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An efficient method is presented for evaluating two-electron Cartesian Gaussian integrals, and
their first derivatives with respect to nuclear coordinates. It is based on the recurrence relation
{RR) of Obara and Saika [J. Chem. Phys. 84, 3963 (1986) 1, and an additional new RR,
which are combined together in a general algorithm applicable to any angular momenta. This
algorithm exploits the fact that the new RR can be applied outside contraction loops. It is
shown, by floating point operation counts and comparative timings, to be generally superior to
existing methods, particularly for basis sets containing ¢ functions.

1. INTRODUCTION

In the popular ab initio Hartree-Fock (HF)' method
for studying molecular electronic structure, the rate-limiting
step is the generation and handling of the infamous two-
electron repulsion integrals (ERIs), and their derivatives.
This is because the number of ERIs increases as the fourth
power of the size of the problem (i.e., N*, where N is the
number of basis functions), while other computations in the
HF method rise as no more than N >. The ERIs are necessary
to form the matrix of the HF Hamiltonian (Fock matrix)
while derivatives are needed to obtain the gradient of the
energy with respect to nuclear coordinates.” For very large
HF calculations, there may not be enough disk space to store
the ERIS, and it is then necessary to recompute them when-
ever they are needed. For example, recomputing ERIs on
each iteration of the self-consistent field (SCF) procedure
constitutes the direct SCF method.® Analogously, recom-
puting ERIs on each cycle of the iterative coupled perturbed
HF procedure* is necessary to permit vary large harmonic
frequency calculations. The viability of these schemes, as
well as more conventional HF calculations, depends directly
on the availability of highly efficient methods for the evalua-
tion of ERIs and their derivatives.

Almost all efficient algorithms for ERI calculation are
based upon the use of Gaussian basis functions, originally
suggested by Boys.> A number of comprehensive reviews on
methods for integral evaluation over Gaussian basis func-
tions have appeared,®® covering developments in the field
prior to 1986, when a particularly promising method was
reported by Obara and Saika (OS).” OS derived a recurrence
relation (RR) which relates a given ERI to other integrals,
both true ERIs and “auxiliary” ERIs, of lower angular mo-
mentum (this RR is also implicit'® in the earlier method of
Schlegel'! for derivative integrals). By repeated application
of the RR, an ERI may be reduced to integrals involving
only zero angular momentum s functions, which can be
readily evaluated by standard methods.” The RR can often
be applied in many different sequences, particularly if d
functions or higher are involved, and it is in principle a tree-
search problem to find the most efficient sequence for a given
ERI type.

The algorithm used by OS to apply the RR, although
not precisely specified in their paper, was fractionally faster
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than the Pople-Hehre (PH) method'? for the test cases re-
ported. The PH method had hitherto been considered most
efficient for ERIs involving only s and p functions. The OS
method was more than four times faster than an implemen-
tation'® of the Rys polynomial method’* for examples in-
volving s and p functions, and was about three times faster
for basis sets containing s, p, and d functions, on the comput-
er they used. This latter result is especially significant since
the Rys method has generally been the method of choice for
ERIs involving d or f functions. For example, in the GAUS-
SIAN 86 system of programs,’” it is used for this purpose in
conjunction with the PH method for s and p functions. Final-
ly, for first derivatives of ERIs, the OS method was again
several times faster than a Rys polynomial based alterna-
tive,’” although the basis set used in their example involved
just s and p functions, for which the method of Schlegel'' is
also several times faster than the Rys method.'®

These encouraging results provide the main motivation
for this work, which is an alternative implementation of the
OS RR, based upon a simple and general algorithm. In Sec.
11, the necessary theory is given, consisting of a review of the
OS RR, and the introduction of a second RR which is also
crucial to our approach. The proposed algorithm for ERI
evaluation is described in detail in Sec. I1I, followed by the
extensions necessary to obtain first derivatives in Sec. IV,
Finally, the performance of the new method for integrals
(Sec. V) and derivatives (Sec. V1) is assessed by floating
point operation counts and timing comparisons with exist-
ing GAUSSIAN 86 codes.

{Il. RECURRENCE RELATIONS FOR ERI EVALUATION

An unnormalized primitive Cartesian Gaussian func-
tion centered at A with exponent a, is

Po (1) = (x — A" (y—A4,)(z— 4"
Xexp[ — a, (r — A)?], )
where
a=(a,a,4,) (2)

is a set of three integers, the sum of which is the angular
momentum of the Gaussian. Thus a p, function would be
characterized by the integers (1,0,0), for example. The first
subscript in g, will be used to symbolize A and a, while the
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second refers to the exponent a, , and will be dropped when
the index is not explicitly of interest.

The contracted basis functions ¢, used in molecular cal-
culations'” are fixed linear combinations of primitive Gaus-
sians @, , with all primitives having the same angular mo-
mentum indices a, and the same center A, but different
exponents a; :

K
¢a(r):zDuk¢)ak(r)' (3)
k

The length of the linear combination K is called the degree of
contraction, and the D,, are the contraction coefficients.
The use of contracted functions is primarily to allow the
basis functions to resemble atomic orbitals. “Shells” of basis
functions have common exponents, and thus a p shell con-
sists of a p,, p,, and a p, function, each having identical
primitive exponents and a common center. In this case, the
contraction coefficients must also be the same for each p
function to ensure an isotropic basis. Finally, for computa-
tional efficiency, sp shells are often defined, in which an s
function shares exponents and centers with a p shell, but can
be contracted differently.

