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The formal definition of the generalized discrete variable representation (DVR) for
quantum mechanics and its connection to the usual variational basis representation
(VBR) is given. Using the one dimensional Morse oscillator example, we compare the
“Gaussian quadrature” DVR, more general DVR’s, and other “pointwise”
representations such as the finite difference method and a Simpson’s rule quadrature.
The DVR is shown to be accurate in itself, and an efficient representation for
optimizing basis set parameters. Extensions to multidimensional problems are

discussed.

I. INTRODUCTION

One of the most common approaches to the solution
of quantum mechanical problems is the variational matrix
representation method in which an orthonormal basis of
N functions is used, and the variational coeflicients are
determined by diagonalization. We will denote this vari-
ational basis representation by VBR. In the VBR, the
operators are represented in terms of their projections
onto the basis of L? functions. The eigenvalues and
eigenfunctions of a truncated (VN X N) matrix represen-
tation are then usually determined by diagonalization.

For the Hamiltonian operator and an appropriate
truncation of a complete basis {¢}» this procedure leads
monotonically to the exact eigenvalues and eigenfunctions
as N — oo, provided an exact (integral) inner product is
used to define the matrix representation. The effort de-
pends on the complexity of the Hamiltonian matrix
evaluation and the size of the matrix representation
required for adequate accuracy.

We have recently shown!-3 that an approximate
discrete variable representation (DVR) may be useful for
representing the internal degrees of freedom in scattering
problems. In the DVR the approximate solutions are not
expressed as coefficients (or amplitudes) of basis functions,
but rather as the amplitudes of the approximate solutions
at a well defined set of coordinate points. Obviously such
pointwise representations have been used for many years
in the solution of differential equations, the most common
being the method of finite differences* and finite element
methods.® These approaches have usually had the advan-
tage that the determination of the representation of the
Hamiltonian is greatly simplified, but had the disadvantage
that a large increase in number of points (as opposed to
basis functions) was required for comparable accuracy.

* This material is based upon work supported by the National Science
Foundation under Grant CHE-8203453.

® Current address: Department of Chemistry, University of Houston,
Houston, TX 77004.
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The DVR, on the other hand, is isomorphic to an
approximate “finite basis representation” (FBR) in which
some matrix elements of the Hamiltonian are determined
by numerical quadrature over the DVR points. Thus the
definition of a DVR requires both the definition of an
appropriate set of N basis functions ({¢}y) and the
definition of an appropriate quadrature over the DVR
basis of points ({x}x). Such relationships are, of course,
not new—the theory of Gaussian quadratures® being well
developed and widely used. Similarly, the transformational
relationship between point and basis representations have
been explored and used’® for the approximate evaluation
of matrix elements in the basis representation (FBR).
Until recently, however, the DVR has not been exploited
as a primary representation in which certain quantum
problems may be treated more easily.!? In both of our
earlier applications'? the DVR appropriate to the com-
mon, but specific, basis of Legendre functions was used,
with considerable success.

The purpose of this article is to explore the formal
properties of the DVR more fully as a general represen-
tation for quantum problems; to examine, for a single
system, the relations between a variational basis represen-
tation and generalized DVR’s; to compare (briefly) the
DVR with other pointwise representations (finite difference
methods); and to suggest areas and problems for which
the DVR appears to offer significant advantages over the
more exact VBR.

In the next section we define the generalized DVR
and show that it may, indeed, be considered a proper
representation, satisfying essentially all the formal char-
acteristics expected. In the third section we present a
numerical comparison of a number of possible generalized
DVR’s with the usual variational basis representation
(VBR) and with a finite difference approximation for a
simple Morse oscillator potential. We also present the
(expectedly) poorer results obtained by degrading the
DVR, and the (unexpectedly) accurate results obtained
by using the DVR for efficient optimization of the basis
function parameters. In the final section we discuss these
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results and the probable utility of the DVR for a variety
of problems. In particular, we have generalized the DVR
such that it may easily be applied in the future to
nonseparable multidimensional problems.

t. DISCRETE VARIABLE REPRESENTATIONS

In this section we shall discuss the formal properties
associated with a set of coordinate points viewed as a
“point space” representation much as an appropriate set
of functions is viewed as a “function space” representation
in quantum mechanics. We note at the outset that there
is a significant difference between them, associated with
the definition of the inner product which means, as
explained later, that an N point DVR is not truly varia-
tional. Accepting this caveat, however, it appears that
DVR’s can be constructed which approximate variational
basis representations (VBR’s) and are isomorphic with
what we define below as finite basis representations
(FBR’s).!

We first define what we mean by these representa-
tions, restricting our attention for simplicity to a real
basis in one dimension, {¢(x)} = {¢}. For such a basis
we have the normal definition of the inner product and
metric, S (we assume the weight function, if any, to be
included in the definition of ¢):

(S)y = (Pi®p

= fdx PH)PL), 6, j=1,2, -+ (2.1a)

with x € (0, o) or (—oo, ). Completeness is defined by

>
8x — x) = X 1@NS™HKP. (2.1b)
]
If the basis is orthonormal and complete, the metric or
overlap matrix S is the unit matrix and we have the
usual completeness and orthogonality relations

8y = f dx PHx)P(x) = by, (2.2a)

Z Prx)Pi(x) = Z [P Pi| = 8(x — X"). (2.2b)

i=1

Otherwise S is a positive semidefinite Hermitian matrix.
Since methods of forming orthonormal bases are well
known, we assume {¢} orthonormal from here on. We
also assume the basis {¢} is composed of eigenfunctions
of some zero order Hamiltonian operator Ay:

ho?; = ¢, 2.3)

with eigenvalues {¢’}. The {¢} are then a basis of a
Hilbert space.

