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Techniques for the calculation of analytic first derivatives of the Hartree-Fock energy are 
reported, within the context of the pseudospectral ab initio method. Using these gradients, 
geometry optimization is carried out on several molecules at the 6-3 1 G** level. The resultant 
geometries are compared to those from conventional ab initio molecular-orbital calculations, 
and it is shown that bond lengths agree to within 0.003 A, while bond angles are within 1”. 

1. INTRODUCTION 
In a series of previous papers,lm7 we have described a 

novel method for solving the self-consistent equations of 
electronic structure theory. The method is a hybrid of con- 
ventional quantum chemical procedures (e.g., local Gaus- 
sian basis sets) with the pseudospectral (PS) method,* a 
numerical procedure which utilizes both a physical space 
grid and a basis-set representation of the molecular orbitals. 
Agreement with conventional Roothaan-Hall’ (RH) codes 
to 0.1 kcal/mol for the total energy has been demonstrat- 
ed6*7 for both Hartree-Fock (HP) and generalized valence 
bond” (GVB) calculations for a large set of molecules com- 
posed of first-row atoms. Furthermore, improvements of an 
order of magnitude in CPU time have been achieved7 on a 
20-atom HF test case (glutamine) as compared to any RH 
code using a direct version of the PS method in which full 
integral recalculation is employed. For molecules of this 
size, the PSHF method scales in practice as N* (reduced 
from a formal N 3 dependence by the use of cutoffs on local 
functions), to be contrasted with the N 3 scaling (reduced 
from a formal N4) of GAUSSIAN 88. 

These highly successful tests indicate that the PS meth- 
od is likely to be the method of choice for self-consistent ab 
initio computations on large molecules. However, it is neces- 
sary to establish that the method performs adequately for 
calculations other than those for the total energy. In particu- 
lar, accurate evaluation of analytic derivatives is essential if 
the method is to be of practical utility. The achievement of 
sufficiently high accuracy is nontrivial because of the use of 
the numerical grid, which is quite capable of introducing 
spurious variations in the total energy as a function of geom- 
etry due to alterations of the numerical integration scheme 
as atoms (and hence the atom-centered grids) are moved. 

Analytic derivative methods for numerical self-consis- 
tent electronic structure calculations have been presented by 
others,” almost exclusively in the context of local-density- 
functional theory. However, these results have generally en- 
compassed relatively small molecules, which are much less 
demanding in terms of the numerical precision required to 
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obtain converged results. There have been few (if any) sys- 
tematic studies of large, complicated molecules in which it 
has been unambiguously shown that the local-density limit- 
ing geometry has actually been obtained to a specified level 
of accuracy. Such demonstrations are necessary if one wish- 
es to establish the expected reliability (whatever electronic 
structure model is to be used) in a determination of relative 
conformational energies and structures in complex systems, 
an increasingly important task in biological modeling and 
materials science applications. 

The present paper is concerned with establishing such 
behavior for the PS method in the context of HF theory 
(preliminary results indicate analogous accuracy is achieved 
for GVB computations as well). Our objective is to repro- 
duce the RH geometry with the same basis set as closely as 
possible, thereby validating the PS procedure as an isomor- 
phic replacement for RH. The accuracy of the PS procedure 
is then determined strictly by the basis set and level of elec- 
tron correlation, and the huge literature on the reliability of 
ab initio RH geometries can be taken over. 

Future papers will present detailed timing comparisons 
of PS and RH methods of geometry optimization. Substan- 
tial gains can be made not only in the cost of an individual 
step, but in the sequence of steps used to converge to the 
correct geometry. At present, however, we do not have a 
serious geometry optimization program in place. We will 
therefore restrict our discussion of efficiency to the com- 
ments that (a) generation of the PS gradient is considerably 
less expensive than the self-consistent-field (SCF) conver- 
gence procedure; and (b ) obtaining an accurate gradient is 
easier than obtaining accurate total energies, due to the 
smoothing of error achieved by analytic differentiation. 
These two observations suggest that the PS method can yield 
significantly greater increases in efficiency for geometry op- 
timization than for single-point energy calculations. A rigor- 
ous documention of this point will be a subject of future 
communications. 