[(a+1,)blcd] ™ =

+i([(a—1,)b1cd]<m>—
2 ’
+b—([a(b——1-)|cd](""—
2L '
—  TJabl(c—1,)d]"" " +
2(§+ ) [abl |
where i is one of x, y, z and
= (8,0,,0:.), (7
S=a+p, (8)
ad; + BB,
=t T 9)
a+pf

7 and Q, are the analogs of £ and P,, constructed from ¢, and
@, instead of ¢, and ¢, . Finally,

W, = w i (10)

£+

The meaning of the superscript index m is that integrals with
m = 0 are true ERIs of the form (4), while integrals with
m >0 are the auxiliary integrals defined by OS. These are
necessary to obtain true ERIs via Eq. (6). The recurrence
relation (6) expresses primitive ERIs of higher angular mo-
mentum as a linear combination of integrals of lower angular
momentum, and for this reason we shall refer to it as the
vertical recurrence relation (VRR).

It should be noted that the constants involved in the
VRR, and defined in Eqs. (7)-(10), are all independent of
the angular momenta of the primitive Gaussians. Therefore,

A primitive ERI over four primitive unnormalized
Gaussians is a six-dimensional integral, which for brevity
will be denoted by [a, b, ¢, d, ]:

]= f f Par (F @y (1)

Xry 1¢7(‘m (r2)@g, (ry)drdr,. (4)

[akb[ |cm dn

If the subscripts are not of interest, they will be suppressed,
leaving the notation for a primitive ERI as [abjcd]. A con-
tracted ERI, (ab|cd), will be distinguished from primitive
ERIs by using round instead of square brackets. From Eq.
(3), the connection between them is

K L M N
(ab|Cd) = z 2 Z zDakalDrden [akb[|cmdn]'
k [ m n
(5)

We shall not rederive the RR for ERIs obtained by OSin
Ref. 9, but rather just present the key result, which is closely
related to Schlegel’s derivative theory.'™'" It is

(P, — A4,;)[abled]"™ + (W, — P,)[abled] "+ "

/. [(a — l,-)blcd] (m+ 1))
n

1 [a(b—li)|cd]""*‘))
7

——[able(d —1,)]"*+ ", (6)
2(§+n) [ab) ]

[

the number of such constants does not increase with the total
angular momentum of the ERI:

3
L=Y (a;+b +c +d) (11)

as pointed out by OS. The other quantities necessary to apply
the VRR, are the s-type integrals

[ss|ss]"™ = (& +n) " '"PK zs K pF, (T), (12)
where
T=_51_ —(P-Q) (13)
5+
1
F (T =f t*mexp( — Tt?)dt, (14)
0

S/4
K,,=2"7T7__ ep[ a (15)
[94

a+f +3

and K, is defined similarly. There are many efficient meth-
ods for evaluating the F,, (7),%° and we use an approach
similar to that described by 0S8.°

It is possible to obtain another RR from Eq. (6) by
subtracting the VRR for [a(b + 1,)]ed]"™:
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[a(b+1,)|cd]” = (P, — B,)[ablcd]“” + (W, — P,) [abled] " D

a.
+_’( (a—1,)bjed]) " — T
2% [ fed] f+m

Lo
2

+___‘_~
2(+7)

from that for [ (a + 1,)bled] ™, Eq. (6), which is in terms
of the same integrals. This yields

[a(b+1,)|ed] ™ = [(a+1,)bled] "™

+ (4, — B;)[ab|cd] ™ (17

which is a new recurrence relation expressing a given inte-
gral in terms of another integral of the same total angular
momentum, but with a unit of angular momentum shifted
from the first to the second position, plus a second integral of
lower angular momentum. We shall therefore call Eq. (17)
the horizontal recurrence relation (HRR), to stress its use in
shifting angular momentum from position 1 to 2 (or 3to 4).

An important feature of the HRR [Eq. (17)] is that the
constant in the second term involves only the basis function
centers. As a result, the HRR can be applied to contracted
integrals and written as

(a(b+1,)|ed) = ((a + 1,)bled) + (4, — B,) (abcd).
(13)

In this equation, the same contraction coefficients must be
used for the pairs (a,a + 1;) and (b,b + 1,) and forcand d
on both sides [a is used here as shorthand for the contracted
function ¢,, defined by Eq. (3)].

Ill. ALGORITHM FOR ERI EVALUATION USING
RECURRENCE RELATIONS

The problem at this stage is to develop an algorithm that
uses the VRR and the HRR to obtain any desired contracted
ERI with a minimum number of floating point operations.
Actually, since basis functions in the same shell have much
in common, it will be more efficient to produce all ERIs
associated with a given shell quartet at once. If the four shells
all contain only functions of a single angular momentum, we
shall refer to the set of target ERIs as a class. This class will
be denoted as (ab |cd) where a,b,c,d will now refer to the
angular momentum of each shell. For example, four p shells
will give rise to the class (11]11), or ( pp| pp). If any of the
shells involve multiple angular momenta (such as sp shells),
then the shell quartet will lead to a number of classes. For
example, the shell quartet (sp,sp,s,s) will require the four
classes (ss|ss), ( ps|ss), (sp|ss), and ( pp|ss), all being
formed from a common set of primitives.

Explicitly minimizing the work needed to form a class of
ERIs is a complicated tree-search problem, involving the
investigation of all possible reduction sequences. We shall
not attempt this, but rather seek an efficient general proce-
dure that is simple and fast enough to include as a logic
subroutine in an ERI program. Full optimization of the re-

[abl(c —1)d]" P 4

[(a—1,)bled])"* “)

([a(b - li)lcd](m) - E_Z_ [a(b _ li){cd](m+ 1))
i

—ﬂ“) [abje(d —1,) ]+ (16)
7

2(6+

I

duction sequence is an interesting problem for future investi-
gation.

In a general algorithm, it is important to exploit the fact
that the HRR can be applied to contracted integrals, rather
than individual primitives. This use of the HRR will not be
costly, since in practical calculations with even moderate
degrees of contraction, the effort to form and contract the
primitive ERIs will dominate any subsequent manipula-
tions. Perhaps the simplest such use of the HRR, which
shifts angular momentum from position 1 to 2, or 3 to 4,
would be to convert contracted integrals of the form
({a + b)0)(c + d)0) to (ab jed). The initial problem would
then be to form the ((a + b)0{(c + d)0) integrals using the
VRR.

