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A basis set method for calculating the energy levels of weakly bound complexes is investigated.
The basis is constructed from distributed Gaussian functions in both the bending and
stretching coordinates. This produces a set of functions which are localized in the full internal
space and allows the construction of nondirect product basis sets which model the known
characteristics of the wave function. Low lying states which are restricted to a small portion of
space may be described by functions placed just in the well region. Highly excited states
usually occupy large regions of space but may still be efficiently described by modeling the
regions of greatly differing wave function curvature. Application to the van der Waals complex
Ar-CO, shows that such basis sets give a reduction of about a third in basis set size when
compared with a more conventional basis of Legendre functions for the monomer rotation and
distributed Gaussians for the stretching motion. Such savings should increase for larger, more

anisotropic systems.

I. INTRODUCTION

The spectroscopy of weakly bound complexes has the
potential to yield much information concerning intermole-
cular forces. In particular, systems containing polyatomic
molecules should be able to yield information which may not
at present be obtained from ab initio methods. Unfortunate-
ly, the problem of calculating bound states from a given trial
potential surface, and using these states to predict a spec-
trum, is not a simple one. Many methods, both accurate’-
and approximate,® have been proposed for accomplishing
this task but they have invariably proved adequate only for
small complexes. Despite this, much has been learnt from
the work on small systems* and the development of accurate
methods for larger clusters is eagerly awaited.

Methods for calculating energy levels of weakly bound
molecular complexes may generally be grouped into two cat-
egories, variational basis set approaches and coupled chan-
nel techniques.’ In the variational methods, basis functions
are used to describe all degrees of freedom. They have the
advantages that many bound states are obtained in one cal-
culation and the wave functions are given in a simple form
which may be used to calculate molecular properties. How-
ever, basis set techniques have traditionally suffered from
problems associated with selecting an adequate set of func-
tions. The difficulty arises from the floppy nature of the mo-
tions involved and the strong coupling between the modes.
Such dynamics are described only poorly by conventional
basis sets formed from direct products of single center ex-
pansions in each dimension.

The problem may be understood by considering an
atom-molecule system. As the atom moves round the mole-
cule, the equilibrium separation of the two components
changes. Hence, a single radial basis set is not optimum for
describing the van der Waals stretching motion for all orien-
tations of the monomer. Moreover, for many basis sets, this
problem is severe enough to make the calculation of accurate
energy levels intractable.
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One way to circumvent the difficulty is to use the cou-
pled-channel method which solves for the motion in the dis-
sociation coordinate numerically. This has led to the cou-
pled—channel method being considered of higher accuracy
than the basis set approaches. Unfortunately, the calcula-
tions involved are carried out at a fixed energy and must be
repeated several times in order to search for a given bound
state. Furthermore, the wave function is not usually ob-
tained directly and the calculation of matrix elements over
the eigenfunctions is usually not a simple task. Clearly, an
efficient and adaptable basis set method is preferable.

A single radial basis set which can be flexible enough to
describe the van der Waals stretching motion for all orienta-
tions of the molecule, is the distributed Gaussian basis of
Hamilton and Light.® The adaptability of this multicenter
basis is demonstrated by the fact that even when employed in
a direct product with diatom rotational functions it is capa-
ble of giving the whole spectrum of eigenvalues for an atom-
diatom system accurately. Such methods have recently met
with much success in calculating infrared spectra of rare
gas-hydrogen halide systems’ and are perhaps the best of the
conventional basis set methods.

However, such techniques still suffer from the ineffi-
ciencies inherent in using a direct product basis. The van der
Waals stretching motion is described by the same radial basis
for each orientation of the monomer. In particular, Gaus-
sians must be placed at small enough intermolecular dis-
tances to describe the distance of closest approach of the
atom to the molecule. For systems with a large wall anisotro-
py, this leads to Gaussians being placed well into the classi-
cally forbidden regions at other orientations.