The present paper focuses on demonstrating the accura- 
cy of the PS method as compared to RH results with the 
same basis set. Both methods are allowed to converge to 
their own equilibrium geometries, and these geometries are 
then compared. In Sec. II our formulation of the PS gradient 
procedure is presented. Section III displays results for a se- 
ries of small molecules and for glycine, a relatively compli- 
cated test case. All of these tests yield highly satisfactory 
results, in that the discrepancies between the PS and RH 
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geometries are uniformly much smaller than those obtained 
in comparisons with experiment. Section IV briefly discusses 
future directions. 

il. METHOD 
A. Basic theory 

The Hartree-Fock energy can be written as 

EHF = V,,, + 2 C P&i + C P#‘k, [XijlW - (ik b0 I, 
if ukl 

(1) 

where V,,, represents the nuclear-nuclear repulsion, the 
one-electron Hamiltonian Ho contains kinetic and potential 
terms, and the density matrix P is the following combination 
of molecular-orbital coefficients: 

Pii = z ciacja. 
a 

(2) 

The two-electron integrals in ( 1) are defined by 

(ijlkz) =JJ4i(1)#jt1) $ $k (2)561(2)drI 6, (3) 

where the 4i are basis functions. Note that (ii1 kl) is symmet- 
ric with respect to interchange of indices i and j, k and I, or ij 
and kl. 

If X, is one of the three coordinates (x, y, or z) of nu- 
cleus A, it can be shown12*‘3 that the first derivative of ( 1) 
with respect to X, has the form 

~41, SVnuc 
-=x+2p, 
ax, A $f 

+ c pgpkl 
S[2(ijjkZ) - (ik FZ) 1 

(4) 
ijkl 6x, ' 

where S is the usual overlap matrix, and W is the energy- 
weighted density matrix 

w, = c EaCi,Cja. 
a 

Fc, = SC, E, . (6) 
Note that this formulation of the gradient avoids explicit 
differentiation of the density matrix P. 

(5) 

The E appearing in (5) is the orbital energy from the Har- 
tree-Fock equation 

B. Pseudospectral approach 

The first three terms on the right-hand side of (4) are 
not difficult computationally, and we evaluate them by stan- 
dard methods13T14 in spectral (atomic orbital) space. The 
final term, 

S[2(ijjkZ) - (ik FZ) I 
~p~pk~ &yA 9 

involves derivatives of two-electron integrals. These can be 
expanded as 

G(ijlkZ) - = (i”jlkZ) + (iflkl) 
sx 

+ (ijlk”Z) + (ijlW9 

Won etab: Pseudospectral Hartree-Fock gradient 8153 

where ix represents the derivative of basis function i with 
respect to coordinate x. The conventional method here is to 
compute explicitly all possible two-electron integrals in 
which one basis function is replaced with its derivative with 
respect to some coordinate. Since these integrals are more 
numerous than the ordinary two-electron integrals, and 
since evaluation and usage of the latter dominates the com- 
putation time for the energy, it is clear that direct evaluation 
of (8) is to be avoided if possible. 

To derive the pseudospectral formulation of the energy 
gradient, we first review the pseudospectral assembly of the 
ordinary Coulomb operator, 

Jv = c P,,(ijlkZ). 
kI 

(9) 

For a more complete presentation of pseudospectral Har- 
tree-Fock theory, we refer the reader to Ref. 3. 

In the pseudospectral method, the two-electron inte- 
grals (3) are not required. Instead, we compute the integrals 

-&l(g) = &(l) L#,(l)&, 
I Ylg 

(10) 

whereg represents a grid point in physical space. From these 
three-center, one-electron integrals, the physical space Cou- 
lomb operator Jph is determined, 

Jp,, (b’) = x Pk&, (g>, 
kl 

(11) 

and the Coulomb operator in spectral space is recovered as 

Jg = C, Qi (g) Jph (g>Rj &I, (12) 
&? 

where R is the matrix of basis functions evaluated at the 
gridpoints, and Q is the least-squares operator (see Refs. 2-3 
and 5-7) given by 

Q = PS [ R+wR] - ‘R+w. (13) 
In Eq. ( 13)) w is a diagonal matrix of grid weights, and P is a 
projection operator (not the density matrix) for removal of 
dealiasing functions. The pseudospectral exchange operator 
has a similar form. 

A useful perspective in understanding Eqs. (12) and 
( 13) is as follows. The function Fj (g) = Jph (g>Rj (g) is just 
the Coulomb field from the molecular charge distribution 
multiplied by basis function j and represented on the phys- 
ical space grid g. We wish to determine the integral of this 
product function with a second basis function, i, to generate 
the matrix element Jq of the Coulomb operator. One could, 
of course, carry out the integrals analytically; this is what is 
done in conventional electronic structure methods. 

