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Several additions to the pseudospectral Hartree-Fock theory are described, including a
localized least-squares procedure, various numerical cutoff algorithms, and calculation of all
integrals in the diatomic frame. This pseudospectral method is tested on 23 molecules, ranging
in size from two to twenty atoms (200 6-31G** basis functions). A direct comparison of
accuracy and computational efficiency is made with the conventional electronic structure
programs GAMESS, GRADSCF, GAUSSIAN 86, and GAUSSIAN 88. The pseudospectral code is
shown to be up to nine times faster than any of the above programs for the molecules tested
here; moreover, this timing advantage increases with molecular size, suggesting that ab initio
calculations may soon be possible on large systems not accessible by the Roothaan—Hall

procedure.

I. INTRODUCTION

The Roothaan-Hall (RH) method® for self-consistent
field (SCF) calculations at the Hartree~-Fock (HF) level of
approximation has been a standard tool of computational
quantum chemistry for some time. This technique has a
number of outstanding features, not the least of which is the
vast body of experience acquired by thousands of researchers
over the past thirty years. Unfortunately, the computational
effort is dominated by evaluation and usage of four-center,
two-electron integrals (electron repulsion integrals) of the
form

Lyro = Jf¢p (r)),(r;) %Gﬁx (ry)¢,(ry)dr, dr,,
12
(n

where the ¢, are basis functions, and r,, », represent the
positions of two electrons. These integrals present five major
problems in a standard RH code:

(i) The number of such integrals grows as N %, where N

is the total number of basis functions used.

(it) The individual integrals are rather expensive to

compute,’ requiring a large number of floating point

operations (flops).

(iii) The computation of such integrals is not easily

adaptable to modern vector hardware.

(iv) All N*integrals are needed at each step of the SCF

iteration procedure.

(v) Disk storage of O(N *) values is impossible on many

machines even for medium-sized (N = ~250) calcula-

tions.

The last of these difficulties can be avoided by using the
“direct” method of Almlof, Faegri, and Korsell,® i.e., by
recalculating the integrals at each iteration. This solution
allows calculations on systems where the available disk
space is less than N* note, however, that it magnifies the
effect of (ii) and (iii). A recursive assembly of the Fock
matrix F, usually used in combination with the direct meth-
od,>* permits a reduction in the number of integrals used
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per iteration, since some integrals cease to contribute to the
incremental improvements of F as convergence is reached.

Much effort has been devoted to minimizing the flops/
integral ratio for the RH method.® Recently, Obara and
Saika’ have presented a recursive scheme for the calculation
of two-electron integrals, which has been implemented by
Head-Gordon and Pople® in the GAUSSIAN 88 system of pro-
grams. In addition to reducing the flop count, this method
allows for some degree of vectorization of the otherwise
purely scalar integral assembly; however, the vector loops
involved are relatively short, and thus cannot take full ad-
vantage of the available hardware.

Thus progress has been made in recent years in regards
to problems (ii)—(v). The advent of direct SCF methods has
removed the computational load from the I/0 subsystem
and focused it upon the CPU, where modern computers ex-
cel. However, none of the improvements listed above direct-
ly address the most oppressive problem: that the number of
integrals grows rapidly with basis set size. While cutoffs (the
elimination of negligibly small integrals) can reduce the
scaling of the method from N * for larger systems, RH calcu-
lations on large molecules remain difficult if not impossible.
As an example, we point out a recently published coupled
HF calculation® on the highly symmetric C, (*“Buckmin-
sterfullerene”) at the 6-31G* level (900 basis functions),
which took 10 CPU days on a Cray X-MP/48. It should be
clear that, if ab initio calculations on arbitrary, nonsymme-
tric large molecules are to be performed in an efficient man-
ner, the scaling behavior of the RH method must be avoided.

In a series of recent papers,'®'® we have reported the
development of a new ab initio method which scales as N3
(rather than N *). This method is a synthesis of ordinary RH
techniques (including such recent advances as direct SCF
and Fock matrix updating) with the pseudospectral meth-
od,'® originally developed for hydrodynamic simulations.
For the basic equations of this pseudospectral Hartree-Fock
theory we refer the reader to Refs. 10~12; we point out here
only that the pseudospectral approach involves the use of
both a spatial grid and ordinary quantum chemical basis
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sets, thereby eliminating two-electron integrals while retain-
ing the accuracy of the RH (spectral) method.

In addition to presenting the basic theory, Refs. 10 and
11 included results from pseudospectral HF calculations on
atoms and diatomic molecules, using Slater basis functions.
Reference 12 applied the method to the water molecule, us-
ing 6-31G** Gaussian basis sets.'” In Ref. 13, an algorithm
for automatic construction of molecular grids was suggest-
ed. Such an algorithm is required for calculation on arbitrary
polyatomics; that provided in Ref. 13, although amended
slightly in the present paper, has proven remarkably robust.

We introduced, in Ref. 14, an inexpensive Newton-
Raphson convergence scheme, a pseudospectral direct SCF
procedure, multigrid techniques, and other improvements to
the original algorithm. The method was tested on the glycine
molecule (10 atoms, 100 basis functions) at the 6-31G**
level, and a direct comparison with RH programs showed
substantial reductions in CPU times, while maintaining ade-
quate accuracy.

Most recently,'® we extended the method beyond the
HF approximation, including electron correlation effects
through the generalized valence bond (GVB) formalism.'®
Reference 15 also includes the first tests of the method with
other Gaussian basis sets, with effective core potentials, and
on a second row atom (Si).

In this paper, we present several additional improve-
ments to the pseudospectral algorithm and compare the cur-
rent pseudospectral code to other available electronic struc-
ture codes in terms of accuracy and computational
efficiency.

In Sec. II, changes to the grid generation algorithm are
detailed, and a grid sorting procedure is presented. These
changes reduce the directional dependence of the atomic
grids, allow faster assembly of the RT wR matrix used in the
least-squares procedure, and facilitate the use of various cut-
offs throughout the program.