In what follows we wish to distinguish several rep-
resentations, so we define the normal matrix representation
of an operator [such as H = A, + V(x)] in a truncated
basis, {¢;}xy { = 1, ..., N as the variational basis
representation (VBR) with matrix elements defined by

(HYB®),; = f dx$rH®;, i,j=1,...,N. 2.4)

Other isomorphic representations may be obtained by
unitary transformations within the N dimensional function
space. The designation “variational” applies because an
N function representation of H always yields eigenvalues
&M > ¢;, where {¢;} are the true eigenvalues of H.

A discrete variable representation (DVR) corre-
sponding to the VBR {¢;}y is an approximate pointwise
representation on a set of N coordinate points, {x;}x.
The points {x;}y and the basis functions {¢;}» may be
used together to define a generalized quadrature which
replaces the inner product definition [Eq. (2.1a)]. The
basis representation utilizing the functions {¢}» and the
general but finite quadrature inner product on {x}y, is
called the finite basis representation (FBR) and is iso-
morphic with the DVR, ie., it represents the same
approximation to the variational basis representation
(VBR) in the set of basis functions {¢} as does the DVR
on {x}y. A properly defined DVR will satisfy discrete
analogs of orthonormality and completeness {Egs. (2.1)
and (2.2)].

The approximation of a VBR by an FBR and the
use of the isomorphism between the FBR and DVR for
matrix element evaluation was proposed and used a
number of years ago by Harris ef al.,” and by Dickinson
et al.® These applications, however, were restricted to the
simplest cases of one-dimensional (or direct product)
problems; to bases of classical orthogonal polynomials
and weight functions and their related Gaussian quadra-
tures; and, surprisingly, to the use of the FBR (vs DVR)
as the primary representation. The DVR for one dimen-
sion based on the diagonalization of the coordinate op-
erator (in the VBR) for an arbitrary one-dimensional
orthonormal basis introduced by Harris et al.” was shown
to be a Gaussian quadrature for orthogonal polynomial
bases.?

In this section we briefly summarize the earlier
results utilizing basis functions in one coordinate dimen-
sion and primarily, classical orthogonal polynomials and
their related Gaussian quadratures. Viewing the pointwise
representation, the DVR, as an approximate representation
of a Hilbert space, we then formally generalize these
results to arbitrary bases, arbitrary points, and many
dimensions.

A. Classical orthogonal polynomials and Gaussian
quadrature points

Dickinson et al.® showed that for bases of N classical
orthogonal polynomials® times their appropriate weight
functions {¢¢}y an orthogonal transformation exists be-
tween representations in the N Gaussian quadrature points
and representations in the N basis functions. The trans-
formation is defined as (the superscript G stands for
Gaussian)

Th = P(xJwl'?, 2.5)

where {xS}y and {w¢} are the Gaussian points and
weights for the classical polynomial basis functions
{#¢}n. Thus a potential matrix, diagonal on the points
(a discrete variable representation)
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Vs = V(x$dag (2.6)
may be transformed to the approximate finite basis rep-
resentation (FBR) by

(VFBR)U = (TGvDVRTGT)ij

N
= 2 PPV (x)Pf(x el

o

2.7

Thus in the FBR the matrix elements are defined by
numerical quadrature rather than by continuous integra-
tion as in the VBR [Eq. (2.1)]. Dickinson et al.® showed
that discrete orthogonality and completeness relations are
then given in finite matrix form by

N
(TGTGT i = 0y = Z ‘PiG(xS)wg‘PjG(xaG)9

a=1

(2.8a)

N
(TTVeg = bap = Z PE(x Dl Pi(x ). (2.8b)

i=1

These relations mean that this DVR is isomorphic with
the corresponding FBR in which the potential matrix
elements are evaluated by the specified numerical quad-
rature.

It is interesting to note the entirely symmetric rela-
tionships between the FBR and DVR expressed in Egs.
(2.8a) and (2.8b). Equation (2.8a) is an orthonormality
relation for the basis with respect to the N point inner
product quadrature and a completeness relation for the
coordinate points with respect to the N function basis.
Conversely, Eq. (2.8b) is an orthonormality relation for
the N quadrature points with respect to a sum over N
basis functions as inner product, and a completeness
relation of the N basis functions with respect to the N
quadrature points. Thus the use of the N point Gaussian
quadrature inner product with the N function classical
orthogonal polynomial basis introduces complete sym-
metry between the DVR and the FBR analogous to the
continuous coordinate and momentum representations
related by Fourier transforms. In both cases operators
may be evaluated in one representation and transformed
to the other for convenience. The limitations of the
DVR-FBR formulation as well as its advantage are
discussed below.