In order to overcome such problems in atom-diatom
systems, Ba&i¢ and Light? transformed the basis set in the
angular coordinate to a pointwise representation (the
DVR). This allowed them to use a different basis of distrib-
uted Gaussians for each angle. Their simple and elegant pro-
cedure, which is essentially a way of constructing a nondir-
ect product basis, should be very efficient, especially for high
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lying states in which the diatom motion is well thought of as
a hindered rotation. Unfortunately, when more than one an-
gular motion is involved, the DVR is defined as the direct
product of the DVRs in the separate angles. Thus, although
one may still use a different radial basis for each point in the
angular space, the set of points available is unsatisfactorily
restrictive. The work has, however, shown the power of us-
ing nondirect product basis sets for systems where coupling
between the different motions is strong.

The general aim of using nondirect product basis sets is
to place basis set flux only in regions of the potential which
warrant it. Perhaps the most obvious way to do this is to
choose several appropriate points in the multidimensional
space and then expand in a basis set about them. The adapt-
ability of the basis then increases with the number of centers
chosen. Furthermore, the greater the number of expansion
centers, the lower the order of the basis functions required.
As a limiting case of this we may use just a single multidi-
mensional Gaussian at each point and use many points. This
is the approach we wish to investigate here. We note that, in
such a scheme, Gaussians are used in all internal coordinates
which is a significant departure from the conventional ap-
proach of using monomer rotational functions to describe
the bending motions.

Although we have mainly discussed atom—molecule
systems, a major objective is to consider strongly bound di-
meric complexes, which at present are not amenable to exact
quantum mechanical treatments. Such systems have a very
large coordinate space and this has led to much scepticism
regarding their possible treatment. However, only a small
part of the space is usually accessed by the wave function and
if this property can be exploited, a tractable method may
become available. This is the philosophy behind developing
alocalized basis set method. In this paper, we consider only a
small complex as this affords a simple demonstration of the
technique and allows us to compare it with the more conven-
tional basis set methods available. We choose the atom-lin-
ear molecule system Ar-CO, as it is fairly anisotropic and a
potential has recently been determined for the complex by
Hough and Howard.?

The methods used to construct the basis sets for Ar—
CO, are given in the next section. This is followed in Sec. 111
by a study of the efficiency of the basis, including compari-
sons with the more conventional approach. First, we investi-
gate the ability of the method to describe states below the
barrier to rotation of the CO, monomer within the complex,
then we consider the more highly excited and delocalized
states. The final part of Sec. III investigates the savings
which may be obtained by placing the Gaussians semiclassi-
cally and the method is used to calculate a list of bound states
for the system. In Sec. IV we discuss the results of the tests
and their implications towards tackling larger systems.

. METHOD

We consider a nonrotating (J = 0) complex comprised
of an atom weakly bound to a rigid linear molecule. Scatter-
ing coordinates® are used as they give a good description of
the system for all orientations of the monomer within the
complex. The vibrational Hamiltonian is then'®

_ _ﬁz___i[R 2 9
2uR? 3R R
~[-£ Be]_,_l_i[sinei] + V(R0),

2uR sin 8 40 a6
(n

where R is the distance from the atom to the center of mass of
the linear molecule, and @ is the angle between R and the
bond axis of the monomer. The quantities i and B, are the
collisional reduced mass and the rotational constant of the
monomer, respectively.

We expand the wavefunction as a linear combination of
functions which depend upon both R and 6,

N
V=3 .4, (R0). )
k=1

Each basis function ¢, is taken to be the product of a distrib-
uted Gaussian function in R with one in 6,

2 1/2
#(R,0) = [—] (42491
T
Xexp[ —AL(R—R)?—A7(6—6,)].(3)

Gaussian functions of other variables, e.g., cos 8, could have
been used. Our rationale for choosing 8 was that the nodes in
the semiclassical wave function are evenly spaced in § when
the potential is a constant. This indicates that Gaussians
placed evenly in 8 may provide a good initial description of
the wave function.

The functions (3) are generalized two-dimensional
Gaussians centered on the points (R,,6;). We may thus
distribute these functions over the two-dimensional surface
in a manner which forms an optimum basis. For systems of
several dimensions, however, it would be a considerable task
to optimize the positions and widths of all the functions indi-
vidually and, in practice, a balance between efficiency of ba-
sis and ease of implementation is required.

