous and costly four-index integrals in our method, the
computation of the gradient takes only a fraction of the time
needed in the SCF step. The ratio (SCF/gradient) may de-
crease a little as we go to larger systems but almost surely
never to the point where gradient evaluation would cost
more than SCF.

V. CONCLUSION

An expression has been derived for the analytic evalua-
tion of the gradient of the energy in the LCGTO-LSD meth-
od. The Hellmann-Feynman forces and those due to orbital
and charge density basis set incompleteness are calculated
exactly. To arrive at Eq. (24), we had to introduce an ap-
proximate relation which becomes exact in the limit of com-
plete xc basis and fitting grid. Tests on diatomic and triato-
mic molecules showed that this approximation had little
effect if reasonable care is taken and that a very accurate
gradient can be calculated with an economical choice of xc
basis and grid. We showed that Eq. (24) is valid not only

TABLE V. Comparative timings for SCF solution and gradient evaluation.”

Gradient
SCF (1 iter.)
CPU CPU 1/0
H,*® 2.4 2.4 37
CH® 34 6.9 9.0
co® 6.2 13.1 8.6
O,° 6.1 54 9.3

*The tests were done on a CYBER 170/855 and the time is given in seconds.

®We made no use of symmetry.

“We used C,, symmetry at the SCF step but made no use of symmetry for
gradient evaluation.
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within the LSD approximation, but for a large class of xc
energy functionals defined by Eqs. (3) and (5). This class
includes many improved functionals, as compared to LSD,
and all functionals that we could eventually implement with-
in the framework of our method. The comparative timings in
Table V show that our method for computing the gradient is
not only accurate but also very economical when implemen-
ted as outlined in Sec. I1I. Finally, the possibility of routinely
computing an accurate approximation to the LCGTO-LSD
energy gradient opens up the possibility of efficient searches
for extrema of potential-energy surfaces in complex systems
with this method.
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