B. General DVR motivation

Since the DVR based on Gaussian quadrature points
and orthogonal polynomials offers significant advantages
in terms of convenience and flexibility at a small loss in
accuracy,”'® it is of interest to extend the formalism to
more general cases, i.e., to bases and points for which
standard Gaussian quadratures do not exist and/or to
higher dimensions. The potential utility of such general-
izations is clearly implied by the vibrational problem for
triatomic molecules. The difficulty of obtaining a small
number (~10) of accurate (error ~1073% or ~3 cm™})
eigenvalues from a large “CI” basis of direct product
vibrational functions (~250-600) using even larger
(~ 1000 point) quadratures (over the potential) is surpris-
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ing.'"'2 One reason may be that the basis function space
and the quadrature point space were both restricted to
direct product form, and the function space was used for
the Hamiltonian matrix representation, truncation, and
diagonalization. We believe the results presented in Sec.
III indicate that such problems may more easily be solved
using the general DVR as the “primary” representation.

The discrete variable representation, however, has
not been widely used, probably for several reasons. First,
the use of an N point quadrature to evaluate H in an N
basis function representation does not “look™ very accu-
rate, despite the published evidence.”®!® Second, the
point representation (DVR) was apparently always con-
sidered as a crutch—a means to approximate potential
energy matrices in the FBR, and not as the best repre-
sentation in which to carry out analyses and operations.
Third, and probably most important, the techniques were
not easily generalizable to more than one dimension (or
direct product spaces). There are not, to our knowledge,
general Gaussian quadrature techniques except for a
restricted class of orthogonal polynomials in one dimen-
sion. In addition, there is in general no unique coordinate
to be diagonalized in more than one dimension which
would vield a coordinate diagonal representation. In the
remainder of this section we examine the formal properties
of the DVR, defining a general DVR which should
remove the latter two objections above. In Sec. HI we
examine numerical models which should help to remove
the first prejudice.

C. General DVR-FBR transformations

In this section we look at the formal properties of
an N point inner product “quadrature” which permits us
to treat the approximate DVR defined on a set of points
{x.}~ and the associated FBR defined on {¢}y on equal
footing. In what follows we assume the basis {¢}y is
orthonormal in the VBR, i.e., the overlap matrix S = |
with an exact (continuous integral) inner product as in
Eq. (2.1a). To emphasize the fact that we are using a
discrete set of points {x,}y as “basis vectors” in a
representation, we adopt the bracket notation.

The set of basis functions {¢;} define an orthonor-
mal set of unit vectors in a Hilbert space (VBR):

(Pl = f PHx)P(x)dx = b 2.9)

with the unit projection operator on the N dimensional
subspace

N

i=1
We now ask for an approximate representation in which
the integrals such as are in Eq. (2.9) are replaced by a
numerical “‘quadrature” on the points, {x,}~.

The usual continuous coordinate representation is
defined by the (infinite or continuous) transformation
matrices:

Yi ={Pix,) = PHx.) (2.11)
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with the unit operator in the coordinate representation

= f ey (ral

We now wish to discretize the continuum coordinate
representation to a set of N points, {x,}», retaining the
definition of the transformation in Eq. (2.11).

Since the coordinate basis {1x,)}» is now discrete
(and so far arbitrary), the finite dimensional transformation
(2.11) will not in general remain orthogonal, i.e., the
metrics of the finite dimensional spaces may be changed.
Thus we use the general relations between the metrics S
and A in two finite representations connected by an N
X N transformation matrix Y:

Y*AT'Y = §, (2.12a)

YSTlyt = A, (2.12b)
Since Eq. (2.12) does not define the metrics, we are free
to choose either S or A and determine the other from
Eq. (2.12). Choosing S = | (i.e., requiring that the functions
remain orthonormal over the discrete quadrature), we
have

S=1==A =YY" (2.13a)

Alternatively we may renormalize the functions over the
simple quadrature by choosing A = I:

A=1=S8=Y"Y. (2.13b)

In either case we may define the unique unitary
transformation between the orthonormal function basis
and orthonormal point basis:

T+ = YYA-2 = §12y+, (2.14)
Using Eq. (2.13) it is easily seen that T is unitary. The

two forms of the transformation are seen to be identical
since the inverse of a matrix is unique and

THT= YHAT2Y§12 = YHYYH) 2y (YY) 12 = |,

The only formal restriction is that the points and functions
be chosen such that the inverses of YY* and Y'Y exist.

Thus we have defined a general unitary transforma-
tion between representations in an N dimensional function
space and an N dimensional point space. In the case of
Gaussian quadratures the metrics A and $ are diagonal
and, with properly normalized functions, are unit matrices.
As we shall show shortly, the use of Gaussian points is
not only simpler but more accurate than the general
relations with arbitrary (not Gaussian) points defined
above. The purpose of defining the general relations is
that they may be used for multidimensional systems for
which Gaussian points cannot be chosen or, for example,
when a potential is known only at an arbitrary set of
points.

We now turn to the evaluation of operators using
the DVR. We may proceed in two ways:

(a) To be exact, we may transform from the matrix
representation in the variational basis; i.e., if

(AVBR)ij = <‘Pi|A|‘Pj>,
then

ADVR =T AVBRT+,

(2.15a)

(2.15b)

1403

where A4 is an arbitrary operator. We use the tilde to
denote a DVR matrix obtained by exact transformation.
Using this, a DVR is obtained which is isomorphic with
the normal representation (VBR). This is useful, for
example, to determine a coordinate function (such as a
dipole function) from its matrix elements.