As a starting point, we may select a single basis set in R
and one in 6,

R 174
sy = | 22] " expl — 48R - R,
T
Q 174
¢f(0)=[ Trj] exp[ —47(6—6,)*], 4)
then form the direct product of the two sets,
N® NF
V=3 3 ¢;¢F(R)$(O). (5)

i=1j=1
This technique has the advantage that the preexponential
factors may be chosen simply by the prescription of Hamil-
ton and Light,’ with

A®=4C%/(R,—R))?
A:R: C}Q/(Ri+l _Ri—l)2!
AR, =4C3/(Rye — Ryn )% (6)

and similarly for 4 {. The quantities Cx and C, are left as
parameters which may be used to optimize the widths of the
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Gaussians. Due to their structure in the R, 6 coordinate sys-
tem, we say that these basis sets are formed on a rectangular
grid, and use this expression throughout the paper.

In this work, the rectangular grids we use are all con-
structed from equally spaced functions in R and 6. Even for
these basis sets, the ability to select the range of & covered
makes the basis more flexible than a conventional basis of
monomer rotational functions coupled in a direct product
with radial functions,

NR N9

=3 3 c;¢F(R)P;(cos0); N

i=1 j=0

P, is a Legendre polynomial of order j. However, the use of
the rectangular region is obviously not optimum and so we
seek a more efficient nondirect product basis. One way to do
this is to set up the basis (5) on a rectangular grid and then
discard all product functions for which V(R,,6;) > Va,»
where V. is some sufficiently large value of the potential.
Such a basis should be quite efficient for low lying states
since it models the restricted nature of the dynamics and the
nodes in the wavefunction are usually fairly evenly spaced.
The scheme also has the advantage that it is very simple to
implement.

For states close to the dissociation limit, the wave func-
tion oscillates rapidly in the well region but very slowly at
large R where the local kinetic energy is small. Basis sets
constructed via an equally spaced grid are thus very ineffi-
cient for such states. Broader, more sparsely distributed
Gaussians are required in R and, in addition, different basis
sets in & will be optimum at different values of the radial
coordinate. This requirement for change in the spacing of
functions in both R and 8 is inherently a problem for a non-
direct product basis and so may be efficiently treated by dis-
tributed Gaussians. The problem is discussed more in Sec.
III C and a method for choosing the positions and widths of
the Gaussians is presented in the Appendix.

Apart from varying the positions of the Gaussians, we
may further improve the efficiency of the basis by perform-
ing basis set contractions. This may be implemented by solv-
ing some model problem and then using the resulting eigen-
functions as the basis for the complete system. Such basis set
contractions may be used for both direct and nondirect prod-
uct basis sets. However, for larger systems possessing several
minima, it is difficult to construct a model problem which is
suitable for contracting direct product basis sets. It thus
seems inappropriate to consider the savings which these
techniques afford on the single minimum system which we
are studying here. We leave an investigation of this impor-
tant topic to future studies of systems with several minima.
We should mention, however, that a possible scheme for the
distributed Gaussian basis would be to contract the basis in
each well, and then put extra functions along the tunneling
paths between the minima.

Having selected the positions and preexponential fac-
tors which define the basis set, the calculation of eigenvalues
and eigenvectors proceeds by the variational principle. Alge-
briac eigenvalue equations are obtained in the conventional
manner by inserting the trial wave function (2) into the

Schrodinger equation, multiplying on the left by ¢, (R,9)
and integrating over the coordinate space. This yields

N
> ($u|H—E|ddc, =0 k'=1,.N, (8)
k=1
where the matrix element is given by

F f b (R,O)(H— E),(ROR*sin0dRdO  (9)
0 0

In this work we evaluate the integrals (9) by various quadra-
ture rules'! and make sure that the energy levels are con-
verged with respect to the quadrature for each basis set used.
This ensures that the calculations are variational and so pro-
vides a well accepted framework for comparing the different
basis sets. Future implementations should avoid the need to
evaluate the integrals (9) by using a suitable pointwise rep-
resentation such as the collocation method.'*"*

lll. TEST CASE Ar-CO,

We tested the relative efficiencies of the different basis
sets discussed in Sec. II by calculating bound states of the
van der Waals complex Ar-CO, on the AD-M potential of
Hough and Howard.® This surface is a least squares fit to
molecular beam electric resonance spectra, mixed second
virial coefficients and mean-square torque measurements.
The complex is T shaped at equilibrium
(R=3.446 A, 0=n/2) with the well depth being 186.8
cm ™. The linear geometry is a saddle point on the potential
with the barrier to rotation of CO, being 129.8 cm™—". For
more details on the surface and the exact functional form we
refer the reader to Hough and Howard’s paper.® In this work
we assume that the CO, molecule is rigid and has a rotational
constant of 0.3895 cm . Although this approximation may
be simply relaxed it is not usually a source of any significant
error in the bound states and it allows us to concentrate our
attention on the intermolecular dynamics.