Section III lists major changes to the dealiasing/least-
squares algorithm which yield greater accuracy, reduced
CPU time, and reduced memory usage, at the cost of more
complex coding.

The three-center, one-electron integrals are now calcu-
lated and used in the diatomic frame. This reduces the num-
ber of flops per integral, but requires transformation of sev-
eral matrices into or out of the diatomic frame. These
changes are presented in greater detail in Sec. IV below.

Finally, in Sec. V, we present results of HF calculations
on 23 molecules, ranging in size from H, to glutamine
(CsN,0;H, ). We compare the pseudospectral results to
those of GAMESS, GRADSCF, GAUSSIAN 86, and GAUSSIAN 88,
and note that not only is the pseudospectral code substantial-
ly faster, but that the scaling of CPU time with basis set size
is considerably better.

li. GRID GENERATION AND ITS ALGORITHMIC
IMPLICATIONS

In this section we detail changes and additions to the
algorithm for automatic atomic grid generation of Ref. 13, as
well as our use of the resultant grids.
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We have added, as an option, 29 angular gridpoint dis-
tributions by Lebedev'®?' and Stroud®* to the existing an-
gular grids which were described in Ref. 13 and are based
upon the work of Glatzmaier.”> The Glatzmaier grids con-
sist of points arranged in latitudinal rings on the sphere, and
the quality of the numerical quadrature was found to vary
depending upon the orientation of the polar axis. The newer
grids are expected to alleviate this problem, as they have a
much more even distribution of points about the sphere. The
grids discovered by Lebedev have octahedral symmetry and
range in size from 38 to 302 points, while those given by
Stroud are generally smaller and have either octahedral or
icosahedral symmetry.

In our previous paper,'* we used four sizes of molecular
grids in the SCF convergence scheme: a very coarse grid,
used only to construct the approximate Hessian for the New-
ton—Raphson procedure; a medium sized grid used for most
of the SCF iterations; an ‘“‘ultra-fine” grid used for a single
iteration, after which Fock matrix updating was used; and
the fine grid, intermediate in size between the medium and
ultrafine grids, which was used only on the first updating
step. We have changed this scheme only in that we have
eliminated the fine grid. Due to changes in the least-squares
procedure described below, as well as further optimization
of grid parameters, the medium grid is now of sufficient
quality to take the place of the fine grid. This resuits in a
considerable savings of CPU time, since now neither the Q
matrix nor the integrals for the fine grid need to be comput-
ed.

In Ref. 14, we presented an algorithm for constructing
the R" wR matrix in an efficient manner, based upon conden-
sation of basis and dealiasing sets into blocks of s, sp, spd, and
spdf functions (K, L, M, and N shells). We outline here a
modification of this scheme which also takes advantage of
the special structure of the atomic grids. In particular, the
exponential part of a Gaussian function depends only upon
the radius r from its center, and not upon any angular co-
ordinates. Since the atomic grids are arranged in radial
shells, the exponential function needs only be evaluated N,
times (where W, is the number of radial shells), rather than
once for each gridpoint. This is of course only true when the
centers of the Gaussian and the atomic grid coincide.

Given a set of Gaussians centered on atom A, another
set on atom B, and a (truncated) atomic grid centered on
atom C, construction of the relevant piece of the Rf wR ma-
trix proceeds by one of three paths:

(1) If Cis different from both A and B, then the method
of Ref. 14 is used, i.e., we construct all possible products of
the radial functions and all of the angular functions neces-
sary at each gridpoint, then sum over the grid. If the average
number of angular functions per exponential pair is N,, each
radial shell contains an average of N, gridpoints, and there
are N, and Ny unique exponents on atoms A and B, respec-
tively, then the cost of this calculation is N, N, N, N, Ny . The
fraction of atom triplets A, B, C which must be done by this
method is approximately (¥, — 1)/ (Nom + 1)-

(ii) If A, B, and C are identical, we need only calculate
the exponential product at each of the ¥, shells, then sum
the angular and radial parts over shells. The rate-determin-
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ing step here costs (N,N,N7 )/2, and thus a factor of N, is
saved.

(iii) If A and C coincide, but A and B do not, the calcu-
lation is carried out in two steps. First, we sum the angular
functions with the radial functions from atom B, over the
gridpoints in each radial shell. The resultant matrix is multi-
plied by the matrix of exponentials from atom A, evaluated
at each radial shell. The «cost here is
N,N,NNg + N,N,N, Ng.

For the finest grid used, N, and Ny average ~ 10, &V, is
18, and N, is ~50. This suggests a reduction in CPU time
from case (i) of a factor of 50 for case (ii) and a factor of
about 10 for case (iii), and these reductions were in fact
achieved. Note that cutoffs based upon the exponential de-
cay of basis functions eliminate a large percentage of case (i)
calculations, thus increasing the importance of the above
improvements for cases (ii) and (iii) for which cutoffs are
not so effective.

To facilitate the implementation of the various cutoff
schemes described in this paper, we found it necessary to sort
the atomic grids into sets of spatially contiguous blocks. The
algorithm for this reordering of the radially generated grid is
as follows. Suppose the target size of each contiguous block
is N, gridpoints. The first block is made up of the inner-
most radial shells, as many as will fit within the N, limit.
For the next radial shell(s), a relatively small set of evenly
spaced points (“nuclei”) is generated, and each gridpoint in
the radial region is assigned to the “nucleus” to which it is
closest. We currently use as nuclei the vertices of a dodecahe-
dron. A list of neighboring nuclei is maintained, and neigh-
bors are combined if the number of gridpoints in the com-
bined block does not exceed N, . The process is repeated
for the shells at larger radii. More than one radial shell may
be processed at once, depending upon the number of grid-
points in each shell.