(b) We may also approximate coordinate operators
directly in the DVR by their values at the DVR points,
{x.}. Since a major purpose of a DVR is to permit the
direct and simple approximation of such coordinate op-
erator matrix elements in this fashion, we shall define
this approximate representation to be the DVR. Thus we
set for a coordinate operator V the DVR matrix elements
to be

(VPYR)s = V(X )8,s = (TVVERTH) 4. (2.16)
This equation, together with Egs. (2.13) and (2.14),
defines a numerical quadrature over the DVR points
({xa}N)

VVBR  THyDVRT, 2.17)

By construction the quadrature is exact for those
components of V¢; which remain in the Hilbert space
defined by {|¢;)}~. The error in the quadrature is due to
those components of Vg; which do not lie in {|¢;)}~ but
which contribute (garbage) to the approximate quadrature.

This is easily seen by evaluating (formally) the pro-
jected potential

N

Ve = 2 vie + 3 v,
j=1 Jj=N+1
= VN§0,~ + VQ(p,'. (2'18)
Since VY = V¥ fork, i = 1, N,
N N
VN, = T orvie, = 3 viere,. (2.19)
J=1 Jj=1

Integrating Eq. (2.19) leaves ¥};, the exact matrix element,
whereas summing over the points {x,} yields

Z ‘pZ(xa)VN(xa)‘pi(xa) = z (P:(xa)goj(xa) Vzl
o Ja
= 2 Vil (x.)Pi(x.).
ja (2.20)
In matrix form this is

Y*VYNDVRy — SyN.VBR _ \/N.VBRE (2.21)

Since this implies that $ and V»VBR commute, we have
Y+vN,DVRY = él/2vN,VBRél/2 — VN,VBR

= THYNDVRT, (2.22)

Thus the quadrature (2.17) is exact (as might be expected)
for the portion of V¢ projected onto {|¢;>}~. However,
the functions |¢,)p > N (which are orthogonal to {lé:d}n
using exact integrals) are not orthogonal to the {|¢:)}n
using the numerical quadrature. Therefore components
of V¢ lying outside {|¢;)}~ “contaminate” the numerical
quadrature (2.17). Gaussian quadratures gain extra ac-
curacy by the choice of quadrature points at the zeros of
¢n+1, thus eliminating contamination from this compo-
nent of all V¢,. This suggests that “arbitrary”’ points
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{x.}~ be chosen such that ¢x.(x.) at least be small, if

not zero.
Finally we note that the approximation inherent in

Eq. (2.16) destroys the usual variational principle for
operators bounded from below (such as H) when the
DVR is used. Although we shall show in the next section
that this is not necessarily serious, numerically, we must
be cognizant of it.

One major advantage of the general DVR-FBR
presented in this section is that it applies automatically
to higher dimensions. Equations (2.11)-(2.17) have ob-
vious generalizations to points and functions defined on
m dimensional coordinate spaces. One of the penalties
we pay for this additional freedom is the lack of a general
definition of optimal quadratures, i.e., a prescription for
choosing the points given the basis ({¢}x). Although one
could attempt to choose the points such that A is diagonal
we do not believe this is possible in general for higher
dimensional systems and an arbitrary (not direct product)
basis. Thus we assume a satisfactory point basis is provided
by a set {x} for which A has no small eigenvalues (<1),
i.e., for which there is no approach of linear dependence.
This uncomfortable uncertainty can be relieved somewhat
by numerical examples.

In the next section we present numerical results
using the general DVR-FBR formulation which verify
the utility of the formal approach taken here. We also
compare with the results of application of a simple finite
difference approach to our model problem.

lil. COMPARISON FOR ONE-DIMENSIONAL
MORSE OSCILLATOR

The one dimensional Morse oscillator has often
served as a model problem for testing new approaches,
and for good reason. It is a flexible asymmetric problem
for which the exact analytic eigenfunctions and eigenvalues
are known and for which accurate variational solutions
are reasonably difficult to obtain. Shore,'° for example,
recently used it to test about a dozen numerical ap-
proaches. It is, therefore, instructive to use this model to
examine the flexibility and accuracy of the general DVR’s
just defined.

In this section we shall first define the model problem,
its analytic eigenvalues, and a ‘“standard” variational
result using appropriate harmonic oscillator basis func-
tions. We shall then present and compare the results from
a sequence of other pointwise representations. These
include, in order of decreasing accuracy, the Gaussian
DVR based on the standard harmonic oscillator basis
and associated standard Gaussian quadrature points; a
DVR with the standard harmonic oscillator functions and
shifted points; a DVR with shifted harmonic oscillator
functions and the standard Gaussian points; three calcu-
lations based on one set of equally spaced points (the
DVR for the standard harmonic oscillator functions, a
finite differences calculation, and an FBR using Simpson’s
rule quadrature).

To illustrate the convergence of the DVR procedure,
we then compare (columns I, J) the 25 point finite
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differences approximation with the 25 point DVR based
on the Gaussian quadrature using the standard basis. The
latter is several orders of magnitude superior in accuracy
for the lowest eight eigenvalues.

Next we examine briefly the problem of truncation
in the DVR (Table II). It is common to use many more
points in numerical quadratures than basis functions.
Therefore, viewing the DVR and FBR in reverse [see Eq.
(2.21)), we asked if it is advantageous to use more
functions than points with the DVR as the “primary”
representation. The answer appears to be negative.

Finally (Table III) we show the results of exploiting
the simplicity of the DVR in order to obtain more
accurate results with a fewer number of points or basis
functions. Since the trace of the Hamiltonian may be
evaluated very simply in the DVR for given basis set
parameters, it is easier to minimize the trace with respect
to the parameters in the DVR than in the FBR (or VBR).
After choosing the basis set parameters to minimize the
trace of H, using this basis (in the DVR, FBR, or VBR)
yields excellent results. It appears that the simplicity
afforded by the DVR will be most useful in this “opti-
mization” process.