The results of the investigation are mainly presented as
graphs of the log of the error in the energy levels against basis
set size, where the error is with respect to the converged
values, which are given in Table 1. As some nondirect prod-
uct basis sets are used, all basis set sizes refer to the total
number of functions rather than the number in a particular
degree of freedom. The plots are most conveniently read by
extrapolating the curves to the NV axis, which corresponds to
anerror of 0.001 cm—?, and reading off the basis set required
to achieve this accuracy. In all the calculations carried out
we use the symmetry of the CO, molecule to reduce the size
of the calculation involved. This is simply done by placing
the Gaussians symmetrically about 6 = 77/2 and using sym-
metrized linear combinations of them. We use s to denote the
functions which are symmetric with respect to the operation
0—m — 6, and a to denote those which are antisymmetric
with respect to this operation. The values of ¥ used in the
plots refer to the sizes of the symmetry reduced basis sets.

A. States below the barrier

In this subsection we consider levels which lie below the
barrier to internal rotation of the CO, monomer. For clarity,
we present the results for only three states, the ground

J. Chem. Phys., Vol. 80, No. 8, 15 April 1989

Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4366

Andrew C. Peet: Weakly bound compiexes

TABLEL Energy levels of the Ar-CO, complex (J = 0) on the AD-M potential of Hough and Howard (Ref.
8) as obtained by the basis set of Eq. (7). The zero of energy is the lowest dissociation limit of the complex and

all levels within 10 cm ™" of this are omitted.

Level Symmetry Energy (cm™") Level Symmetry Energy (cm™')
0 s — 156.071 24 a - 40.780
1 a - 139.308 25 a —40.194
2 Ky -- 124.537 26 a — 38.292
3 K - 115.582 27 s — 37.052
4 a - 111.327 28 s - 35.074
5 s -~ 99.572 29 $ — 33.866
6 a - 97.820 30 a — 31.563
7 a — 89.134 31 a —29.361
8 s - 85.865 32 K — 28.107
9 s — 79.929 33 a — 25923

10 s - 78.169 34 s — 25.801

11 a - 72.776 35 H —24.170

12 a - 71.612 36 a —23.588

13 5 — 64.818 37 a —23.03%

14 N — 62.465 38 s —22.358

15 a - 59.416 39 a — 19.380

16 a - 58.705 40 s — 18.962

barrier -~ 57.000 41 a — 17.581

17 s - 55.115 42 K —17.424

18 s - 53.624 43 5 — 14.569

19 a - 52.877 44 a — 14.390

20 a - 49.266 45 s — 12.720

21 s - 45,352 46 a - 12.098

22 s — 44917 47 s — 11.569

23 s -~ 40.900 48 a — 11.302

( — 156.071 cm™"), fifth excited ( —99.572 cm™"') and
tenth excited ( — 78.169 cm~!). Nearby levels were found
to have similar convergence properties. All basis sets used
were constructed with the same radial basis of 20 distributed
Gaussians (Cg =0.7) between R, =3.0 A and
R, = 5.0 A. These values were sufficient to converge the
energies of the lowest 7 levels of s symmetry. In Fig. 1(a) we
give the results obtained with a basis of Legendre polynomi-
als in cos 8 and distributed Gaussians in R [Eq. (7)]. This
provides us with a benchmark against which to compare the
results of various bagis sets formed from distributed Gaus-
sians in R and 6.

The states being considered are largely vibrational in
nature and so it is illuminating to obtain some absolute mea-
sure of the relative abilities of the two angular basis sets (Le-
gendre polynomials and distributed Gaussians) to describe
the motion. To accomplish this, we placed Gaussians
(C, = 0.75) evenly on a rectangular grid between the limits
Oand 7in 6,and R,,;, and R, in R. This region is the same
as that covered by the basis used to produce Fig. 1(a). The
results are shown in Fig. 1(b) and a comparison of the two
figures indicates that the basis sets have similar abilities to
describe the angular dynamics of this system. This may not
be the case for larger, more anisotropic systems where rota-
tional basis functions provide only a poor description of the
bending motion.