Having sorted the grid, we then calculate the minimum
distance from each gridblock to each atomic center (by sim-
ply examining each gridpoint in turn), and store these values
for use in the cutoff schemes described in Secs. III and IV
below. The minimum distance computation, together with
the sort, takes less than 0.1 CPU seconds/atom and is there-
fore computationally trivial.

lil. LOCALIZED LEAST-SQUARES PROCEDURE

In order to transform the pseudospectral Fock operator
back to spectral (atomic orbital) space, the N X M matrix
(M is the number of gridpoints)

Q=S[R'wR] "'R'w (2)

must be formed S in Eq. (2) is the analytic overlap matrix,
while R is the matrix of basis and dealiasing functions evalu-
ated at the gridpoints, and w contains the grid weights]. As
originally formulated,'? construction of the least-squares
matrix Q presented two computational problems. The first
was the effort required to assemble the matrix

C=R'wR 3)

which would scale as N 3, with a very large prefactor, if done
directly. This problem has been addressed in Ref. 14 and in
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Sec. II of this paper; the time required for the assembly of C
now grows more slowly than N 2.

The second difficulty is the size of C. For X basis func-
tions, roughly 6V dealiasing functions are required, so that C
has ~0.5*%(7N)? unique elements. Although the entire ma-
trix could be stored in core memory for even the largest of
our current test cases (N = 200), this would not be true for
larger N.

One possible remedy would be to simply store the ma-
trix on disk and use an out-of-core routine for the inversion.
The inversion itself, however, requires O(N*) operations,
and if the size of C is allowed to grow without bound, this
step will eventually dominate the computation time.

Instead, we choose to localize the least-squares proce-
dure, forming and inverting several (smaller) C matrices,
each of which is used to form one or more rows of Q. Two
separate algorithms are employed here, one for short-range
basis functions (defined at present as those having a radial
exponent larger than 0.5) and another for the more extended
functions. We first describe the short-range scheme; the oth-
er follows in Sec. III B.

A. Assembly of Q, short range

For the 6-31G** basis set, nearly all functions qualify as
short range; only the 2s of hydrogen and the 3sp of first row
atoms have exponents smaller than 0.5. Each atomic set of
short-range functions is treated separately, i.e., N, least-
squares solutions are obtained, each projected back onto the
basis set using only the relevant rows of the overlap matrix.
The advantage in this method is that, as might be expected,
functions which do not overlap the target functions (the
atomic block of short-range functions) need not be included
in the fitting matrix. In fact, we find that functions having
nonzero overlap with the target functions, but whose centers
lie outside of the range can also be excluded. This reduces the
size of the C matrix considerably.

We further enforce the exclusion of functions on distant
centers by multiplying the diagonal matrix of grid weights w
by exp( — A7), where r is the distance from the gridpoint to
the common center of the target functions and A is the small-
est of the radial exponents of those functions. This has the
effect of forcing a better fit near the nucleus, where the basis
functions have larger amplitude. Additionally, it allows all
gridpoints lying beyond some cutoff radius to be ignored.
The minimum distance data described in Sec. II are used to
determine which particular gridblocks are to be kept.

To assemble the fitting matrices in an automatic way,
we maintain a list of “neighbors” for each atomic center. For
example, all centers closer than 3.0 bohr are defined as near-
est neighbors, those at a distance of 3.0-5.0 are next-nearest
neighbors, etc. Dealiasing sets are then optimized for both
atoms and relative positions, e.g., all carbon atoms appear-
ing as next-nearest neighbors of the central atom (the center
of the particular localized least-squares calculation) have
the same dealiasing set, though this set might be different
than the carbon nearest neighbor set. Tests show that a mini-
mal set of functions can be used for next-nearest neighbors,
and that next-next-nearest neighbors can be ignored.

The net result is to create NV,,,,,,, short-range C matrices,
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each constructed from only 100400 functions and no more
than 14 000 gridpoints. Because these matrices have a fixed
size, the computational effort here grows linearly with the
number of atoms. Furthermore, this procedure increases the
accuracy of the least-squares fit, since the fitting matrices
constructed in this way can be optimized individually with-
out causing instabilities in the overall procedure.

B. Assembly of Q, long range

Having removed the short-range functions in the man-
ner described above, the simplest procedure to deal with the
extended functions is to simply regroup them into a single
block, and assemble one C for all. The number of fitting
functions necessary is somewhat smaller due to the absence
of the short-range functions, but only by 20%-30%, and so
the size of this long-range C matrix eventually becomes un-
reasonable.

One could adopt the same strategy that was used suc-
cessfully for the more localized functions, i.e., create individ-
ual C matrices for each atom and use an exponential weight-
ing factor. This would again result in linear scaling with
molecular size, but with a very large prefactor. The difficulty
here is that the radial functions die off very slowly, so that
functions from dozens of neighboring atoms might need to
be included in each fitting matrix.

In this case the multiplication of grid weights by the
exponential envelope does little good: the envelope function
itself is rather flat. Abandoning it brings two rewards: (i) a
separate fitting procedure is no longer necessary for every
atom, and (ii) elements of C which occur in more than one
localized procedure can be reused (i.e., the matrix w is the
same for all C). The latter is quite important from the stand-
point of computational efficiency, since any division of the
long-range functions will create C matrices which have a
large number of functions in common. The former is useful
because, e.g., a hydrogen atom is likely to have very nearly
the same list of neighbors as does the atom to which it is
bonded. Given that fitting functions are assigned based upon
the neighbor list, it makes sense to combine the C matrix for
the hydrogen with that of its neighbor, as the two matrices
are likely to be nearly identical.