Does this use of the HRR reduce the work that must be
done by the VRR? Yes, since if the angular momentum of
positions 2 and 4 is always zero, then the number of terms in
the VRR [Eq. (6)] is reduced from a maximum of 8 to a
maximum of 5. Additionally and more importantly, far few-
er primitive quantities must be calculated than if the VRR
were used alone. For example, 36 primitive [ds|ds] will be
contracted to 36 (ds|ds) and then converted by the HRR
into 81 ( pp| pr) ERIs.

Let us now summarize the proposed algorithm for eval-
uating ERIs for a shell quartet involving only a single class
(ab |cd) [e.g., ( pp| pp)]. Three main steps are required. The
order in which they are listed below is the order of execution
in the logic subroutine, which is beginning from (ab |cd), and
working backwards. This makes it straightforward to deter-
mine the required intermediate integral classes. For ERI
production on the other hand, the steps are performed in the
reverse order.

HRR step: Relate (ab |cd) via the HRR to classes of the
form (e 0] f0), by shifting angular momentum from position
2 to 1, and 4 to 3. From inspection of the HRR (18), it is
evident that generally there will be (b + 1)(d + 1) such
classes, ranging from ((a+ )0|{(c +d)0) down to
(a0{c0).

Contraction step: The set of contracted classes (€0} f0)
must be obtained from the corresponding set of primitive
classes [e0] f0] via Eq. (5). The contraction coefficients
used are of course those appropriate for the target class
(ab |cd).

VRR step: Each primitive class [€0] f0], needed for the
contraction step, is reduced to lower classes by the VRR.
The resulting lower classes are in turn reduced by the VRR,
until no further reduction is possible. This process termin-
ates with the [ss]ss]"™ integrals, for which m will range
from 0 to a+ b + ¢ + d. The result is a list of primitive
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classes, each with an associated range of m values, and each
(except [ss|ss]™) being given in terms of other classes of
lower angular momentum in the list.

As a simple example of the use of this algorithm, Table I
symbolically illustrates the sequence of operations associat-
ed with processing (dd |ss) integrals. The sequence is written
in the logic order, beginning from the desired class (ab |cd)
and working back through the HRR, contraction, and VRR
steps. This leads to lists of intermediate contracted classes,
the classes which are actually contracted, and finally the
primitive classes, concluding with [ss|ss]‘™. For produc-
tion, the order is reversed, and the [ss|ss]‘™ ERIs are first
explicitly calculated, which allows all other classes in the
primitive list to be constructed in order of increasing angular
momentum via the VRR. After contraction, the HRR is ap-
plied to eventually yield the target (ab [cd) ERIs.

An issue that has not yet been addressed is the question
of whether to reduce index 1 or index 3 of [e0] 0] when
applying the VRR. The choice is made on the basis of two
tests:

(1) Reduction is at the position which introduces fewest
additional integrals at the next lowest angular momentum
level.

(2) If (1) is inconclusive, reduction is at the position
which involves fewest terms in the VRR.

For example, given a class [ds| ps]‘? to reduce, two
possible situations, and the resulting actions, are:

(a) [ ps| ps]‘© is already in the list, and [ds| ps]'® is
not. Reduction at position 1 leads to [ ps| ps], and is pre-
ferred by test (1). The reverse situation would lead to reduc-
tion at position 3.

(b) Both lower classes [ds|ss]>" and { ps| ps]®" are
already in the list. Test (1) fails, and test (2) leads to reduc-
tion at position 3, since three rather than five terms then
occur in the VRR. In the case of the HRR, which is outside
the contraction loops, and hence not so important, the
fourth index is (by arbitrary convention) stepped up before
the second.

The generalization of this algorithm to shell quartets

TABLEI. Generation of (dd |ss) integrals from [ss|ss] integrals. The func-
tional notation VRR( ) and HRR( ) indicates applying the VRR and the
HRR with the required lower ERI classes listed as arguments. All contract-
ed classes have m = 0.

Target class: (dd |ss)

Applying the horizontal recurrence relation:
(dd |ss) = HRR{( fp|ss), (dp|ss)}
( fplss) = HRR{(gs|ss), ( f5|ss)}
(dp|ss) = HRR{( f5|ss), (ds|ss)}

Classes to be formed by contraction of primitive integrals:
(gs|ss), ( f3]ss), (ds|ss)

Applying the vertical recurrence relation:
[gs|ss]? = VRR{[ fslss]OV, [ds|ss]**"}
[ fs]ss]'*Y = VRRA[ds|ss]'?, [ ps|ss] P}
[ds]ss]'®?" = VRR{[ pslss] >, [ss|ss] >}
[ psiss]®* = VRR{[ss]ss]**}
[ss]s51* (to be formed directly)

involving multiple classes is as follows. The HRR and con-
traction steps are executed separately for each class using
appropriate contraction coefficients. In the process, a full list
of required primitive classes [e0| f0] is accumulated, just as
it was for a single class. The VRR step is then the reduction
of this full set of primitives to the s-type integrals [ Eq. (12)].

IV. EXTENSION TO DERIVATIVE EVALUATION

Since the derivative of a primitive Gaussian ¢, [written
below as (a) ] is a linear combination of a higher and a lower
Gaussian:
2 )y =2aa+1)—aa—1,), (19)
O0A;
it follows that the first derivative of a primitive ERI is also a
linear combination of higher and lower ERIs:

9
a4,

i

[abled] = 2a[(a+ 1,)bled] —a,[(a—1,)bled].