A. Morse oscillator and standard harmonic
oscillator basis

We take a one dimensional Morse oscillator which
roughly represents the (/ = 0) HF molecule as the model.
The Hamiltonian is given by [V(r — o) = 0]

h? & 2a(r-re) —a(r~re)

H=—- ﬂ e + D(e — 2 )

=T+V 3.1
with r, = 1.75ay, p = 19/20 amu, D = 5.726 eV, and

o = 1.22a5'. The analytic solutions for the eigenvalues
yield the bound state energies:

& = ho(n + 3) — hoxdn + ),

n=0,1,...,22 (3.2)

with x, = 0.022 468 85.

For our comparisons we chose to focus on the lowest
eight eigenvalues using an N = 12 harmonic oscillator
basis as standard. The basis {¢} is defined by the zero
order harmonic oscillator Hamiltonian,

k2 d*  « )
o=“§":‘7r‘2'+5(""'0), (3.3a)
ho¥y = ha(n + ¥, = €6,. (3.3b)

The parameters w = 5.001209 S~! [or 8 = (uk/H*)'/*
= 4.6a;") and r, = 2.18a, were chosen, after some
variation, to yield good agreement of the variational
eigenvalues ¢/ with the exact eigenvalues ¢; for i = 1, 8.
The Morse potential energy levels, and h.o. potential for
the standard basis are shown in Fig. 1.

The exact eigenvalues are shown in Table I, second
column, together with the errors ¢ — ¢ in various
approximation (columns A-J). The errors in column A
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FIG. 1. Morse potential, eight energy levels of interest, and harmonic
oscillator potential of standard basis: - - - Gauss-Hermite points for
standard basis; X Gauss-Hermite points for shifted basis; O equally
spaced points.

(to the accuracy shown) are due entirely to the truncation
of the harmonic oscillator basis to N = 12, since the
Hamiltonian was evaluated essentially exactly in this basis
with a 500 point Simpson’s rule integration used to
evaluate AV in the standard (N = 12) harmonic oscillator
basis representation:

HYER = & + AVVER, (3.42)

o0

(AV), = f_ } ¢,-(r)|:V— %(r - r,)z]‘Pj(r)dr. (3.4b)

This 12-function harmonic oscillator basis is not optimum,
but is quite close. This basis is referred to in the following
as the standard harmonic oscillator basis and the results
as the standard variational (N = 12) results.

B. A Gaussian DVR based on the standard
harmonic oscillator representation

As Harris et al,” Dickinson et al.,® and Shore'®
showed, the replacement of the exact AV matrix in Eq.
(3.4a) by the AVFER [computed by Gaussian quadrature

1405

over the N (=12) Gauss-Hermite points corresponding
to the N (=12) standard harmonic oscillator basis func-
tions] is really a very accurate approximation. Since this
(FBR) representation is isomorphic with the N (=12)
point Gaussian DVR, the results below in Table I,
column B, apply to both. We now face a (minor) ambiguity
in presentation—do we wish to judge the DVR-FBR
results vs the exact results or vs the results of the
corresponding N function standard harmonic oscillator
variational calculation? Since no information is lost, we
present only the errors compared with the exact ¢; in
Table 1. As can be seen, there is no significant loss of
accuracy in using the DVR in this case, i.c., all errors are
comparable to those of the standard variational harmonic
oscillator in magnitude. We note, however, that the
DVR-FBR results do not provide an upper bound on the
individual eigenvalues.

An illustration of the accuracy of the DVR is given
in Fig. 2 in which the exact values of AV at the DVR
points (AVPVR) are compared with the diagonal elements
and the eigenvalues of T*AVVERT, Even though AV is
quite large (>1.5 eV) in the coordinate range of interest,
the DVR approximation is of comparable accuracy to
the standard VBR result.

C. General DVR-FBR results

We now wish to test numerically the general DVR-
FBR formulation of the last section. In doing so, we
introduce a new degree of freedom in that the points of
the DVR are chosen independently from the basis func-
tions. This extra degree of freedom means that one can,
if one so desires, choose a disastrously poor set of points
(one could, also, choose an equally disastrous set of
functions). The purpose of this section, therefore, is not
to find the best set of points (those were explored in Sec.
B, above), but to examine, at least semiquantitatively,
what happens when the choice of points and basis func-
tions is decoupled. This is important to investigate because
(a) in multidimensional systems Gaussian-type quadratures
are nontrivial to find'* and are limited in order or

TABLE 1. Comparison of exact eigenvalues (n = 1-8) with various approximate eigenvalues for a Morse oscillator. A-H N = 12; 1, J N = 25. Deviations
from exact results are shown. A: Standard harmonic oscillator basis. Variational calculation (r, = 2.18ao). B: Standard DVR-Gauss-Hermite points
corresponding to A. C: Shifted h.o. basis (ro = 2.32ap), corresponding to Gauss-Hermite DVR points. D: Shifted h.o. basis (r, = 2.324,), Gauss-
Hermite points corresponding to A. E: Standard h.o. basis, shifted Gauss—Hermite points corresponding to C. F-H: Equally spaced points. F: DVR
with standard h.o. basis. G: First order finite differences. H: Simpson’s rule quadrature. I: Finite differences, N = 25 points. J;: DVR-Standard h.o.

basis and points, N = 25.