The algorithm we use, then, is as follows. The starting
point is ¥,,,.. atomic long-range blocks (i.e., N, potential
C matrices). Each block is assigned a set of fitting functions
asin the short-range algorithm (the dealiasing sets used here
are different, of course: they include smaller exponents and
functions on more distant centers). The merger of adjacent
blocks is then considered. The set of fitting functions for a
combined block is the union of the two original sets; this
must be sufficiently small that the resultant C matrix will fit
into the available memory. If this condition is not satisfied,
the merger is rejected. All possible combinations are exam-
ined before each merger so that the pair of blocks with the
most common elements can be joined. This process is repeat-
ed until all possible mergers are rejected by size limitations.
For small molecules, this results in a single long-range block.
Should there be more than one long-range block at this
point, the order of calculation of the C matrices is rearranged

s0 as to minimize the number of elements which must be
saved after each matrix assembly.

We currently restrict the C matrices to have dimension
880 or less. This is considerably larger than the short-range
blocks, but is still manageable. Note also that matrix inver-
sions of this size are relatively inexpensive and do not domi-
nate the CPU time for this step. Most importantly, the maxi-
mum dimension of C given above does not increase with
molecular size.

C. Symmetrization of the Fock matrix

An issue related to the foregoing is the symmetrization
of the Fock matrix. The pseudospectral Fock matrix is not
necessarily Hermitian, and we previously symmetrized it by
averaging the off-diagonal elements.'* Comparison of pseu-
dospectral and spectral Fock elements shows that accuracy
can be gained in some cases by preferentially choosing either
F; or F; and discarding the other. In particular, the short-
range rows of Q are now more accurate (because of the expo-
nential weighting and individual least-squares solutions)
than the long-range rows. Furthermore, among the short-
range rows, those with the largest exponents are the most
accurate. To take advantage of this, we establish a priority
schedule for the basis functions, assigning an integer weight
to each function. If the priority number of function i is higher
than that of j, F;; is kept and F; discarded. For functions of
equal priority, F; and F}; are averaged as before. For the 6-
31G** basis set, we assign the the highest priority (4) to the
heavy atom 1s functions, and the lowest (0) to the long-
range functions. The first row 2sp block is given priority 1,
the 3d priority 2, and the hydrogen short-range functions
have priority 3. This scheme has the additional advantage of
saving some time in the final assembly of the Fock matrix,
since we no longer need to compute all N 2 elements.

IV. THREE-CENTER, ONE-ELECTRON INTEGRALS

Our original integral package was a fairly straightfor-
ward implementation of the formulas given by Taketa, Hu-
zinaga, and O-Ohata.?* Allintegrals were calculated at once
in preprocessing and stored on disk. This procedure was not
grotesquely inefficient because vectorization was possible
over the gridpoints, and because the pseudospectral method
does not require four-center, two-electron integrals. We
have completely rewritten the integral code, implementing
three major new features: (i) vectorization of calculations
which do not include a grid index; (ii) recalculation of all
integrals by default, with optional storage of some or all; and
(iii) computation of all integrals in the diatomic frame.

Of these, the most important advance is the third. A
huge reduction in the number of operations necessary per
integral is obtained when the problem is transformed from
the molecular coordinate system to the two-dimensional
(cylindrical) space which is natural to the three-center inte-
grals (recall that the pseudospectral integrals are indexed by
two basis functions and a gridpoint). There is of course a
price to be paid: the results must be transformed back to the
molecular frame. Instead of transforming the integrals
themselves (an operation which would scale like N2M,
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where M is the number of gridpoints), we choose to trans-
form the eigenvectors, the grid coordinates, and the M XN
matrix RP (the product of the matrix of basis functions eval-
uated on the grid R and the density matrix), assemble the
Coulomb and exchange operators in the diatomic frame, and
back-transform the resultant N' X M exchange matrix to the
molecular frame (note that the pseudospectral Coulomb op-
erator is simply a vector on the grid, and is thus invariant).
The CPU time required for these transformations is not neg-
ligible; they in fact consume 9% of the total time for gluta-
mine. However, this is more than offset by the savings in the
calculation of the integrals themselves, especially for “di-
rect” SCF.

The structure of the Coulomb and exchange operator
assembly, including integral calculation, is as follows. The
integral package is called, for a given gridblock, once for
each pair of atoms. The integral driver loops over blocks of
basis functions (e.g., s, 2sp, 3d, etc.) on each atom and calls
a specialized routine for each type of function block pair.
Within the latter routine, the functions®

1
F, (1) =f u?e ™ "“du (4)
0

are constructed, and the various quantities which do not de-
pend upon the grid (“constants™) are assembled, vectoriz-
ing over the list of pairs of primitive Gaussians which have
survived cutoffs. The F, functions and the “constants” are
combined by matrix multiplication, and the final assembly
of the potential integrals is vectorized over the grid. A rou-
tine to compute the pseudospectral exchange operator from
the integrals is then called. Finally, the Coulomb operator is
calculated, and control is returned to the main program.
One use of the minimum distance data described in Sec.
I1 is in the computation of the primitive functions F, (yr *)
on the grid. Here y is the exponent of a product Gaussian,
and r is the distance from the product center to the gridpoint.
Our general approach to this calculation is given in Ref. 12;
we modify it here to take advantage of the fact that
F,(t) <erf[sqrt(2)], and that erf(x) goes rapidly to 1.0 as x
increases. We set a cutoff of 165 for yr..”
[1 — erf(sqrt(16.5)) <10~ %]; for the gridblocks which
meet this condition, the table look up and interpolation is
avoided, and the F, reduce to the asymptotic formula

Qv — D72
20+ ltv+ 172

F,(1) = &)
This cutoff criterion is satisfied 69% of the time for glycine
and 77% for glutamine.

In addition to the asymptotic form for the functions F,,
cutoffs in the integral package include a simple check of the
size of the exponential prefactor, and estimates of the even-
tual contribution to the Fock matrix, based upon the prefac-
tor, the density matrix, and the intermediate matrix RP de-
fined above.