(20)

Accordingly, the algorithm outlined above can be used to
generate first derivatives, if the necessary additional target
integrals are generated. In the context of the HF method, the
derivatives will be summed directly into Cartesian forces.’

The number of additional target classes can be reduced
by translational invariance'®:

d d d
—— (abled —— (abjed —— (ab|cd
8A,-(a !C)+aB,_(a IC)+BC (ab|cd)

i

d

+ ) (abjed) = 0. (21)
In the worst case of an ERI with each of the four basic func-
tions on a different center, only three rather than four
centers must be differentiated, with the derivative at the
fourth center being the negative sum of the other three. If
two or more of the centers are common, then Eq. (21) will
involve fewer terms, and one just has to differentiate with
respect to the two or fewer unique centers. So, at most six
additional target classes will be necessary to generate the
derivatives of a given class. There are three extra classes
where the angular momentum of each center being differen-
tiated has been incremented, and three where it has been
decremented (if this is possible).

Extension of the algorithm to allow derivative evalua-
tion also requires a modification of the contraction step,
since the higher integral in the first term of Eq. (20) is scaled
by twice the primitive exponent . Thus, all primitive classes
that are necessary to yield the higher class via the HRR must
be contracted using contraction coefficients scaled by the
appropriate primitive exponent. The HRR is then applied,
taking care to use appropriately contracted input classes.
Finally, in an additional fourth step, the derivatives of con-
tracted ERIs are formed by the contracted analog of Eq.
(20):

—a% (abled) = ((a+ 1,)bled), —a,((a— 1,)bjcd),

(22)

where the subscript @ on the higher integral class indicates
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that it has been formed with contraction coefficients scaled
by twice the primitive exponents of the functions on center
A.

Since our recently developed method for simultaneous
optimization of HF wave function and geometry'® requires
both ERIs and their first derivatives on each cycle, we shall
focus on computing them together, rather than separately
which can be easily done also. As an example, Table II shows
the classes of integrals necessary to evaluate both integrals
and derivatives of ( pp|ss) ERISs, for the case of four distinct
centers.

In addition to the substantial savings arising due to
translational invariance, further economies are possible
when there are common centers. The HRR [Eq. (18)] re-
duces to an equality if A and B are coincident centers, and
similarly the first term of the VRR [Eq. (6)] is zero. As
integrals involving four distinct centers do not predominate
until the molecular size is quite large (typically over 11
atoms®?), it is very worthwhile to exploit these simplifica-
tions.

In the special case of four uncontracted shells, the work
associated with processing the HRR is significant, and the
algorithm outlined thus far is not optimal. It can be signifi-
cantly improved, particularly for derivative evaluation and
when constrained sp shells are present, if the HRR is applied
before contraction rather than after, due to the fact that few-
er intermediate classes arise in the HRR stage. In the context
of Table II, obtaining derivatives of ( pp|ss) ERIs requires
the formation of (dp|ss), and ( pd |ss); ERI classes, which
are each generated from the same primitive quantities, but
using different sets of contraction coefficients. Contracting
after applying the HRR therefore allows us to exploit this
commonality and reduce the total work involved.

TABLE II. Generation of ( pp|ss) ERIs and first derivatives. ERIs with
subscript @, f3, and y are formed with exponent-scaled contraction coeffi-
cients from centers 1, 2, and 3, respectively.

Target classes: ( pplss), (dplss),,. (sp]ss),
(pd |55),5. (pslss). (ppl o),

Applying the horizontal recurrence relation:
( pd |ss),; = HRR{(dplss);, ( pplss),}
(dp|ss),, = HRR{( f5|s5),., (ds|ss) .}
(dpiss); = HRR{( f|s5) 5, (dslss) ;)

( pp| ps), = HRR{(ds| ps).., ( ps| ps) .}
( pplss) = HRR{(ds|ss), ( ps|ss)}

( ppiss), = HRR{(ds|ss),, ( ps|ss);}
(sp|ss) = HRR{( ps|ss), (ss|ss)}

Classes to be formed by contraction of primitive integrals:
(f5lss).., (fslss),, (ds| ps),, (ds|ss), (ds|ss) .,
(ds|ss)y;, ( ps| ps) .., ( psiss), ( ps|ss),, (ss|ss)

Applying the vertical recurrence relation:
[ ﬁlssl 0 _ VRR{[dS‘SS]”“ »‘ [ pS\JS] .l »}
[ds] ps]'™ = VRR{[dslss]""" [ ps'ss]'V}

[dsiss]™" = VRRL[ ps|ss]'™?, [ss]ss]**'}
[ psl ps]'” = VRR{[ ps|ss]'*", [ss|ss]'"'}
[ ps|ss]™?" = VRR{ssjss] "}

[ss|s51'"*" (to be formed directly)

V. PERFORMANCE ASSESSMENT: ERI EVALUATION

A floating point operation (FLOP) count is simply the
sum of the number of floating point adds, subtracts, multi-
plies, and divides required for a particular problem. FLOP
counts are a useful theoretical measure of the efficiency of
ERI algorithms, since the results are somewhat independent
of the details of implementation. Then, to assess the effi-
ciency of implementation, the amount of computer time
(CPU time) must be examined.

FLOP counts are available in the literature for several
ERI algorithms, with the work of Hegarty and van der
Velde® being particularly valuable in this regard. They re-
ported FLOP counts for the generation of (ss|ss), { pp| pp),
(dd |dd), and (fF|fD integral classes by three separate
methods. The two most efficient were the Saunders algo-
rithm’ (a variant of the Rys approach'*) and the McMur-
chie-Davidson (MD) method,?! which they implemented.
The FLOP counts are expressed as

N=xK*+yK? +¢, (23)

where each of the four shells is assumed to have degree of
contraction K.