We now investigate the basis set reduction which may be
obtained by manipulating the distributed Gaussian basis.
For the moment let us keep the rectangular grid and just
optimize the range in & over which the Gaussian functions
are placed. Due to the considerable barrier to rotation of the

CO, monomer, the wave functions should be very small at
values of 8 close to 0 and 7 radians. A significant saving
should thus be obtained by reducing the range over which
the functions are distributed. Investigating this we found a
range of 0.7 7 (centered on & = 7/2) to be reasonably opti-
mum. We consider the same three states as before and in Fig,
1(c) give their convergence as the angular basis is increased.
Comparison with Fig. 1(b) shows that a reduction of about
20% in the basis set is afforded by placing the Gaussians over
this restricted range.

The use of a direct-product basis of Gaussiansin fand R
dictates that functions are placed well into the classically
forbidden region for values of & well away from equilibrium.
As discussed in Sec. II, this may be avoided by removing all
functions placed in regions where the potential is greater
than a given value, V,,,. Repeating the calculation of Fig.
1(c) with ¥, setto 100 cm ™' gave the results of Fig. 1(d).
From Figs. 1(a) and 1(d) we see that this simple procedure
for constructing a nondirect product basis of distributed
Gaussians gives a saving of 35% to 40% over a direct prod-
uct basis of monomer rotational functions coupled with dis-
tributed Gaussians.

B. States above the barrier

With the successes of the previous subsection, it is worth
considering whether distributed Gaussian basis sets placed
evenly on rectangular grids are capable of providing a com-
petitive description of levels above the barrier to rotation of
the CO,. Initial feelings might be that they would not. Such
states are best described as hindered rotations and should be
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FIG. 1. Plot of log;, of the ab-
solute error in the ground
(squares), fifth excited (cir-
cles) and tenth excited (trian-
gles) states of Ar-CO, against
total basis set size for (a) a di-
rect product basis of distribut-
ed Gaussians and monomer ro-
tational functions; (b) a basis
of Gaussians placed on a rec-
tangular grid with a range in 6
of m; (¢) a basis of Gaussians
placed on a rectangular grid
with a range in 8 of 0.77; and
(d) a nondirect product basis
of Gaussians formed by remov-
ing functions from basis “c” us-
ing the criterion that the poten-
tial should be greater than 100
cm ' at the center of the Gaus-
sian.

4367

more efficiently represented by monomer rotational func-
tions. Furthermore, the wave function explores the whole
range of & and so we may not place Gaussians over a reduced
interval in this coordinate. However, the removal of Gaus-
sians lying in regions where the potential is greater than ¥,
should still give a significant basis set reduction since the
hard wall shifts out considerably when the complex comes
close to being linear. The aim of this subsection is to investi-
gate the relative importance of these effects.

The basis of distributed Gaussian functions was con-
structed by placing functions evenly on a rectangular grid
between 3.0and 6.7 A in R, and — 0.05 and 1.05 7in 6. We
note that functions must be placed outside the range O to 7 to
ensure completeness of the basis within the physical range.
The values C, = 0.7 and C,; = 0.75 were used and all func-
tions placed where the potential is greater than 100 cm ™'
were removed. We placed 37 Gaussians in R and varied the
number of functions in € to obtain errors in the energy levels
with increasing basis. We present the error in the 28th excit-
ed energy level as a function of total basis set size in Fig. 2.
We also give the values obtained by a basis with rotational
functions in 6 and 37 Gaussians between 3.0 and 6.7 A in R.

From Fig. 2 we see that the basis of distributed Gaus-
siansin R and @ does indeed provide an accurate description
of the high lying states and is of virtually identical efficiency
to the basis which uses monomer rotational functions in the
angular coordinate. From this result we see that the advan-
tages conferred on the monomer rotational functions by
their more natural description of the motion are closely bal-
anced by the ability of the localized basis not to venture into
the classically forbidden region. Alternatively, we may say
that the monomer rotational functions provide the best de-
scription of the angular motion at large R while the distribut-
ed Gaussians are more efficient at small R. This is an inter-
esting viewpoint as it suggests that we should use the present
distributed Gaussian basis at small R but improve the angu-
lar basis at large R. We address this in the next subsection.

