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The pseudospectral method for Hartree~Fock calculations is applied to the glycine molecule, a
test case with 100 basis functions. Several algorithmic improvements are reported, including a
Newton-Raphson convergence scheme, Fock matrix updating, a multigrid technique, and
optional recalculation of integrals. The pseudospectral method is shown to accurately
reproduce the Roothaan—Hall relative and total energies for three conformations of glycine.
Timing results show the pseudospectral code to be substantially faster than conventional

Hartree—Fock codes.

1. INTRODUCTION

In a series of previous papers,'™ we have developed a
new algorithm for solving the self-consistent equations of
electronic structure theory. The algorithm is a synthesis of
conventional quantum chemical techniques with a modified
version of the pseudospectral method, a numerical approach
widely used in hydrodynamic simulations® and, more re-
cently, a variety of chemical physics applications.® Both a
numerical grid representation of the molecular orbitalsand a
standard quantum chemical basis set are employed in the
calculation, which is designed to yield the Roothaan—Hall
(RH) result’ for that basis set. The basic advantages of the
method are N3 (rather than N *) scaling with basis set size
and elimination of the explicit evaluation of two electron
integrals, thus in principle providing order of magnitude re-
ductions in central processing unit (CPU) and input/output
(1/0) time for ab initio electronic structure calculations on
large molecules.

In Ref. 4, a key problem, that of antomatic grid genera-
tion, was solved in a satisfactory manner. Systematic conver-
gence of spectroscopic constants and the total energy to the
corresponding RH values was demonstrated for Hartree—
Fock (HF) calculations on the water molecule. Most criti-
cally, the grid generation algorithm is easily applicable to an
arbitrary molecule.

In this paper, we apply the method to a medium sized
organic molecule, glycine. A 6-31G** basis set® is used, so
there are 100 basis functions in all. Thus, the calculation is
moderately demanding computationally by the standards of
current ab initio technology. By contrast, a three-dimension-
al molecule of such size and complexity is far beyond the
range of any alternative numerical approaches to solving the
HF equations, at least as judged by the published literature.

This paper has a number of objectives. First, we intro-
duce a great deal of additional numerical technology vital to
efficient implementation of a pseudospectral HF algorithm
for large molecules. This includes multigrid capabilities, re-
calculation of integrals (avoiding any disk storage demands
that scale by more than N ?), an N * Newton-Raphson algo-
rithm, and various numerical improvements in all aspects of
the computations. The process of optimizing the approach
along these lines is at present in its infancy; the substantial
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gains achieved here are encouraging with regard to the ulti-
mately achievable efficiency.

Secondly, we demonstrate that the method can produce
results which are for all practical purposes equivalent to
those of conventional HF codes. That is, the difference in
total energy between the pseudospectral and RH results at
any geometry is less than 0.033 kcal/mol; eigenvectors and
eigenvalues are also extremely close to RH values. A subse-
quent paper will present an analytic gradient formulation
which indicates that adequate accuracy can also be obtained
for local energy differences.

The specific test chosen is computation of three points
on the torsional potential energy surface obtained by rota-
tion around the C—-C bond of glycine. This is a severe test for
a numerical method, because it involves significantly chang-
ing the integration grid for conformations which differ by a
small amount of energy. The success and stability of the cal-
culations for glycine, which has several nearly degenerate
orbitals whose energy gaps change significantly as a function
of torsional angle, suggests that the method will work in
most cases of interest. This, of course, needs to be confirmed
by calculations for a large number of molecules.

Finally, we present an overall timing comparison be-
tween our method and several available HF programs, for
the Cray X-MP. Such comparisons can be misleading, partly
because there are tradeoffs in CPU and 1/0 which are ma-
chine dependent, or because a particular program has been
highly optimized for a specific machine, or because one algo-
rithm is in a much more mature phase of development than
another. Nevertheless, it is a useful exercise at this point to
make some sort of comparison of the pseudospectral algo-
rithm with its main competitor. In fact, we achieve signifi-
cant reductions in CPU time even in comparison to the pro-
gram GRADSCF, which has been specifically optimized for
Cray computers.