EPPror — @pror — ¢,
Analytic

n € (eV) A B C D E F G H 1 J

1 ~5.4620 0.0000 0.0000 -0.0001 —0.0001 —0.0001 0.0000 —-0.0165 -0.0795 —0.0033 0.0000
2 —4.9714 0.0003 0.0004 +0.0026 —0.0003 +0.0026 —0.0084 —0.0998 —0.0881 -0.0166 0.0000
3 —4.5038 0.0014 -0.0015 +0.0076 —-0.0077 +0.0078 +0.0284 —-0.2793 -0.1321 —0.0421 0.0000
4 —4.,0594 0.0033 —0.0125 -0.0396 -0.0416 —0.0433 —0.0143 —0.2194 ~0.1308 —0.0774 0.0000
5 —3.6380 0.0095 —-0.0126 —0.0931 -0.0612 —0.1063 —0.0231 —0.5082 —0.0641 -0.1204 0.0000
6 —3.2397 0.0312 +0.0296 —-0.0306 -0.0122 —-0.0453 +0.0876 —0.4534 —-0.3532 —0.1601 0.0000
7 —2.8645 0.0689 0.0914 +0.0753 —0.0283 +0.0600 +0.0986 -0.2571 +0.0031 —0.2217 —-0.0001
8 —-2.5123 0.1131 —0.0057 +0.1795 —0.2782 +0.1628 +0.2256 -0.0914 —-0.2143 —0.2769 0.0000
rms error: 0.0482 0.0346 0.0784 0.1024 0.0753 0.0935 0.2904 0.1671 0.1475 0.0000
Avg. error: 0.0285 0.0114
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FIG. 2. AV(—) and approximations to it. (T*AVY®*T),, for: @ standard
Gauss-Hermite DVR points; X G-H points for shifted basis; O equally
spaced points. A are eigenvalues of AVVER plotted at nearest standard
G-H points.

function type, and (b) the potential information known,
on which to base the Hamiltonian evaluation, may not
be at appropriate points. Therefore in this section we
examine what happens when the basis and point repre-
sentations do not have a Gaussian quadrature relationship,
and the general formulas of Sec. II must be used.

In Table I, columns C-E, we present the results
using less than optimal bases and points. In column C a
poorer N = 12 harmonic oscillator basis (rp = 2.32a, vs
2.18a, for the previous results) is used with its associated
Gauss-Hermite points. In columns D and E the general
DVR is used since for D, the original G-H points (for
the basis with r, = 2.18a,) were used with the shifted
basis (r, = 2.32ap) and vice versa in column E. In this
first example we note that the errors using the general
DVR (columns D and E) are comparable in magnitude
to those using the appropriate Gaussian quadrature with
the degraded basis (column C) and thus comparable in
magnitude to the errors of the variational calculation
using the degraded basis. This implies that the additional
error incurred by using the general DVR is small.

The Morse potential and energy levels and the
standard harmonic potential are shown in Fig. 1. Also
shown are the 12 standard G-H points, the 12 shifted
G-H points, and the 12 equally spaced points used.

In columns F-H of Table I we briefly compare the
DVR using 12 evenly spaced points (between r, = 1.08ay,
ri2 = 3.04ay). In column F the standard harmonic oscil-
lator basis and the general DVR is used. In column G,
the first order finite differences result on the same points
is shown. In column H the same points and functions
were used with a Simpson’s rule quadrature of the poten-
tial. Finally, in column I a 25 point finite differences
result is shown, and compared, in column J, with a 25
point Gaussian DVR using the standard basis.

In the first order finite differences method, the second
order differential operator is approximated by

2
%ﬂ’) — [Ari-1) + fri) — 2fr))A 72,
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where h = r;;; — r;. In all cases only the potential values
at the points were used, resulting in effective trapezoid
rule quadratures for the finite differences method. Al-
though the choice of points and the low order method is
clearly not optimal for the determination of the lowest
few eigenvalues by the finite difference, the qualitative
results are in accord with previous experience'’—the low
order finite differences method requires several times the
number of points as are required for reasonably chosen
global basis functions in variational methods. The DVR
appears to require only a number of points comparable
to the number of basis functions. (For comparison
purposes we show the 25 point Gaussian DVR for
25 standard harmonic oscillator basis functions in col-
umn J.)

D. Truncation in the DVR

We now very briefly examine a procedure which is
not useful for 1D problems but is quite relevant to
extensions to higher dimensions, and that is the effect of
truncation of an N point, N function DVR-FBR to an
M point DVR, M < N. The converse, using many more
points for numerical quadrature than basis functions, is,
of course, very common. Here we define an N point
DVR and the full N X N DVR Hamiltonian, HR'R,

HRYR = T*heT + AVPYR,

and then truncate the matrix representation to M X M,
with M < N, where the M retained points lie in low
regions of the potential energy. This may be useful in
multidimensional problems where some direct product
bases are normally truncated because their diagonal matrix
elements of H are very large. The corresponding direct
product DVR will have some points, e.g., (X,, Y,) which
lie in very high regions of the potential energy. If we are
interested in low energy eigenfunctions, we should be
able to truncate these points from the DVR with little
loss in accuracy. A brief 1D illustration of this is presented
here.