Instead, we compute the matrix element in two steps. 
First, the function Fj is expanded in a set of Gaussian basis 
functions (dealiasing functions). The expansion coefficients 
are determined by solving the weighted normal least-squares 
equations’* 

[R+wR ]c=R+wF (14) 
for c, yielding 

C= [R+wR]-‘R+wF. (15) 
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In the second step, the matrix element ofbasis function i with 
the expansion is computed: 

Jv =~% ck 4j(l>#k(l)drl. (16) 
k s 

The calculation of the analytic overlap integrals required to 
evaluate (16) is computationally trivial. The assembly of 
these steps into a single formula then yields Eqs. ( 12) and 
(13). 

The key to obtaining high accuracy in this least-squares- 
fitting procedure is optimization of the grid, dealiasing, and 
weighting functions for each atomic basis set. These optimi- 
zations are described in some detail in Refs. 4 and 5. 

Returning now to the gradient case, we examine an arbi- 
trary term in the expansion of (7) : 

implemented in the most naive possible fashion (i.e., if the 
grid was modified in normal fashion with a nuclear perturba- 
tion) . The elimination of these terms, at least to lowest or- 
der, is in practice a major advantage, as was initially hypoth- 
esized in Ref. 4. For an infinitely dense grid, these terms 
would in fact be zero; their contribution constitutes a spur- 
ious perturbation to the RH results (which, it should be 
recalled, we are attempting to mimic). The results shown 
below demonstrate the efficacy of this approach. 

2 C PijPkl(ijjklx). 
vkl 

(17) 

It would be possible to assemble this Coulomb term pseudo- 
spectrally by summing first over the indices k and I, as was 
done in Eqs. (9)-( 12): 

2CP~Pk~(Olkl”) =2CPu 2 Qj(g)Rj(g) 
okl i/ g 

X~Pk,A,,.(g)* (18) 

Before presenting results, it is worth discussing some of 
the assumptions implicit in selecting the computational 
scheme described above. The placement of derivative func- 
tions in the Q operator (as opposed to in the potential inte- 
grals A,!) has two advantages: (i) computationally, one 
avoids having to calculate a new set of potential integrals of 
higher angular momentum; and (ii) mathematically, it is 
more difficult to fit functions of higher angular momentum 
(which the differentiated functions generally are), and this 
is avoided by placing these functions in Q. However, it is by 
no means clear that this strategy is best, particularly if it 
necessitates fitting tight core orbitals instead. These issues 
will be explored in more detail in forthcoming publications; 
for now, we assert only that the procedure described here 
does work reasonably well. 

kl 

Unfortunately, this approach would necessitate computa- 
tion of one-electron integrals of the form of ( 10) with one 
basis function replaced by its derivative, 

Akj(g) = $k(l) L#lx(l)drl. 
s rig 

(19) 

Secondly, in this paper we use the same grid to calculate 
the derivatives as is used for energy evaluation. This is al- 
most certainly not the optimal procedure; at the very least, 
one should reoptimize the grid for gradient calculations. 
Again, we plan to investigate these points in future publica- 
tions. 

C. Geometry optimization 
If instead we rewrite ( 17)) taking advantage of the permuta- 
tional symmetry of the two-electron integrals, as 

2 c&k C P,Pk lij), 
Ik ij 

then the pseudospectral expansion takes the form 

(20) 

2 c plk c C&x (g)Rk (g) c P& (g>, (21) 
Ik z? il 

and no new one-electron integrals are needed. The calcula- 
tion now differs from the corresponding energy term only in 
that we need QIX (g) rather than Q,(g). The assembly of the 
derivative Q matrix is inexpensive (relative to calculation of 
new integrals). It is possible to use the same fitting functions 
[i.e., the same R in ( 13) ] for both the energy and gradient 
calculations, so that the only additional requirement for the 
gradient is projection of [ R+wR] - ‘R+w onto the set of de- 
rivative functions. 