The algorithms described here also are relevant to ex-
tension of the method to more complex electronic structure
calculations. For example, the Newton—-Raphson scheme
utilizes an iterative method which, with minimal modifica-
tion, is directly applicable to coupled-perturbed HF calcula-
tions (e.g., to obtain second derivatives), or to certain types
of multiconfiguration self-consistent field (MCSCF) or con-
figuration interaction calculations.
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Il. NUMERICAL METHODS
A. Overview

The formal equations used in our pseudospectral formu-
lation of the HF approximation have already been given else-
where'~ and we will not repeat this here. Rather, we will in
this subsection outline the principal new features that have
been added to our code and then describe these in detail in
the following subsections. ‘

The program can be divided into routines which per-
form the following major tasks:

(i) Definition of the molecular geometry and basis set.
This is no different from analogous routines in a convention-
al HF code.

(ii) Generation of the molecular grid. This is essentially
identical in form to what was presented in Ref. 4, although
significant changes in the actual grids employed have been
made.

(iii) Generation of the kinetic energy, overlap, nuclear
attraction, and three-center, one-electron potential inte-
grals. The numerical details have been improved over the
procedures described in Refs. 1-3, but the basic elements of
the calculation have not been altered. We have not yet imple-
mented effective integral cutoffs; this is an important aspect
of future work.

(iv) Assembly of the least-squares fitting matrix and
construction of the quadrature scheme via solution of the
normal equations. Substantial modifications have been
made in the numerical methods here, as well as in the set of
dealiasing functions employed to reduce discrepancies with
the RH results. There is, in addition, considerable room for
improvement of our current implementation. This will be
discussed in some detail later on.

(v) Construction of the Coulomb and exchange opera-
tors, and calculation of the Fock matrix elements. In addi-
tion to some optimization of the numerics, we have imple-
mented a Fock matrix updating scheme, along the lines of
AlmIéf and co-workers.® This is quite effective when used in
conjunction with a multigrid strategy; updates which in-
volve small changes in the Fock matrix are carried out on
relatively sparse grids, because highly accurate integrals are
not then required. The incorporation of integral cutoffs will
further enhance the utility of this procedure.

We remind the reader here of two essential and nontri-
vial features of the algorithm, discussed in previous papers.
First, purely atomic two electron integrals are done analyti-
cally; interfacing this with the rest of the pseudospectral
code is somewhat complicated, although the actual compu-
tational requirements are negligible in terms of CPU time. A
future publication will report the results of additionally
treating two-center terms analytically. Secondly, the Fock
matrix must be symmetrized. We do this here simply by
averaging the off-diagonal elements. A better procedure can
probably be developed, although we have not yet found one.
The more complex methods used in previous versions of the
program are more expensive and have not proven to be clear-
ly superior (although our tests were somewhat limited).

(vi) SCF iterations. We have developed an iterative
pseudospectral Newton—Raphson procedure which scales
like N>Mk, where M is the size of the grid, and k is the

number of iterations required to converge the unitary trans-
formation matrix. Furthermore, we utilize an approximate
Hessian constructed on a very coarse grid, so that iterations
are relatively inexpensive. The net result is accelerated (al-
though not quadratic) convergence of the SCF procedure at
little cost. Note that this technique is readily applicable to
MCSCEF calculations.

(vii) Integral input/output. This is already a substantial
consideration for glycine and of course becomes much more
critical as the molecule increasés in size. We have developed
both a conventional version of our code (in which the three-
center, one-electron integrals are stored on a disk) and a
“direct” version in which some or all integrals are recalculat-
ed at each self-consistent step. For the latter, the relatively
low expense of integral generation as compared to conven-
tional programs leads to very large CPU savings. The maxi-
mum required storage in this version is in fact proportional
to N2,

The most significant of the above improvements will
now be presented in more detail.

B. Assembly of the least-squares matrix

To solve the normal equations, one must construct the
matrix

C=R'wR, n

where R contains the basis and dealiasing functions evaluat-
ed at the gridpoints and w is a weight matrix produced by the
grid generation algorithm. Straightforward matrix multipli-
cation requires J >M operations, where J is the total number
of basis plus dealiasing functions and M is the number of grid
points. In order to achieve high accuracy for glycine, we
have had to increase both of these parameters above their
(proportionate) values for the water molecule. Thus, this
has become a potentially expensive part of the calculation
(for the largest glycine grid used, J2M is ~ 6 10°).