We illustrate this by choosing an optimized (with
respect to wg, 7o, as discussed in the next section) 13
point DVR using Gaussian points and harmonic oscillator
functions. The optimization was carried out by minimizing
the sum of the seven lowest energy diagonal elements in
the 13 X 13 DVR Hamiltonian. The DVR Hamiltonian
matrix was then truncated and diagonalized keeping,
sequentially, 7, 9, 11, and all 13 points. The results are
shown in Table II.

The results show two things:

(a) Optimization of the basis for a small number (7)
of points yields remarkably good results for 5 of the 7
eigenvalues.

(b) The lower eigenvalues converge to the full 13 X
13 results quite quickly (e.g., the fifth eigenvalue changes
only in the third decimal place as the number of points
retained increases from 9 to 13, all lower eigenvalues
changing much less). -

This is at least a preliminary indication that for a
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TABLE II. Results for truncated DVR: 13 point DVR with basis optimized
over the trace for the center seven points. DVR truncated to N = 7, 9,

11, 13. n = number of eigenvalue. Errors from exact are shown ¢o'F

— (EXACT,

\NV 13 1 9 7

1 —0.0001 —0.0001 —-0.0001 —0.0001
2 0.0000 0.0000 0.0000 0.0000
3 +0.0054 0.0054 0.0054 0.0065
4 -0.0139 -0.0139 -0.0137 —-0.0043
S —-0.0572 ~0.0572 —0.0545 —0.0067
6 +0.0245 +0.0245 +0.0568 0.3987
7 +0.1720 +0.1870 +0.3724 0.4713
8 +0.0521 +0.0548 +0.1806 v

fixed basis and DVR transformation, the lower eigenvalues
are relatively insensitive to truncation of the DVR.

E. Optimization using the DVR

In this section we present the first evidence that,
because of the ease of evaluation of matrix elements in
the DVR, it may provide a simple means of determining
an optimum basis for variational calculations. For the
model problem and, in particular, the harmonic oscillator
basis we are using, the procedure is particularly simple:
we vary the two parameters of the harmonic oscillator
basis (w and the minimum, r,) to minimize the trace of
the truncated Hamiltonian in the (Gaussian) DVR. Since,
for complicated (or even Morse) potentials, the trace is
much easier to evaluate in the DVR than the FBR (or
the usual variational representation) the basis optimization,
although a nonlinear process, is easy to carry out.

Specifically, if we choose a harmonic oscillator basis
and the associated Gauss-Hermite points for the FBR-
DVR, the Hamiltonian in the DVR has the form

HPVR = B0 + AVDVR(r, To, ®),

where € is a constant matrix (independent of w, r;) and
AV is the diagonal difference potential matrix evaluated
at the DVR points, which depends on the parameters of
the harmonic oscillator basis (7, and w). For a given basis
size, the trace of HPYR can very easily be evaluated and
minimized with respect to r, and w. The results of
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optimizing the basis in this fashion and then diagonalizing
HPVR for DVR-FBR’s with N = 7, 9, 11, 12, 13 (columns
B-F) are shown in Table IIl, compared with the standard
N = 12 variational results (column A). It can be seen
that the optimized basis DVR for N = 12 is significantly
better than our “standard basis” variational calculation.

In order to assure that the optimized basis for the
DVR is, indeed, an optimized (or at least very good)
variational basis, we used the N = 12 DVR optimized
basis in a standard variational calculation. The results are
shown in Table III (column G). The utilization of the
optimized basis results in about a factor of 3 reduction
of error from the standard basis results for the first eight
eigenvalues. Although this optimization could have been
carried out in the VBR, it is rarely done because it is so
much more difficult.

It is also interesting to note, from Table III that an
optimized N + 1 point DVR appears to be comparable
or better than a variational optimized N function calcu-
lation. From our other calculations this appears to be
true for a variety of N’s, although the variational calcu-
lations retain the advantage of converging to the true
values from above only.

IV. SUMMARY AND DISCUSSION

In the last two sections we have defined a general
discrete variable representation for quantum mechanical
problems which is a dual space of normal truncated
variational basis representations, i.e., it is related by
orthogonal (or unitary) transformations. Although the
Hamiltonian could, of course, be evaluated in the usual
variational representation, transformed to the DVR, and
manipulated there, this is not the purpose of establishing
the DVR. The DVR is established in order to simplify
the approximate evaluation and manipulation of the
Hamiltonian operator. In particular, the A, operator,
easily evaluated in the variational basis representation, is
transformed (exactly) to the DVR, whereas the remaining
potential (coordinate) operators, which are difficult to
evaluate in the basis representation, are approximated
directly (and simply) in the DVR. )

The DVR’s corresponding to Gaussian quadrature

TABLE II1. Results using bases of size N with parameters optimized to minimize Tr(HP'R). ¢, — ¢*A°T are shown.*

A B C D E F G
12 7 9 1 12 13 12
N (Standard Optimized Optimized Optimized Optimized Optimized (Variational,
n variational) DVR DVR DVR DVR DVR optimized basis)
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
3 0.0014 —0.0044 0.0007 -0.0001 —0.0001 —-0.0001 0.0003
4 0.0033 -0.0128 ~0.0007 0.0006 —0.0001 —0.0002 0.0022
5 0.0095 0.0229 -0.014t 0.0020 0.0010 0.0002 0.0072
6 0.0312 02186 -0.0149 0.0001 +0.0042 0.0025 0.0129
7 0.0689 0.0998 0.0689 —0.0148 +0.0038 0.0054 0.0183
8 0.1131 v 0.4185 0.0092 -0.0025 0.0043 0.0369

* A: N = 12, standard basis variational calculations. B-F: basis optimized in the DVR. G: variational calculation using the N = 12 basis optimized in

the DVR.