C. Distributing the Gaussians semiclassically

Up to this point we have constructed the distributed
Gaussian basis sets by initially placing the functions evenly
on a rectangular grid with equal spacing in both R and 6.
However, this is very inefficient for describing high lying

o FIG. 2. Plot of log,, of the ab-
o solute error in the 28th excit-
8 ed state against basis set size
for (squares) a basis of dis-
tributed Gaussians coupled
with monomer rotational
functions; (circles) distribut-
3 o0 ed Gaussians placed on a rec-
) tangular grid with a range in
8 of 1.17 and functions re-

o moved if V> 100cm~".

log ERROR
-1.0
L
o

200 300 400 500
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states since the oscillation of the wave function changes from
being rapid in the well region to very slow at large values of
the dissociation coordinate. It is thus appropriate to consider
schemes for placing the Gaussians more sparsely in the re-
gions of large R.

Of course, such tricks may be used to reduce the size of
any (direct or nondirect product) basis which uses distribut-
ed Gaussians in the radial coordinate. However, for a direct
product basis, we are restricted to constructing a single opti-
mized radial basis. To enable a fair comparison of the meth-
ods we first construct such a basis for use in a direct product
with monomer rotational functions. We use a simple pre-
scription described recently by Peet and Yang'* and ensure
that the basis is as small as possible while still giving con-
verged (to within 0.001 cm ) results for the 28th excited
state. This was found to be the case when 20 functions were
placed evenly in the inner region' (3.0 to 5.0 A) and the
outer limit was taken to be 6.7 A. Using this radial basis and
varying the number of monomer rotational functions gave
the errors presented in Fig. 3. Comparing the results with
those of Fig. 2 shows that this method of modeling the wave
function by the distributed Gaussians effects a saving of
about 20% in the basis.

For a basis of distributed Gaussians in R and @ we could
similarly construct a single efficient radial basis then com-
bine this with a set of functions evenly spaced in 6. This
would afford similar savings to those obtained by the direct
product basis but would not exploit the flexibility of the local
basis set to the full. A slightly better scheme would be to
define separate radial basis sets at each of the selected values
of 6. However, the savings from such an approach are likely
to be small since the potential is fairly isotropic at large val-
ues of R where the variable spacing is used. In order to effect
greater reductions in basis set size we must increase the spac-
ing in 6 as well as R at large values of the intermolecular
distance.

A simple method for choosing the positions in & may be
obtained by using the fact that the potential is relatively iso-
tropic at large R. It is therefore appropriate to space the
functions evenly in 8 but to choose a different spacing for
each value of R. A technique for accomplishing this is de-
scribed in detail in the Appendix. The basic idea is that the
shape of the generalized multidimensional Gaussians [Eq.
(3)] should be kept the same over all coordinate space but

1.0

© FIG. 3. Plot of log,, of the ab-

o solute value in the 28th excit-
=} ed state against total basis set
size for (squares) a basis of
monomer rotational func-
tions coupled with a largely
optimized basis of distributed
Gaussians in R; (circles) a
basis of distributed Gaus-
sians formed by the method
) presented in the Appendix.

0.0
I

~10

log ERROR

-3.0

150 250 350
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that the size should increase in regions where the wave func-
tion is slowly varying. Placing the Gaussians according to
the procedure given in the Appendix (with R, =5.0 A,
Ar =0.1A, Cy =0.75, and C, = 0.75) yielded the results
which are also presented in Fig. 3. We see that there is a
significant saving in the basis set (about 30% ) over the best
direct product method. From this example we clearly see the
advantages conferred by having a basis of functions localized
in the complete space.

IV. DISCUSSION

We have investigated the ability of distributed Gaussian
basis sets to describe the bound states of floppy molecules.
The approach is an extension of a method due to Light and
co-workers®® who used distributed Gaussians to describe
stretching coordinates. Here, we include the bending coordi-
nates in the same scheme, yielding basis functions which are
localized in the full internal coordinate space. This allows
the functions to be placed in a manner which forms an effi-
cient description of the wave function. However, in order to
take advantage of this property, a reliable technique for
choosing the basis set parameters must be available. In this
paper, we placed an emphasis on simple schemes for accom-
plishing this task, with the foresight that the technique will
eventually need to be used for systems of higher dimension-
ality.