Table III collects the coefficients x, y, z for the Saunders
and MD methods, and our algorithm (henceforth referred
to as HGP), for the ( pp| pp), (sp,spisp,sp) [abbreviated
(sp)*], (dd |dd),and ( | ff) cases. The trivial (ss|ss) caseis
not shown. For ( pp| pp) and (sp)*, the PH method'? is also
included, although it treats p shells as sp, and therefore cal-
culates extra integrals in the ( pp| pp) case. The FLOP
counts assume that each of the four shells is on a distinct
center. Significant reductions occur in the HGP (see Sec.
1V) and MD methods if centers are common, but not in the
Saunders method.

If the degree of contraction X is large, we can focus just
on the K * coefficient in Table I1I in comparing the different
methods. For ( pp| pp) and (sp),* the PH method is then the
most efficient, which is expected since this is the type of

TABLE 111 Floating point operation counts for ERI formation."" The
coefficients x, y. and z refer to Eq. (23) of the text.

Class Coeff PH Saunders MD HGP
Cpplpp) x (XK*h) 220 1 800 1100 920
yIXK?) 2300 50 600 30
z(XK" 4000 0 0 330
(sp)* x(x K" 220 3600 1500 1400
y (XK 2300 50 1700 30
z(XK") 4000 0 0 800
(dd|dd) x(xXK™) 30 900 27 300 14 600
y(xXK?) 220 24 000 30
z(XK" 0 0 11300
(FIH  x (<K 276000 342000 108000
y(xXK?) 600 383000 30
z(xK" 0 0 135000

*The MD and Saunders results are from Ref. 8(a), except for the (sp)* case,
which we treated using the loop structures of Ref. 8.

" The floating point operation counts include one multiply and one addition
for contracting each primitive integral. In Ref. 8(a), negative z coefficients
appear because it 1s not necessary to do this with the firs set of primitives.

“Three significant figures are generally given. Smaller numbers, such as
those for ( pp| pp), do not have this precision, however.
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problem for which it was designed.'> The HGP method is
slightly superior to the MD method, and significantly better
than the Saunders approach. For (dd |dd) and ( ff'| /), the
HGP method is far superior to either the Saunders or the
MD method, reflecting the benefits of applying the HRR
outside the contraction loops.

If the degree of contraction is low, then the work pro-
portional to K ?and 1 ( y and z coefficients) becomes impor-
tant also. For all three examples, the HGP method requires
fewer FLOPS than either the MD or Saunders methods, for
any degree of contraction. The Rys-based approaches such
as the Saunders method, had been fastest for ERIs involving
d or f functions, until the work of OS.® These results suggest
the HGP method will be considerably better than the Rys
family of methods, at least up to the level of f functions. For s
and p functions, the HGP method will be competitive with
the PH method for low degrees of contraction (K between 1
and 2), but not for higher K. However, the basis of the PH
method (use of special axes) is also applicable to our meth-
od, and we are currently investigating this idea.

One very important question which has not yet been
addressed, is how the HGP method compares with the origi-
nal OS method.” As OS did not report FLOP counts, and did
not fully specify their algorithm, we can only make a rough
comparison. The difference between the OS and HGP ap-
proaches is that we use the HRR outside the contraction
loops, to reduce the K * work (VRR and contraction steps).
Therefore there will be little difference for ( pp| pp) and
(sp)*, since most of the work in our algorithm is still in the
VRR and contraction steps. For (dd |dd) and ( ff| ), the
HRR step becomes increasingly important (reflected in Ta-
ble III by the proportionately larger sizes of the z coeffi-
cients), and significant savings should be achieved. We esti-
mate the HGP method to require about 25% fewer FLOPS
for uncontracted (dd |dd), and 35% fewer FLOPS for
( 7| ), relative to the use of the VRR alone. For contracted
shell quartets, the difference is of course much greater.

Some details of the computer implementation of the
HGP method are given in the Appendix. Our program can
calculate the ERIs and return a Fock matrix,” or compute
first derivatives of ERIs to yield Cartesian forces,” or do both
atonce.'” It can currently handles, p, and d functions; exten-
sion to f* functions is readily possible. Versions are running
on Vax and Alliant computers, at present. For timing pur-
poses, we shall report results from the MicroVax 11, a scalar
computer, and the Alliant FX-8, which consists of up to
eight loosely coupled vector processors (vector length 32),
sharing common main memory. The FX-8 timings given be-
low are based on the use of a single processor, although we
are currently developing code suitable for multiple proces-
sors. Within GAUSSIAN 86, scalar versions of the PH and Rys
methods are available, as well as a vector-oriented version??
of the Rys method for direct SCF. The latter can be com-
pared directly with our program; comparison with the first
two codes is complicated by the fact that they do not form a
Fock matrix. However, this is significant only when the de-
gree of contraction is low.

The first set of timings in Table IV are for four jobs
involving just (ss|ss), ( pp| pp), (sp)*, and (dd |dd) ERIs,

TABLE IV. Timings for ERI evaluation in CPU seconds. The bracketed
numbers are normalized relative to the HGP method. See the text for a
precise description of the calculations.