J. Chem. Phys., Vol. 82, No. 3, 1 February 1985

Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1408

points for classical orthogonal polynomial bases have
been implicitly defined and used before.”®!%-!2 Because
the potential operators in these Gaussian DVR’s are
approximated to well known (and high) accuracy by their
diagonal DVR matrix elements, such Gaussian DVR’s
should be widely and freely used. The examples of their
accuracy in Sec. III and by others”%!%-12!4 are impressive.
In Sec. III we also showed that the simplicity of evaluation
of the Hamiltonian matrix in the DVR may permit
simple improvement of the basis functions, i.e., by the
choice of parameters of the basis to minimize the frace
of the Hamiltonian in the truncated basis in the DVR.

For other orthogonal bases in 1D, the eigenvalues of
the VBR of the position operator x form an excellent
DVR (and the eigenvectors form the DVR-FBR trans-
formation) for the approximation of potential matrix
elements by their diagonal DVR values. This has been
discussed and used effectively elsewhere.!’

Because of the limitations of the above techniques
to 1D or direct product bases, however, we felt it useful
to define the dual space relation between a truncated set
of orthonormal basis, functions {¢}y and an arbitrary set
of points ({x}x). This was accomplished by defining the
metric of the DVR, A. Using this, a dual space {|g)}y to
the function space {|¢)}» could be established on the
“primitive” nonorthogonal points {|x)} .

The approximate representation of the potential by
its diagonal elements ¥V(x,) in the general DVR was
tested and found to be a reasonably good approximation;
much better, certainly, than a finite differences approxi-
mation to H on the same points and much better than
the approximation via a standard Simpson’s rule quad-
rature on the same points. There appear to be several
reasons for this. First, the use of the DVR transformation
for the evaluation of A, in the DVR preserves an exact
representation, i.e., the eigenvalues of A, are unchanged
in contrast to the approximate evaluation of Ay using
finite differences. In addition, the dual space representation
appears to define a quadrature on the given points {x}y
which is appropriate for the basis {¢}y at least insofar as
this is possible for arbitrary {x}y. It is clear that the
accuracy of the diagonal approximation to V(x) in the
DVR depends on the points {x}y chosen. Although where
possible the Gaussian points should be used for highest
accuracy, the choice of other points apparently leads to
reasonably good results, and the DVR prescription appears
clearly superior to finite difference methods and simple
quadratures (such as Simpson’s rule) when restricted to
N points.

The use of arbitrary points {x}y rather than Gaussian
points appears to be deliberately choosing a less than
optimal basis for the DVR. One reason for doing this in
1D problems would be that a nonpolynomial basis is
used for which standard Gaussian quadratures are not
available. In this case the choice of the eigenvalues of the
coordinate operator x as the point basis appears to be
appropriate and quite accurate.”'’

For systems defined in higher dimensional spaces (2,
3 or higher), however, it appears that the general DVR
may be most useful. For this article preliminary investi-
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gations of three desirable characteristics have been carried
out, with promising results reported here. First, and most
important, we have shown that reasonable (but not
Gaussian quadrature) sets of points yield reasonable results.
Since simple Gaussian quadrature techniques do not seem
to be available in higher dimensions (except as direct
products),'> one may be required to choose somewhat
arbitrary points in higher dimensions. The general DVR
procedure provides a prescription for using such points.

Second, the relative ease of Hamiltonian evaluation
in the DVR (vs the VBR) may be much larger in higher
dimensions. Specifically, since the Ay portion of the
Hamiltonian is usually separable (or may be chosen to
be) while the potential often is not, the multidimensional
integrals required to evaluate V in the VBR are often
difficult to evaluate. In the DVR, on the other hand, the
hy portions can be obtained simply by direct product
transformations (using the separate DVR transformations),
and the potential is merely evaluated at the DVR points,
by determining the (diagonal) discrete variable represen-
tation of V.

This simplicity of evaluation of HPYR may be used
in higher dimensions, as in 1D, to facilitate the determi-
nation of an optimized basis. As shown in the last section
(II1 E), the optimized basis can be used directly in the
DVR or in a standard variational calculation.

Finally, in multidimensional problems direct product
bases are often truncated such that the basis used is no
longer a full direct product basis. If, for example, N, and
N, basis functions in the coordinates x and y are used,
the full (N, + N,) direct product basis may be truncated
to include only functions with n, + n, < M < N, + N,,.
We have shown, at least in 1D, that the DVR may also
be truncated with only comparable loss of accuracy. We
note that the truncated DVR is not dual to the truncated
basis function representation. It would be interesting to
see if a truncated direct product DVR using M Gaussian
points is more or less accurate than a general DVR based
on M reasonably chosen points which is dual to the M
function representation.

The last major use of the DVR, explored else-
where,!*!7 appears to be the application to coordinate
function inversion problems. A major problem has been
the determination of coordinate function operators given
their matrix elements or eigenvalues. In a recent paper'¢
we show that the DVR provides a very simple and flexible
approach to the determination of the dipole function of
diatomic molecules given a portion of the dipole matrix
in the energy eigenfunction representation. Although
somewhat less direct, we have also used the DVR to
determine the potential function for surface-molecule
interactions given the energy eigenvalues.!” The application
of the DVR to these problems for multidimensional
systems would also appear to be promising.'*
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