Given a method for determining the gradient, it is possi- 
ble to optimize molecular geometries by iterative adjustment 
of nuclear coordinates so as to minimize forces. There are 
several techniques available for this; we chose to implement 
Pulay’s force relaxation method.‘6*‘7 In this method, Carte- 
sian forces are transformed to internal forces by means of 
Wilson’s B matrix, l8 new internal coordinates are calculat- 
ed, and these are transformed back to the Cartesian frame. A 
guess for the second derivative matrix is required to deter- 
mine the new coordinates; this is not updated. This method 
is clearly inferior to current state-of-the-art geometry opti- 
mization procedures, as evidenced by the large number of 
iterations required for convergence. However, our objective 
in this paper is only to demonstrate the accuracy of the final 
geometries obtained via the pseudospectral gradient evalua- 
tion. Subsequent publications will investigate questions of 
efficiency in the geometry optimization procedure. 

While we have shown here only a single Coulomb term, 
it is possible to reorder all terms of (7)) Coulomb and ex- 
change, such that the derivative function appears in Q. 

An important point to note in this procedure is that 
there is a significant difference between finite-difference 
methods and the analytic evaluation of the energy deriva- 
tives as described above. The analytic formulation avoids 
differentiating the least-squares-fitting matrix Q with re- 
spect to the nuclear coordinates; a finite-difference tech- 
nique, in contrast, would implicitly include such terms if 

III. RESULTS 
A. Computational details 

In Sec. III B we discuss the results of geometry optimi- 
zations performed with the pseudospectral gradient method- 
ology as described above. In this section we present a variety 
of numerical data related to the calculation of the gradients 
themselves. 

The finest grid ( - 900 points per atom) used in the en- 
ergy calculation was also used to compute the gradients, and 
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the geometries were converged to more decimal places than 
are shown in the tables below. In particular, the convergence 
criterion used was that all internal forces were required to be 
smaller than 0.000 24 hartrees/bohr. The GAUSSIAN 82 pro- 
gram used a convergence criterion of 0.000 45 
hartrees/bohr. 

To test the rotational invariance of the pseudospectral 
geometries, we rotated the optimized H, CO molecule by 90” 
about they axis (the z axis had been the symmetry axis) and 
reoptimized the geometry. The bond lengths were invariant, 
while the HCO bond angle changed by 0.01”. The total ener- 
gies differed by 0.000 16 hartrees. 

For this same molecule, the sum of the Cartesian forces 
in two directions is zero, while in the third direction it is 
0.000 37 hartrees/bohr. The fact that translational invar- 
iance is not preserved does not affect the optimal geometries. 

As a final test, we compare internal forces for the water 
molecule, as calculated by GAUSSIAN 82, by the pseudospec- 
tral analytic gradient method described in this paper, and by 
a pseudospectral finite-difference calculation. We note that, 
as explained in Sec. II B, the pseudospectral analytic and 
finite-difference calculations should not be expected to give 
identical results. The forces on the OH bond calculated by 
GAUSSIAN 82, pseudospectral analytic gradients, and finite 
differences were 143, 92, and 119 phartrees/bohr, respec- 
tively. For the HOH bond angle, the corresponding forces 
were - 218, 678, and - 1890 ,uhartrees/rad. 

B. Geometries 

Tables I and II display converged equilibrium geome- 
tries from the PS program and from GAUSSIAN 82 for 10 
small molecules containing first-row atoms; a 6-3 1 G** basis 
set” is used throughout. The agreement of bond lengths is 

TABLE I. Comparison of optimized molecular geometries: small molecule 
bond lengths.” 

Molecule 

CH, 
Hz0 
HCN 

HOCN 

CH,F 

NH, 
Hz% 

H,CO 

H,O, 

HCOOH 

GAUSSIAN 82 Pseudospectral Pseudospectral 
bond length bond length error 

Bond (A., 6) (A) 

CH 1.0988 1.0988 O.CWO 
OH 0.9430 0.9429 0.0001 
CH 1.0589 1.0593 - o.ocO4 
CN 1.1328 1.1319 o.ooo9 
OH 0.9482 0.9475 o.cOo7 
co 1.2875 1.2862 0.0013 
CN 1.1356 1.1342 0.0014 
CH 1.0828 1.0831 - o.cOo3 
CF 1.3646 1.3645 O.ocQl 
NH l.ooo9 1.0006 o.ooo3 
NH 1.0150 1.0144 O.COO6 
NN 1.2155 1.2139 0.0016 
CH 1.0933 1.0931 o.ocO2 
co 1.1844 1.1844 0.0000 
OH 0.9456 0.9454 o.ooo2 
00 1.3957 1.3940 o.cKJ17 
CH 1.0851 1.0846 ’ o.ocO5 
OH 0.9492 0.9489 0.0003 
co 1.3217 1.3215 o.ocQ2 
co 1.1822 1.1821 O.oool 

“All data are from 6-31G** HF calculations. 