ERI K Machine PH* s-Rys" v-Rys* HGP
puVax 11 328 1296 1137 377
(0.9) (3.4) (3.0) (1.0)
(sslss) 4
FX-8 52 175 78 29
(1.8) (6.1) (2.7) (1.0)
puVax 11 419 989 2097 604
(0.7) (1.6) (3.5) (1.0)
(pplpp) 2
FX-8 81 141 114 36
(2.2) (3.9) (3.2) (1.0)
puVax I1 494 2047 3492 895
(0.6) (2.3) (3.9) (1.0)
(sp)? 2
FX-8 95 256 214 60
(1.6) (4.3) (3.6) (1.0)
uVax I1 1778 2891 1515
(1.2) (1.9) (1.O)
(dd|dd) 1
FX-8 264 361 81
(3.3 4.5) (1.0)

“The Pople-Hehre method; Link 311 of GAUSSIAN so.
" A scalar version of the Rys method: Link 314 of GAUSSIAN s6.
“ A vector version of the Rys method.

respectively, to allow some comparison with the FLOP
counts discussed above. Each case consists of 12 atoms in a
bicubic arrangement, with a single shell of basis functions on
each atom, using a density matrix constructed by diagonaliz-
ing the core Hamiltonian. In the (ssss) case, the atoms are
hydrogens, with an STO-4G 1sshell** (K = 4) on each, and
an edge length of 0.8 A.. For ( ppl pp) [and (sp)?], the atoms
are carbons, with an edge length of 1.4 A. On each carbon is a
2p [2sp for (sp)?] shell with the exponents and contraction
coefficients taken from the STQO-2G basis (K = 2). The
(dd |dd) geometry is identical to ( pp| pp), with a single un-
contracted d shell (K = 1) of exponent 0.8 on each atom.

The timings of Table IV are generally consistent with
the FLOP counts presented above, but naturally show a
strong dependence on implementation, with the vector codes
performing much better on the FX-8. For the (ss|ss) case,
the PH and HGP methods require almost identical numbers
of FLOPS, the timing differences reflecting the more vector
oriented code of the HGP method. The PH method is slight-
ly faster than the HGP method on the scalar MicroVax for
(ppl pp), reflecting its efficient treatment of contracted
shells. This edge increases a little for (sp)?, since the PH
method is more efficient for sp shells. However, these results
are reversed on the FX-8. Relative to both implementations
of the Rys method, the HGP method is significantly superior
for all three examples [note in the (dd |dd) case that Fock
matrix formation is over 30% of the HGP time, which
should be deducted when comparing with the scalar Rys
code] as expected on the basis of FLOP counts.

Table V is a comparison of the various methods of ER1
evaluation for calculations on the trans two-pentenal mole-
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TABLE V. Timings in CPU seconds, for ERI evaluation on the two-pen-
tenal molecule. Bracketed numbers are normalized relative to the HGP
method.

Basis Machine PH" s-Rys* v-Rys? HGP
uVax 11 897 5635 9 561 1823
(0.5) (3.6) (5.2) (1.0)
STO-3G
FX-8 134 773 546 157
(0.9) 4.9) 3.5) (1.0)
uVax I1 2428 6413 8775 2 157
(1.1 (3.0) 4.1) (1.0)
321G
FX-8 437 992 697 192
(2.3) (5.2) (3.6) (1.0)
puVax 11 29 245 45004 83763 14 963
(2.0) (3.0) (5.6) (1.0)
6-31G*
FX-8 4167 6561 6 009 1148
(3.6) (5.7) (5.2) (1.0)

" The Pople-Hehre method; Link 311 of GAUSSIAN 6.

" The PH timing for 6-31G* uses the PH method for ERIs containing just s
and p functions, and the scalar Rys method for ERIs containing d func-
tions.

¢ A scalar version of the Rys method; Link 314 of GAUSSIAN s6.

9 A vector version of the Rys method.

cule (CH,CH,CH =— CHCHO, methyl gauche and CO syn
to double bond, HF/6-31G* optimized geometry) using
three different basis sets. Two contain just s and p functions
of which the first is the minimal STO-3G basis,** in which
each AO is represented by a single basis function composed
of three primitives. The split valence 3-21G basis™ treats the
core similarly but has two basis functions per valence AO: an
inner function composed of two primitives, and an uncon-
tracted outer function. The third basis is 6-31G*, which is
constructed analogously to the 3-21G basis, but with six pri-
mitives per core basis function, and three for the inner va-
lence function. Additionally, a set of six Cartesian d func-
tions is added to elements heavier than helium.? All three of
these basis sets use sp rather then pure p shells. For the 6-
31G* job, the PH entry in Table V corresponds to using the
PH method for ERIs which do not involve d functions, and
the scalar Rys method for those that do. Again, the PH and
scalar Rys times exclude Fock matrix formation, unlike the
HGP and vector Rys methods.

On the scalar MicroVax, the PH method is superior to
the HGP method for the highly contracted (K = 3) STO-
3G basis. However, for the less contracted 3-21G basis the
HGP method is faster despite including Fock matrix forma-
tion (25% of the total). On the Alliant, the vectorized HGP
implementation gives it a further advantage. The two Rys
codes are not very competitive. The HGP method is several
times faster than either code, on either machine. It is also two
and over three times as fast as the scalar PH/Rys combina-
tion (which is the best GAUSSIAN 86 d function method) for
the 6-31* job, on the MicroVax and FX-8, respectively. Un-
like OS,” we do not observe lower speedups relative to the
Rys method for basis sets containing d functions. This may
indirectly confirm that the HGP method is more efficient
than the OS approach for ERIs over d functions.

VI. PERFORMANCE ASSESSMENT: DERIVATIVE
EVALUATION

Relatively few FLOP counts for derivative evaluation
are available in the literature. Results are available®® for the
method of Schlegel,'' which applies to s and p functions. We
have also made some estimates for a Rys-polynomial meth-
od.'® These are collected in Table VI, along with results for
the HGP method for first derivatives of ( pp| pp), (sp)?,
(dd |dd), and ( ff| f), in the case that all four centers are
distinct. Like the PH method for ERIs, the Schlegel method
treats all p shells as sp ones, and calculates more derivatives
than necessary in the ( pp| pp) example.