We have added an option which allows storage of the
most expensive integrals while recalculating the rest. The
“semidirect” method, pioneered by Hiser and Ahlrichs,’
allows optimization of the CPU/disk storage tradeoff. In
our implementation, we avoid the need for estimates of CPU

time for each type of integral by the simple expedient of
calling timing routines before and after the first calculation
of any integral block. If the time returned is greater than a
(machine-dependent) cutoff, the set of integrals is stored,
and a flag is set. The fact that the timing routines and the
cutoff are machine dependent is not a drawback to this meth-
od, since the problem being solved, optimization of hard-
ware resource usage, is inherently machine dependent. Fig-
ure 1 shows that this scheme works, e.g., storage of 20% of
the integrals saves 50% of the extra CPU time. This entire
issue is somewhat less important for the pseudospectral
method than for purely spectral codes, since the difference in
CPU time between fully standard SCF and fully direct SCF
is only ~15% (Hiser and Ahlrichs report an increase of
30% in CPU time for an 88% direct case).

V.RESULTS

In this section, we present a direct comparison of the
performance of our pseudospectral HF code with that of the
conventional programs GAMESS, GAUSSIAN 86, GAUSSIAN 88,
and GRADSCF. Considering the complexity of electronic
structure codes (some include over 100 000 lines of FOR-
TRAN), there are a surprising number of different RH pro-
grams in existence. We chose the four listed above because
they are widely known, state of the art, and readily available.
All results reported below are from single-geometry HF cal-
culations using the standard 6-31G** basis sets.

We tested some 23 molecules for accuracy against
GAUSSIAN 86, and ran all five programs on the largest six of
these in order to compare computational efficiency. Our
program at present does not take advantage of molecular
symmetry in any way, though we intend to rectify this in the
near future. For this reason, symmetry was explicitly turned
off in the four spectral programs. The largest of the mole-
cules tested here are, in any case, non-symmetric.

Unfortunately, we did not have access to all four RH
programs running on a single computer. GAUSSIAN 86 and
GRADSCF were tested on a Cray X-MP/24, while GAMESS
and GAUSSIAN 88 were run on a Cray X-MP EA/14se. Tests
on our own program indicate that CPU times vary by no
more than 4% between the two machines.

69

67 |

65 |

63

CPU seconds

61

0 20 40 60 80 100
% integrals stored

FIG. 1. CPU s vs percentage of integrals stored on disk, for pseudospectral
HF calculations on glycine, on a Cray X-MP/24.
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TABLE L. Comparison of pseudospectral and conventional programs: accuracy.®

Pseudospectral Pseudospectral
Molecule Reference® Egy© (hartrees) error (hartrees) error (kcal/mol)
H, 26 —1.131334 — 0.000 004 — 0.002
N, 26 — 108.943 949 — 0.000 002 —0.001
0, 26 — 149.529 475 0.000 128 0.080
HF 26 — 100.011 351 0.000 044 0.028
(0] 26 — 112.737 877 0.000077 0.048
H,CO 26 — 113.869 742 0.000 088 0.055
H,0 26 — 76.023 615 - 0.000 007 — 0.004
H,0, 26 — 150.770 784 — 0.000 028 —0.018
HCN 26 —92.865 968 0.000 056 0.035
HOCN 26 — 167.708 663 0.000 103 0.065
CH,F 26 — 139.038 782 — 0.000 092 —0.058
C,H, 26 — 76.821 837 — 0.000 049 —0.031
C,H,OH 26 — 152.892 173 0.000 026 0.016
CH,0H 26 — 115.045 721 — 0.000 045 —0.029
CH,NH 26 — 94.035 706 0.000 074 0.046
NH, 26 — 56.195 375 — 0.000 009 —0.006
NH,F 26 — 154.959 174 0.000 002 0.001
Cyclobutadiene — 153.634 912 0.000 105 0.066
Glycine 0° 27 — 282.844 468 - 0.000 093 —0.058
Glycine 150° 27 — 282.841 397 0.000 156 0.098
Glycine 180° 27 — 282.841 671 0.000 080 0.050
Benzene — 230.701 687 — 0.000 001 —0.001
Uracil 28 — 412.479 487 0.000 020 0.013
Glycylglycine 29 — 489.550218 0.000 022 0.014
Glutamine 30 — 528.646 752 — 0.000 025 —0.016

* All data are from 6-31G** single-geometry HF calculations w/o symmetry on a Cray X-MP/24.

®Source of molecular geometry.
“ Roothaan-Hall total energies from GAUSSIAN 86.

In addition to the Crays, we have successfully run our
code on minisupercomputers made by Alliant, FPS, and
Stellar. In this paper we present results only for the Crays, on
which a direct comparison of the various programs was pos-
sible. However, reductions in CPU usage appear to be of
similar magnitude on the smaller machines. Furthermore,
disk storage on these machines is relatively limited; the RH
programs which store integrals on disk could not have been
tested for the largest molecules.

A. Accuracy

In Table I we report total energies for 23 molecules, as
determined by the pseudospectral program and by GAUS-

SIAN 86. The molecules tested range in size from two to twen-
ty atoms (10 to 200 6-31G** basis functions). The geome-
tries for most of the smaller molecules were obtained from
Ref. 26, while the nuclear coordinates for the largest were
taken directly from neutron diffraction data. The three gly-
cine geometries are those we previously tested in Ref. 14.
The source of geometry information for each molecule is
listed in Table I, with two exceptions. Benzene and cyclobu-
tadiene were constructed from arbitrary bond lengths and
angles, in order to verify the efficacy of the pseudospectral
program at non-equilibrium geometries.

The molecules in Table I contain only hydrogen and
first row atoms. We have not yet optimized atomic grids and
dealiasing sets for atoms further down the Periodic Table,

TABLE II. Comparison of pseudospectral and conventional programs: CPU timings (ins).”