TABLE II. Comparison of optimized molecular geometries: small molecule 
bond angles and torsional angles.” 

Pseudo- Pseudo- 
-GAUSSIAN82 spectral spectral 

bond angle bond angle error 
Molecule Angle (deg) (deg) Cd%) 

CH, HCH 102.9 102.9 0.0 
I-60 HOH 106.0 106.1 -0.1 
HCN HCN 180.0 180.0 0.0 
HOCN HOC 111.2 111.3 -0.1 

OCN 178.4 178.6 -0.2 ~ 
CH,F CFH 109.2 109.2 0.0 
NH, HNH 107.6 107.7 -0.1 
J&N, HNN 107.6 107.9 -0.3 
H, CO HCO 122.1 122.1 0.0 
%Q HO0 102.3 102.5 - 0.2 
HCOOH oco 124.8 124.8 0.0 

COH 108.9 109.0 -0.1 
O=CH 124.7 124.5 0.2 

HOCN HOCN 180.0 180.0 0.0 
CH, F HCFH 120.0 120.0 0.0 
H,N, HNNH 180.0 180.0 0.0 _ _ 
H,CO HCOH 180.0 180.0 -0.0 
H,O, HOOH 116.2 116.5 - 0.3 
HCOOH OCOH 0.0 0.2 -0.2 

HOCH 180.0 179.8 0.2 

a All data are from 6-3 1** HF calculations. 

better than 0.002 A in all cases, while that for bond angles is 
better than 0.3”. These results can be contrasted with the 
average deviation from experimental geometry for various 
widely used electronic structure models. For example, bond 
lengths of simple first-row compounds in the HF approxi- 
mation with a 6-31 G** basis set are typically in error by 
-0.01-0.02 A; furthermore, these average errors decrease 
only to 0.005 A even with larger basis sets and at the MP3 or 
MP4 level of electron correlation.20 Similarly, bond-angle 
errors are on the order of l.O”, even when electron correla- 
tion is incorporated.” These comparisons imply that use of 
the PS method contributes a negligible fraction to geometry 
errors as compared to basis-set incompleteness and electron 
correlation effects. 

Tables III and IV display the bond-length and bond- 

T=ABLE III. Comparison of optimized molecular geometries: glycine bond 
lengths.” 

GAUSSIAN82 Pseudospectral Pseudospectral 
Bondb bond length (A) bond length (A) error (A) 

NJ-H, l.ooo2 1.0001 O.oool 

N,-H, l.ocO2 1.ooo1 O.oool 

N,-C, 1.4373 1.4341 0.0032 

C,--H, 1.0853 1.0853 O.OOCKl 
G-H, 1.0853 1.0853 O.cml_~ ; 

G-C, 1.5148 1.5130 0.0018 

G-04 1.1878 1.1875 o.ooo3 

G-05 1.3288 1.3271 0.0017 

Q-H,o 0.9482 0.9482 O.CMO 

“All data are from 6-31 G** HF calculations. 
bAtom numbering scheme is shown in Fig. 1. 
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TABLE IV. Comparison of optimized molecular geometries: glycine bond 
angles and torsional angles.” 

Angleb 
GAUSSIAN86 Pseudospectral Pseudospectral 
bond angle (deg) bond angle (deg) error (deg) 

C,-N,-H, 110.6 111.0 

C&N, -H, 110.6 111.0 
N,-G-C, 115.0 114.0 
+G-J& 107.5 108.0 
C,-+H, 107.5 108.0 
G-G-04 125.4 124.6 
G-G-0, 111.8 Ll2.7 
G-Q-H,, 108.6 108.4 

CI-C,-N,-H, - 58.9 - 59.2 
C,-C,-N,-H, 58.9 59.2 
0, -C, -C,-H, 123.1 122.8 
O4 -C, -C,-H, - 123.1 - 122.8 
N,-C,-C,-o, 0.0 0.2 
O,-C,-G,-H,, 0.0 -0.1 
C,-C,-G,-H,, 180.0 180.0 