For low lying states, we constructed basis sets by initial-
ly placing the functions on a rectangular grid and then dis-
carding the ones lying above a given value of the potential.
Tests on the Ar—CO, complex showed that a 30% to 40%
reduction in the basis set size was achieved compared with a
basis incorporating monomer rotational functions. More so-
phisticated schemes which allow a closer modeling of the
wavefunction may be used but none we considered were, in
our opinion, simple enough to be used in systems of many
dimensions.

Highly excited states cover large regions of coordinate
space and the wave function oscillates rapidly in some parts
but only very slowly in others. Thus, it is essential to use a
basis which more closely models the form of the wave func-
tion. We developed a straightforward technique for doing
this in the atom-rigid linear molecule case and the method
should be easily extended to larger systems. Tests on the Ar—
CO, complex showed that a 30% reduction in the basis set
size was achieved by this basis set when compared with a
basis incorporating monomer rotational functions.

Distributed Gaussians clearly form an efficient basis for
calculating the bound states of small, relatively anisotropic,
complexes such as Ar—CQO,. For systems of greater anisotro-
py the savings over a direct product basis of single center
expansions should increase greatly. The method thus holds
much promise for treating complexes such as HCl dimer and
H,O0 dimer for which no exact quantum mechanical treat-
ment is at present available.
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APPENDIX

In this Appendix we describe the method used to select
the positions of the distributed Gaussian functions used in
the basis sets of Sec. III C. The method is an extension of a
technique used recently for a radial basis of Gaussian func-
tions and is adapted from similar approaches due to Light
and co-workers.® We first define a one-dimensional radial
potential as a cut through the surface at a value of 8 corre-
sponding to the potential minimum. The motion on this 1D
cut is described approximately by the semiclassical wave
function,’

\[1 —_ eiS(R)/ﬁ (Al)
where S(R) is the classical action,
S(R) =fp(R)dr (A2)

with p(R) being the classical momentum p*(R) =2u
[E—V(R)].

From Egs. (A1) and (A2) we see that if a node exists in
Y at R, then one will exist at R, , , where

RH—I
#imr = J‘ V2ulE — V(R)]dR.
R;

Now, following the procedure of Ref. 14 we define an inner
region in which we place n Gaussians evenly and an outer
region in which the potential is varying slowly enough to
allow the approximation V(R ) = V(R,)to be used. Integrat-
ing Eq. (A3) explicitly in the outer region then allows R, __ ,
to be obtained in terms of R,. In practice we require more
than one Gaussian per node and the spacing obtained from
Eq. (A3) is multiplied by a constant. Selecting this constant
to give continuity of spacing at the boundary between the
two regions then yields the prescription

V2H[E—V(R,)]
 VRIE-TR)]

(A3)

i=n+1,.NE,

Ri+l =RI+A

(A4)

where R, is the final point of the inner region and A is the
spacing there. We take the energy £ tobe that of the dissocia-
tion limit.

We now consider the positioning of the functions in 8.
For values of R less than R, we use a global spacing A, in 8

and treat this as a parameter to converge. Along with the
distance A this then defines the positioning of the functions
in the inner region. Using the formulas

AR =Cy/0}; A]=Cy/A;,
then totally defines the basis in the inner region.
In the outer region, the {R,} are given by the values on
the 1D radial cut. We then associate with each R, a basis in 8
which is chosen as follows. The widths of the Gaussians in R
are given by the formula,

A?"'—'C%e/(Rmx —Ri—l)z (A6)
and we select the widths of the functions in §so as to keep the
shape of the multidimensional product (3) the same as in the
inner region, i.e., 4 ¢ is chosen to keep the ratio 4 2/4 ¥ con-
stant throughout space. The spacing H ¢ of the functions in &
is then easily obtained from the formula

H?=C,/\A?. (AT)

Ensuring that Gaussians lieat 6 = 7/2 + H /2 and exclud-
ing ones outside the range 1.05 to — 0.057, then totally de-
fines the basis.
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