Molecule

(basis functions) GAMESS” GAUSSIAN 86  GAUSSIAN 88°° GRADSCF  Pseudospectral®
Cyclobutadiene (80) 98 152 209 88 44
Glycine (100) 267 416 503 194 68
Benzene (120) 439 702 634 367 111
Uracil (140) 760 1297 1242 611 143
Glycylglycine (175) 1990 3729 2067 1302 245
Glutamine (200) 3367 6667 3458 (d) 378

= All data are from 6-31G** single-geometry HF calculations w/o0 symmetry.

®GAUSSIAN 88 and GAMESS were tested on a Cray X-MP EA/14se, while all other timings are from a Cray X-
MP/24. Timings for pseudospectral code differ by no more than 3 s between the two machines.
€ GAUSSIAN 88 and the pseudospectral program were run in ‘direct’ mode; GAMESS, GAUSSIAN 86, and GRADSCF

stored integrals on disk.
9 Calculation not possible due to GRADSCF sort limit of 200 million elements.
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though that work is now in progress. While a fairly limited
number of atoms appear in these molecules, a wide variety of
molecular structures are represented. Included are single,
double, and triple bonds, four- and six-membered rings,
homo- and heteronuclear rings, nonsymmetric and highly
symmetric molecules, planar and globular systems, zwitter-
ions (glycylglycine and glutamine), and a number of differ-
ent organic functional groups.

For each of the 23 molecules, the difference between the
pseudospectral and RH results is less than 0.1 kcal/mol
(0.000 16 hartrees), and for most it is considerably smaller.
We believe that this is adequate accuracy for most if not all
applications in which the RH method is currently used.

An important point is that the grids and dealiasing sets
for each molecule were chosen in a completely automatic
way, i.e., we now have, in addition to the 6-31G** basis set
for (e.g.) carbon, three 6-31G** carbon grids ( coarse, medi-
um, and fine) and similarly, three 6-31G** carbon dealias-
ing sets. Of course, our grids and dealiasing functions are
expected to change in the future; optimization is far from
complete.

Because the grids and dealiasing sets are currently non-
optimal, we expect the accuracy of the pseudospectral pro-
gram to increase in the future. It is interesting to compare the
current results with those of Refs. 10 and 12 and to note that,
as the molecular size increased, the pseudospectral accuracy
increased also. This is not, of course, a feature of the method,
but rather an indication of our growing understanding of the
complicated interrelationships between basis sets, grids, and
dealiasing functions.

Finally, we note that the accuracy of the pseudospectral
method is tied to the size of the finest grid. Increasing the
number of gridpoints {in a controlled fashion) will increase
the accuracy (i.e., the agreement with the RH result), at
some cost in CPU time; conversely, if the current level of
accuracy is unnecessarily high, the grid size can be reduced,
with a resultant reduction of cost. We intend eventually to
develop a variety of grids, so that the desired level of agree-
ment with RH may be input by the user along with the mo-
lecular geometry and choice of basis sets.

B. CPU times

In Table II we present CPU times for HF calculations
on a variety of medium-sized molecules. As noted above,
GRADSCF and GAUSSIAN 86 were run on a different machine
than the other conventional programs. The results for our
program in Table II are from the X-MP/24; the timings on
the X-MP EA/14se differed from these by no more than 3
CPU s in any case. The pseudospectral program can be seen
to achieve substantial advantages for every molecule listed.
More importantly, the advantage increases with molecular
size, from a factor of 2 (vs GRADSCF) for cyclobutadiene to
nearly a factor of 9 (vs GAMESS) for the largest molecule,
glutamine.

The data in Table II give some indication of the superior
CPU scaling of the pseudospectral method with basis set
size. In order to examine this more closely, in Table III we
divide the pseudospectral CPU times from Table II into
three parts: (a) preprocessing time, which is dominated by
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the assembly of the least-squares matrix Q, but also includes
such tasks as basis set input and indexing, overlap and one-
electron matrix computation, and grid generation; (b) inte-
gral calculation and assembly of Coulomb and exchange op-
erators; and (c) Fock matrix preprocessing and assembly.

The last of these is dominated (for glutamine) by four
operations: assembly of the intermediate matrix RP, the
transforms to and from the diatomic frame, and the multipli-
cation of the pseudospectral Fock operator by Q.

The CPU times in Table III are shown graphically in
Figs. 2(a)-2(c), along with lines indicating the correspond-
ing times for hypothetical programs that scale as N, N, or
N>. It should be noted that because the molecules listed in
Table II took varying numbers (8-10) of Newton—Raphson
iterations to converge, the actual CPU times were scaled in
Table III to a constant eight iterations. Thus the sums of
CPU times from Table III may not equal the actual total
reported in Table II.

It can be seen from Fig. 2(a) that the preprocessing part
of the program scales somewhat better than N 2. This sug-
gests both that the algorithmic changes of this work and of
Ref. 14 were successful, and that this part of the calculation
will consume a negligible part of the CPU time for larger
molecules. We expect, based upon the discussion in Sec. II1,
that this part of the calculation will scale linearly with mo-
lecular size in the asymptotic limit. Clearly, that limit is be-
yond 20 atoms, and Fig. 2(a) shows an inconsistent scaling
behavior. This can be attributed to two factors:

1. Benzene and uracil are planar systems, while glycylg-
lycine and (especially) glutamine are more globular. A
globular molecule requires larger fitting matrices, since each
atom has a larger number of neighbors. Thus a more sub-
stantial increase in CPU time should be expected from uracil
to glycylglycine than from benzene to uracil.

2. The decomposition of the long-range C assembly be-
gins with glycylglycine. Uracil requires only one long-range
least-squares matrix, glycylglycine two, and glutamine
three. Since the number of these matrices is limited to N, ,
this must eventually scale linearly, even though the growth
in this region is faster than that.