In these examples, the HGP method requires fewer
FLOPs than the Rys method for any degree of contraction,
K. As much of the HGP method’s work is outside the con-
traction loops (z coefficient), it will gain extra advantage as
K rises. Although the HGP method involves far fewer
FLOPs than the Rys method for ( ff| £/}, so much storage
(10° words per shell quartet) is required that our approach
may not be practical beyond (dd |dd) derivatives. The HGP
method is superior to Schlegel’s for ( pp| pp) derivatives,
although this is not a favorable case for the latter. They are
similar for derivatives of (sp)*, for which Schlegels’ method
was optimized. Relative to the derivative method of OS,” it is
likely that the use of the HRR gives the HGP method a slight
advantage for sp basis sets, which increases on going to d
functions. The OS and Schiegel methods should be similar'®
for (sp)* and ( pp| pp).

Tables VII and VIII are the analogs of Tables IV and V,
for the calculation of first derivatives of ERIs, and associated
summation into HF Cartesian forces. The Schlegel method
for s and p functions is combined with the scalar Rys code for
d functions in the 6-31G* job of Table VIII. The results are
generally similar to those for ERI evaluation, with the HGP
method tending to be superior to the Rys method for s, p, and
d functions, by factors of 2 to 5 generally. The HGP and
Schlegel methods appear comparable for s and p functions,

TABLE V1. Floating point operation counts for derivative evaluation." The
coefficients x, y, and z refer to Eq. (23).

Class Coeff Schlegel Rys" HGP*
(pp| pp) x (XK 8030 10 200 3440
y (XK 120 80 30
z (XK") 0 0 4 600
(sp)? x (<K% 8030 24 900 6 600
y(xK?) 120 80 30
2 (xK" 0 0 13 100
(dd |dd) x (xK*) 203 000 45 000
y (XK 140 30
z(xK") 0 109 000
(Fm X (XK?) 1 850 000 284 000
y(xK?) 210 30
Z(xXK" 0 1 100 000

“The totals assume all four centers are distinct, and include summation of
the derivatives into Cartesian forces, but not two particle density matrix
formation.

®The Rys method of Ref. 16.

¢Ifthe shells are uncontracted, the methods of Sec. IV can be applied to save
about 600, 6300, 26 000, and 220 000 operations in the ( pp| pp), (sp)*,
(dd|dd), and ( ] ff) cases, respectively.
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TABLE VII. Timings in CPU seconds for first derivative evaluation. The
four systems are the same as used previously in Table IV.

ERI K Machine s s-Rys" v-Rys* HGP
puVax I1 617 2486 1939 1037
(0.6) (2.4) (1.9) (1.0)
(s5]85) 4
FX-8 77 402 150 66
(1.2) (6.1) (2.3) (1.0)
puVax I1 2287 3342 7047 2033
(1.2) (1.6) (3.5) (1.0)
Cppippy 2
FX-8 484 435 348 115
(4.2) (3.8) (3.0) (1.09)
puVax I1 2316 7500 16 128 3440
(0.7) 2.2) 4.7 (L)
(sp)? 2
FX-8 487 930 765 237
2.1 (3.9) (3.2) (1.0)
puVax 11 e 4739 9393 5393
(0.9) (L7) (1.0)
(dd|dd) 1

FX-8 568 433 263
(2.2) (L7 (1.0)

“Schlegel’'s method; Link 702 of GAUSSIAN s6.
" A scalar version of the Rys method; Link 703 of GAUSSIAN se.
A vector version of the Rys method: also part of Link 703.

although our vector-oriented code is significantly slower on
the scalar MicroVax, for the examples of Table VIII.

VIl. CONCLUSIONS

Based on the Obara—Saika® recurrence relation, and a
new recurrence relation derived from it, we have formulated

TABLE VIII. Timings (in CPU seconds) for first derivative calculations
on the two-pentenal molecule.

Basis Machine N s-Rys® v-Rys* HGP
#Vax I1 3099 15110 36 735 6230
(0.5) (2.4) (5.9) (1.0)

STO-3G
FX-8 423 2 160 2243 451
(0.9) (4.8) (5.0) (1.0)
puVax 11 4078 15537 36078 6405
(0.6) (2.4) (5.6) (1.0)

321G
FX-8 636 2 351 2204 436
(1.5) (5.4) (5.1) (1.0)
pVax II 84 314 125 005 358 240 45727
(1.8) (2.7) (7.8) (1.0)

6-31G*
FX-8 11 525 18 032 17 839 3114
(3.7) (5.8) (5.7) (1.0)

* The Schlegel method; Link 702 of GAUSSIAN se.

"The Schlegel timing for 6-31G* uses the Schlegel method for ERIs con-
taining just s and p functions, and the scalar Rys method for ERIs contain-
ing d functions.

“ A scalar version of the Rys method; Link 703 of GAUSSIAN 86.

9 A vector version of the Rys method; also part of Link 703.

and implemented an efficient algorithm (abbreviated HGP)
for two-electron integral and integral derivative evaluation.
It has the following features:

(1) For basis sets involving d functions or higher, the
HGP method should be significantly faster than the Obara-
Saika approach. There will be little difference for sp basis
sets.

(2) For ERI calculations, the HGP method is more
efficient than the Pople-Hehre method'? for sp basis sets
having low degrees of contraction (e.g., 3-21G), but less
efficient for highly contracted basis sets (e.g., STO-3G). As
a future refinement, the axis switch technique used in the
Pople-Hehre method may be incorporated into the HGP
method.

(3) The HGP method is uniformly superior to the Rys
method for ERIs”'* and derivatives,'® for sp, and spd basis
sets. This has been demonstrated by both floating point oper-
ation counts, and program execution times. The operation
counts indicate this advantage will be retained for / functions
as well.

(4) For basis sets containing ¢ functions, the HGP
method is also clearly faster than the combination of the Rys
method with special purpose sp methods (Pople~Hehre for
ERIs, Schlegel'' for derivatives).

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under Grant No. CHE-84-09405. We thank Jim
Foresman for assistance with the Alliant version of the pro-
gram.