- 0.4 

- 0.4 
1.0 

- 0.5 
- 0.5 

0.8 
- 0.9 

0.2 

0.3 
- 0.3 

0.3 
- 0.3 
- 0.2 

0.1 
0.0 

“All data are from 6-3 1 G** HF calculations. 
bAtom numbering scheme is shown in Fig. 1. 

angle comparisons for glycine (NH, CH, COOH). The 
atom numbering scheme is shown in Fig. 1, and is identical 
to that of Ref. 21. Discrepancies here are slightly larger (e.g., 
one bond length is off by 0.003 A) but are still quite accepta- 
ble. These discrepancies can in fact be significantly reduced 
by further optimization of grids and dealiasing sets. Such 
work will be reported in a future communcation. 

Finally, Table V shows total energies for the 11 mole- 
cules tested here, as calculated by each program at its own 
optimized geometry. The PS and RH results are within 0.1 
kcal/mol in every instance, as was the case in our previous 
studies5-7 (in which we compared energies at fixed geome- 
tries). 

IV. CONCLUSION 
We have shown that pseudospectral Hartree-Fock 

methods are capable of yielding equilibrium geometries for 
compounds composed of first-row atoms which agree quan- 
titatively with those obtained from conventional Hartree- 
Fock programs. Glycine, in particular, is a reasonably de- 
manding test case, and the accurate computation of the tor- 
sional angles for this system suggests that the PS method will 

4 
I 

% 

H7+-C 
7\0, - I-40 

l n’ 
Iis -Hs 

FIG. 1. Glycine molecule. 

TABLEV. Comparison ofoptimized molecular geometries: total energies.” 

Molecule 

CH, 
Hz0 
HCN 
HOCN 
CH, F 
NH, 
JAN, 
H,CO 
Hz 0, 
HCOOH 
Glycine 

Pseudo- Pseudo- 
GAuSSlAN82 spectral spectral 

energyb energy” error 
(hartrees) (hartrees ) (hartrees) 

- 38.876 308 - 38.876 270 O.OCG 038 
- 76.023 615 - 76.023 628 - o.ooo 013 
- 921877 138 - 92.877 097 o.ooo 041 

- 167.729 022 - 167.729 144 - o.mo 122 
- 139.039 736 - 139.039 646 o.coo 090 
- 56.195 545 - 56.195 552 - o.ooo 007 

- llO.COl231 - 110.001301 - o.ooo 070 
- 113.869 743 - 113.869 862 -0.ooo 119 
- 150.776 965 - 150.777 115 - o.ooo 150 
- 188.770 566 - 188.770 665 - o.om 099 

- 282.848 342d - 282.848 215 0.000 127 

‘All data are from 6-3 1 G** HF calculations. 
‘Total energy at GAUSSIAN 82 optimized geometry. 
‘Total energy at pseudospectral optimized geometry. 
dGlycine optimized with GAUSSIAN 86 rather than GAUSSIAN 82. 

be quite suitable for studying conformations of complicated 
organic molecules. 

A great deal of work remains to be done in developing a 
complete PS geometry optimization scheme. One approach 
we are currently pursuing is to use a much less expensive grid 
and dealiasing set for most of the gradient steps, employing 
accurate parameters only for the last few iterations. If rough- 
ly 10-15 steps are required for optimization, an overall sav- 
ings of a factor of 2-4 in CPU time could be realized. This 
additional factor, when multiplied by the previously docu- 
mented improvements for single-point calculations (a factor 
of 10 for glutamine), would result in an overwhelming ad- 
vantage for the PS approach, one which further modification 
of conventional programs would be extremely unlikely to 
overcome. Furthermore, additional improvements in the ba- 
sic algorithms of the PS method and optimization of grid and 
dealiasing parameters will continue to produce CPU reduc- 
tions and accuracy increases for some time to come. 

Extensions of the methodology to other atoms and to 
correlated calculations is currently in progress. GVB gradi- 
ent calculations will be reported shortly, and appear to yield 
a level of accuracy similar to that presented here. A method 
for calculating atomic charges from the pseudospectral elec- 
trostatic potential has been developed and will be reported in 
a subsequent paper. Optimization of grid and dealiasing pa- 
rameters for second-row atoms and transition metals is a 
tedious but tractable task which is proceeding successfully. 
Second-derivative PS methods, involving solution of the 
coupled perturbed HF equations, are also underway. 
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