We have implemented a major improvement of this sim-
ple approach, which saves substantial amounts of CPU time.
First, the dealiasing and basis functions are grouped into
blocks of s, p, d, and f functions; each block has the same
radial exponent and atomic center. The piece of the C matrix
corresponding to all of the products of the functions in two
blocks is then computed by the following algorithm:

(i) Multiply the radial parts together.

(ii) Integrate on the grid the radial product with all
possible angular terms (centered at the product center) aris-
ing from combining the two blocks. This is a smaller number
of functions than is obtained by taking all possible pairs of
block functions. For example, for two spd blocks, there are
35 angular functions and 100 product pairs. One can then
transform the angular functions back to the original polyno-
mial products, at a trivial cost.

Many products extend spatially over only a relatively
small part of the molecule and thus need only to be evaluated
on a part of the molecular grid. We have developed a cutoff
scheme for the above calculation which is compatible with
the Cray X-MP architecture, in the sense that it preserves
vectorization while eliminating unnecessary operations. The
cutoff algorithm involves vectorization over function, grid,
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and angular blocks, and discarding of grid blocks which esti-
mates indicate can be safely neglected.

The entire procedure reduces the CPU time for the as-
sembly of C by more than a factor of 3 for the finest glycine
grid used. Further improvements are available, possibly in
conjunction with modification of the dealiasing functions.

C. Multigrid strategy

By multigrid, we mean here the use of several different
grids in the SCF procedure. At present, we employ four sep-
arate grids, which we refer to as ultrafine, fine, medium, and
coarse. These grids have been developed by empirical opti-
mization; their precise characteristics are specified in Ap-
pendix A. The optimization depends upon the basis set, in
this case 6-31G**. We have constructed atomic grids for
hydrogen and the remaining first row atoms; the synthesis
into the molecular grid is carried out using the completely
automatic algorithm described in Ref. 4. The hope is that the
generator atomic grids are transferable to other molecules
and are adequate for all molecular geometries, not just the
few studied here. This will obviously need to be demonstrat-
ed via a large number of molecular calculations. An encour-
aging feature is that the accuracy does not depend sensitively
upon the precise structure of any grid; small changes pro-
duce small alterations in the total energy.

-Each of the four grids is generated separately and must
be accompanied by its own least-squares integration scheme
and set of potential integrals. Fortunately, the expense of
constructing these for the three smaller grids is relatively
low. _

The coarse grid, 35 points per atom (348 total points), is
used only for the iterations of the unitary transformation
matrix in the Newton—Raphson procedure. It is not very
accurate and indeed fails to converge to a reasonable total
energy when run by itself. However, it performs adequately
in the Newton-Raphson scheme, in that replacement by the
medium grid does not accelerate convergence sufficiently to
warrant the expense. A rationalization of this behavior is not
trivial and will not be undertaken here.

The medium grid, 1420 total points (142 per atom,; re-
call that these are in fact unevenly distributed over the atoms
because Voronai truncation is quite different for atoms on
the interior of the molecule as compared to those on the
exterior), produces a total energy accurate to roughly 0.02
hartrees when run by itself. If this is sufficient for the desired
purpose (e.g., electronic excitation energies), then the ex-
pense of the calculation can be reduced by eliminating the
fine and ultrafine grids. For many applications, this is clearly
not adequate accuracy. In this case, the medium grid is used
for both initial iterations and for Fock matrix updating. In-
deed, we have found it necessary to do only one iteration
using the fine grid and one using the ultrafine grid. This is
extraordinarily advantageous for a direct SCF procedure, as
it means that one need only recalculate coarse and medium
grid integrals.

The fine grid, which has an average of 275 points per
atom (2757 total), is used only for the first Fock matrix
updating step, at which point the corrections to the Fock
matrix are still too large to be handled by the medium grid. If

the ultrafine grid is not used, the fine grid gives a total energy
for glycine which differs from the RH result by about 0.005
hartrees.