APPENDIX: COMPUTER IMPLEMENTATION

The general objective of our implementation is to pro-
duce a computer program capable of exhibiting good perfor-
mance on a variety of computer architectures. We shall try
to achieve this goal by isolating the compute-intensive parts
of the algorithm in several comparatively small and simple
subroutines, with the hope that both vector and scalar com-
puters should be able to handle such a code reasonably effi-
ciently.

The fundamental loop structures in an ERI program are
over quartets of shells. The work done inside these loops
scales up as N*, and the problem is to minimize this work.
Fortunately, many of the quantities required in the N * loops
can be precomputed in loops over pairs of shells, which re-
quires a relatively insignificant O(N?) effort. Examples of
precomputable quantities are Egs. (8), (9), and (15), as
well as products of contraction coefficients for shell pairs.
Storing quantities of size O( N ?) is a feasible proposition, and
therefore the program begins with an initial loop over shell
pairs to calculate these primitive quantities, and discard any
primitive shell pairs for which K, Eq. (15), which relates
directly to the magnitude of the ERIs through Eq. (12), is
sufficiently small. The default integral accuracy is 10 ' for
compatibility with existing GAUSSIAN 86 standards, with
10~ " and 10™ * being available as options.

The organization of the N * loops is detailed in Table IX,
to which the following discussion refers. Table IX omits
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TABLEIX. N*loopstructuresin the ERI program. K refers to the degree of
contraction of a shell.

Do over angutar momentum types (2 loops over pairs)
Do over the possible coincident centre cases
Call Brains (fills indexing arrays)
Call BiteSz (dimensions scratch arrays)
Do over the different possible degrees of contraction
Do until all shell quartets of the present type are done
Call Chunk (get shell quartet batch of current type)

— Do over current degree of contraction (K‘l loop)

Call MakeC (build constants needed to apply RR’'s)
A Call SSSSM (explicitly form [sslss](') integrals)
re:ion Ccall vtItgl (form [eolfo](") integrals using VRR)
Call MakeCC (make contraction coefficients)
Call Cntrct (contract [e0lf0] into (e0!f0) ERI’s)
— end do
o — Call HzItgl (form (ablcd) ERI's by HRR)
re:ion Call Dgst2e (sums results into Fock matrix, forces)
— Call MovFrc (translaticnal invariance for forces)
end do
end do
end do
end do

loops that deal with shell quartets involving multiple classes,
and uncontracted quartets, as these details are not central to
the algorithm. The N * loops are based on processing a large
number of shell quartets of the same fype (having identical
angular momenta, degrees of contraction, and numbers of
common centers) at once. For example, all ( p, p, p, p) shell
quartets having the same degree of contraction, and no com-
mon centers, will be grouped together. Identical operations
will be performed on each quartet at every stage of ERI gen-
eration, and our simple rate-limiting steps will therefore be
based on long inner-most loops over the number of quartets
in the current batch. These vectorizable inner loops do not
appear explicitly in Table IX, because they are contained
within the various subroutines listed (except BRAINS and
BITESZ).

The outer loops of Table IX ensure the selection of shell
quartets of the same type, based on having initially sorted the
shell pairs into common groups in the N ? setup loops. At this
stage, the subroutine BRAINS generates the indexing arrays
describing the way in which the VRR and the HRR will be
used for shell quartets of the current type. Based on the
scratch space required per contracted shell quartet, returned
from BRAINS, and the amount of memory available, BITESZ
(“bite size”) determines the maximum number of shell
quartets that can be processed at once. The program then
enters a do-until loop in which batches of shell quartets of
the current type, selected by CHUNK, are processed to yield
ERIs, until all quartets of this type have been dealt with.
CHUNK can reject shell quartets based on symmetry crite-
ria’”*® or small estimated contributions to the Fock matrix
or forces.

Within the do-until loop are the compute-intensive

operations necessary to form the ERIs for the current batch
of shell quartets. The first stage involves work proportional
to the product of the degrees of contraction, within a loop
over the number of contributing primitive shells. Sets of
primitive ERIs are produced by MAKEC, SsSsM, and VTITGL
(“vertical integrals”) using the VRR step of the algorithm.
Their contribution to the necessary contracted ERIs is accu-
mulated in CNTRCT, after the four-center contraction coeffi-
cients have been constructed in MAKECC (“‘make contrac-
tion coefficients”).

The second stage within the do-until loop is the manipu-
lation of contracted quantities to form the desired ERIs, and
optionally their derivatives. This is accomplished in HZITGL
(“horizontal integrals™), which implements the HRR step.
Finally DGST2E (“‘digest 2E™) explicitly forms the deriva-
tives by Eq. (22) (if requested), and adds the contributions
of the current batch of ERIs and derivatives to the Fock
matrix and Cartesian forces, respectively. In the context of a
conventional SCF job, the ERIs would instead be written to
disk, at this stage.

One key issue associated with processing large numbers
of shell combinations simultaneously is the large amount of
memory needed to store all ERIs and associated auxiliary
ERIs at once. This problem becomes particularly acute as
the angular momentum of the shell quartets increases. To
reduce this requirement, we have implemented an efficient
scheme for reusing scratch space in the HRR step, which
was originally most space consuming. Two work space
areas, W1 and W2, are defined. The VRR yields sets of
primitive ERIsin W1, which are used to build the contracted
classes (0] f0) in W2. The HRR is initially used to con-
struct contracted classes of the form (el f0) and (¢0] f1) in
W1, that depend only on the ERIs in W2. The next angular
momentum shift goes back into W2, using the information in
W1, and so forth. This reduces the scratch space required per
(dd |dd) shell quartet by a factor of over 2.5, from about
9300 to 3700 memory locations. The lengths of W1 and W2
are calculated in BRAINS, by recording the maximum of the
lengths required at each angular momentum shift.
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