The time used by the portion of the program that calcu-

TABLE III. Pseudospectral CPU timings by task (ins).*

Molecule Fock
(basis functions) Preprocessing® Integrals® assembly?
Cyclobutadiene (80) 20.1 17.2 7.0
Glycine (100) 28.7 26.7 12.5
Benzene (120) 43.6 46.2 20.3
Uracil (140) 48.4 55.4 28.3
Glycylglycine (175) 82.3 94.0 58.5
Glutamine (200) 121.1 141.6 88.7

*All data are from 6-31G** single-geometry HF calculations w/o symme-
try, on a Cray X-MP/24. Times are scaled to a constant eight Newton-
Raphson iterations (see text).

® Includes preprocessing steps and assembly of Q matrix,

¢ Includes integral calculation and assembly of Coulomb and exchange op-
erators.

¢ Includes Fock matrix assembly and diatomic frame transformations.
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FIG. 2. Scaling of pseudospectral CPU time with basis set size, by task. (a) Preprocessing; (b) integral calculation and use; (c) Fock matrix assembly; and
(d) total [sum of a, b, and c]. Solid lines represent linear, quadratic, and cubic scaling, while broken lines with open circles are pseudospectral results.

lates and uses the three-center, one-electron integrals cur-
rently grows slightly faster than N2 [see Fig. 2(b)]. A more
thorough implementation of cutoffs should reduce this to
N?Z; further algorithmic developments, such as the multipole
expansions suggested in Ref. 14, will eventually yield linear
scaling for the integral assembly for sufficiently large sys-
tems.

The third section of the code, that which assembles the
Fock operator in spectral space, currently scales as ~N2>7°.
This is unsurprising, since we have not yet implemented cut-
offs in this part of the program. The asymptotic scaling of the
Fock assembly should be N or N log N; achievement of N ?
scaling for molecules the size of glutamine should be possible
for most of the required operations.

While straightforward implementations of the pseudo-

spectral and RH methods require O(N *) and O(N*) flops,
respectively, cutoffs can substantially reduce the workload.
As can be seen from Fig. 2(d), the overall scaling of the
pseudospectral method is now ~N? in the 80-200 basis
function range; future work should lead to further reduc-
tions. The RH programs GAMESS and GAUSSIAN 86 can be
seen from Table II to exhibit approximate N * scaling, while
the CPU time for GRADSCF grows as ~ N *°, The scaling of
these programs beyond N = 200 is irrelevant, since disk stor-
age demands make such calculations impossible except for
special cases. GAUSSIAN 88, when run in direct mode,
achieves N * CPU scaling in this region. This includes, how-
ever, a rather large prefactor; GAUSSIAN 88 is the slowest of
the five programs for the smaller molecules.

The scaling of the pseudospectral and RH methods be-

TABLE IV. Comparison of pseudospectral and conventional programs: Disk storage (in mW).*

Molecule

(basis functions) GAMESS® GAUSSIAN 86 GAUSSIAN 88°°  GRADSCF Pseudospectral®
Cyclobutadiene (80) 5.6 6.1 0.9 5.9 4.2
Glycine (100) 20.0 21.3 1.3 13.5 52
Benzene (120) 27.2 28.8 1.8 275 6.4
Uracil (140) 47.9 50.2 23 48.9 7.2
Glycylglycine (175) 187.2 194.2 34 120.0 10.8
Glutamine (200) 314.2 325.7 4.4 d 13.4

=9 See notes for Table II.
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TABLE V. Comparison of pseudospectral and conventional Programs:
Standard vs direct SCF.*®

Standard SCF
CPU time Direct SCF
Program (s) CPU time (s) % increase
GAUSSIAN 88 374 503 345
Pseudospectral 59.7 68.4 14.6

* All data are from 6-31G** single-geometry HF calculations w/0 symme-
try on glycine, on a Cray X-MP EA/14se.
® Core memory used: Gaussian-88: 1.5 mW; pseudospectral: 1.0 mW.

yond the 200 basis function level is unclear. Ahlrichs and co-
workers®' claim N 23 for their RH program TURBOMOLE;
this is based, however, on only two data points (N = 450 and
900) from calculations on a pair of highly symmetric mole-
cules with unusual structure. We expect to have timing re-
sults for the pseudospectral program shortly for N> 200;
this should give a better indication of asymptotic scaling be-
havior.

C. Disk storage and i/0

In Table I'V, the disk storage requirements for each pro-
gram are listed. GAMESS, GRADSCF, and GAUSSIAN 86 store
two-electron integrals on disk. This requires disk storage
that scales as N*, and these programs rapidly use all avail-
able disk space. For the largest molecule tested here, gluta-
mine, GAMESS, and GAUSSIAN 86 required over 300
megawords (Mw), or 2.4 gigabytes (Gb). The maximum
storage allowed a single user on the Cray X-MP is about 4
Ghb; this implies that a 250 basis function calculation (with-
out symmetry) with either of these programs would be im-
possible on this machine. The program GRADSCF performs a
sort in which the maximum number of elements is 200 mil-
lion; this precludes calculations on glutamine or anything
larger.

Both GAUSSIAN 88 and the pseudospectral code were
run in “direct” mode, recalculating all necessary integrals at
each iteration step. This reduces disk storage enormously, at
the expense of some increase in CPU time (see Table V). The
increase in CPU usage is significantly smaller for the pseudo-
spectral method than for conventional programs, since only
the medium and coarse grid integrals need to be recalculat-
ed, and since the pseudospectral integrals are not as expen-
sive as the two-electron integrals of Eq. (1).

Table IV shows that GAUSSIAN 88 has very modest disk
requirements; the pseudospectral usage is somewhat larger,
butis still quite reasonable, and grows slowly with molecular
size. Further, about two-thirds of this storage is due to the
least-squares matrix Q for the finest grid. Storage of this
matrix can be eliminated by constructing it immediately pri-
or to its use, since the finest grid is used for only a single
iteration.

The total data transferred to and from disk are shown in
Table VI for each program. The programs which do not
recalculate integrals require a huge amount of 1/0, and this
requirement increases rapidly with basis set size. GAUSSIAN
88 performs less 1/0 than the pseudospectral code for the
molecules tested here; the amount of 1/0 performed by both
programs grows as N2,

D. Core memory

The memory used by each program is displayed in Table
VII. GRADSCF adjusts the size of core memory automatical-
ly, while the GAUSSIAN programs allow the user to set the
size. In general, increasing the memory for these programs
decreases both CPU and 1/0. Rather than try to optimize
the memory-CPU-1/0O combination for each molecule, we
chose to run GAUSSIAN 86 and GAUSSIAN 88 with a fixed 1.5
Mw of core. This value is slightly larger than the maximum
required by the pseudospectral program (1.3 Mw), and
slightly smaller than that of GRADSCF (1.8 Mw). The ver-
sion of GAMESS we used had a fixed memory size of 1.4 Mw.

For the molecules tested here, matrices of size N ? (F, P,
S, etc.) are relatively small, and the pseudospectral memory
requirement is dominated by matrices which grow linearly
(with a large prefactor) with basis set size. For larger prob-
lems the N ? terms will dominate, and some minor adjust-
ments of the code will have to be performed in order to avoid
excessive memory usage in the 500-2000 basis function
range.

E. Vectorization

As another measure of computational efficiency, we re-
port in Table VIII the average number of flops performed
per second for each program, for the glycine molecule. The
theoretical speed of the Cray X-MP is ~210 million flops
per second (210 Mflops). The Cray assembly language ma-
trix multiply routine MXMA runs at about 200 Mflops for
very large matrices; a purely scalar code can attain 12

TABLE VI. Comparison of pseudospectral and conventional programs: Total I/O (in mWords).®

Molecule (basis Pseudo-
functions) GAMESS® GAUSSIAN 86 GAUSSIAN 88°¢ GRADSCF  spectral®
Cyclobutadiene (80) 53 74 4 83 16
Glycine (100) 266 344 7 287 21
Benzene (120) 284 385 8 440 28
Uracil (140) 593 875 15 1144 37
Glycylglycine (175) 2498 3646 22 3128 57
Glutamine (200) 3960 6133 29 (d) 82

24 See notes for Table II.
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TABLE VII. Comparison of pseudospectral and conventional programs: Core memory (in mWords).”

Molecule GAUSSIAN 88, Pseudo-
(basis functions) GAMESS® GAUSSIAN 86™° GRADSCF spectral®
Cyclobutadiene (80) 14 1.5 0.5 0.9
Glycine (100) 1.4 1.5 0.7 1.0
Benzene (120) 1.4 1.5 09 1.0
Uracil (140) 14 15 1.2 1.1
Glycylglycine (175) 1.4 1.5 1.8 1.2
Glutamine (200) 1.4 1.5 (d) 1.3

a-dSee notes for Table I1.

Mflops on this machine. Our code as a whole performs at a
rate of 106 Mflops. GAUSSIAN 88 run in direct mode achieves
32 Mflops, due to the domination of CPU time by the inte-
gral package. Apparently this is the only part of GAUSSIAN 88
which vectorizes, since the disk-based version manages only
8.3 Mflops. GRADSCF, which was written specifically for
Cray systems, runs at 17 Mflops, while the other two spectral
programs tested are below 10 Mfiops.

VI. CONCLUSION

In this paper we have demonstrated that the pseudo-
spectral method for Hartree—Fock calculations is capable of
reproducing the Roothaan—Hall total energies for a wide
variety of molecules. Furthermore, substantial reductions in
CPU usage have been achieved over the conventional pro-
grams tested here, and it has been shown that the inherent
scaling advantage of the pseudospectral method, combined
with cutoffs in all sections of the code, should lead to even
greater timing advantages for larger molecules.

We remind the reader that the pseudospectral algorithm
is not yet mature; further development will very likely re-
duce the CPU times listed in this paper. To illustrate this
point, we note that our HF calculation on glycine in Ref. 14
took 129 CPU s; the current value (from Table IT) is 68 s, a
reduction of 47%.

A major goal of this project is to make possible ab initio
quality calculations on molecular systems which are too
large for conventional methods to handle. Towards this end,
we expect to report soon timings for molecules in the 250-
1000 basis function range. The only barrier to running such

TABLE VIII. Comparison of pseudospectral and conventional programs:
Average floating point computation rates (in Mflops).>®

Program Computation rate (Mflops)
GAUSSIAN 86 5.5
GAUSSIAN 88 (disk) 8.3
GAMESS 8.5
GRADSCF 17.0
GAUSSIAN 88 (direct) 31.7
Pseudospectral (disk) 105.6
Pseudospectral (direct) 106.4

 All data are from 6-31G** single-geometry HF calculations w/o symme-
try on glycine.

b GAMESS and GAUSSIAN 88 were tested on a Cray X-MP EA/14se, while all
other data are from a Cray X-MP/24.

calculations is the core memory; as discussed above, some
trivial reconfiguration of the code will be necessary. Installa-
tion of cutoffs in the Fock matrix assembly routines and a
more thorough investigation of the convergence scheme are
also planned.

Extensions of the basic pseudospectral HF theory dis-
cussed in this paper are now underway on several fronts:

1. Atomic grids and dealiasing sets are being developed
for second row atoms and for transition metals.

2. The integral package is being modified to allow for the
use of fand g basis functions, which will likely require up-
grading of the least-squares code to handle g and perhaps 4
dealiasing functions.

3. The synthesis (as described in Ref. 15) of the pseudo-
spectral program with the GVB2PS5 program of Goddard
and co-workers is now more complete; this work will be re-
ported shortly, along with timings for GVB calculations.

4. A pseudospectral analytic gradient program has been
completed and successfully tested; a separate paper describ-
ing this work is being prepared.’? Additional code to com-
pute second derivatives is under development.

5. A pseudospectral algorithm for second-order Méller—
Plesset perturbation theory (MP2) has been designed and
will be coded shortly.
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