The ultrafine grid, 8991 total grid points (an average of
900 per atom; the range is 626-1023), achieves accuracies
(as compared to the RH results) on the order of 0.000 05
hartrees, or 0.03 kcal/mol. This is better than the best corre-
lated calculations can do in comparison with experiment and
hence constitutes an entirely adequate level of accuracy.
Evaluation of spectroscopic constants of course requires a
higher level of relative precision; however, this can be ac-
complished via an analytic gradient approach, as will be
shown in a forthcoming paper. The demonstration that these
accuracies are generic awaits a more extended list of exam-
ples. There is, on the other hand, nothing particularly easy
about glycine; it is hard to see why the method would fail in
other cases, given that it works well here and is insensitive to
small adjustments in the grid.

D. The Newton-Raphson procedure

It has generally been assumed that Newton—-Raphson
procedures are too costly to be of use in large molecule,
closed shell HF calculations; instead, alternate extrapolation
procedures have been implemented. '® It is possible that these
procedures, when applied to our method, might also lead to
accelerated convergence, although the use of the multigrid
iteration scheme makes extrapolation from previous itera-
tions on a different grid of questionable value. We developed
the Newton-Raphson approach for two reasons: (i) it pro-
duces a very competitive acceleration for us at a minimal
computational cost; and (ii) it is a prototype for numerous
correlated or coupled-perturbed HF calculations. Indeed, it
is clear from the results shown below that the pseudospectral
method can profitably be applied to all equations of this
form. Subsequent publications will demonstrate this expli-
citly.

We employ here the formalism of Levy and co-
workers,'! which we believe is a particularly clear descrip-
tion of the required mathematics for the HF and certain
[e.g., generalized valence bond (GVB)] types of MCSCF
equations (note that this formalism is entirely equivalent to
methods proposed by other workers’?). Briefly, the new set
of occupied orbitals is derived from the old via the unitary
transformation

Chew = EXp (X)'cold ’ (2)

where X is an antisymmetric matrix, i.e., X; = — Xj;. Itis
easily shown that this restriction implies that exp(X) is uni-
tary; thus, Lagrange multipliers are not needed to preserve
the orthonormality of the occupied orbitals. Note that for-
mally X acts in the current molecular orbital space and the
elements are labeled by the molecular orbital indices.

The unique elements of the N XN (N is the basis set
size) matrix X are placed in a vector x, which is the unknown
to be determined by minimizing the total energy with respect
to each component. There are L = N.cupica * Nyirtuas COMpO-
nents, setting the mixing inside of the occupied and virtual
spaces to zero (as proven in Ref. 11, the last assumption
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yields a quadratically convergent procedure). The equation
for x is simply the Newton~Raphson equations.

Ax =h, (3)
where A is the matrix of second derivatives, i.c.,

sz(& 5)(5 a)E(X) @

bx;  Ox; ) \8xyy  Oxy

and b contains the first derivatives

b,.,.=(—§-— 8 )E(X). (5)
Ox,

Ais thus an L by L matrix, while bis a vector of length L. The
formal evaluation of the elements of A and b is straightfor-
ward and is given in detail in Ref. 11. The important points
for our purposes are as follows: first, b simply contains Fock
matrix elements, which we already have an algorithm for
evaluating. The difficulties therefore consist of producing A
and solving Eq. (3).

To actually assemble A directly (as is done in some
MCSCEF codes) is extremely expensive (in both storage and
CPU time) for a large system. Furthermore, it would com-
pletely negate the advantages of the pseudospectral method,
as each two-electron integral would have to be computed
explicitly.

‘Fortunately, if we employ an iterative algorithm, it is
not necessary to ever form the matrix elements of A. Instead,
we simply need an algorithm for acting with A on x. In Ap-
pendix B, we show how such an algorithm can be construct-
ed. The algorithm is in fact isomorphic to that required to
generate a Fock matrix given an initial density matrix, with
the “old” x playing the role of the density matrix and the
“new” x appearing as the consequent Fock matrix. No trans-
formation of the integrals to molecular orbital space is re-
quired. The algorithm is carried out in the atomic orbital
basis and requires ~ N 2M operations per iteration, just as
Fock matrix assembly does. We make the procedure cost
efficient by using the coarse grid to represent A (more accu-
rate grids must, of course, be used to construct b). The
tradeoffs involved are easily worked out for the present
(HF) level of calculation.

For MCSCEF calculations, the issues involved can be
quite different; e.g., in some cases one has difficulty obtain-
ing convergence at all unless some sort of Newton—Raphson
procedure is used. Thus, the demonstration here of an algo-
rithm that is valuable even at the HF level is clearly of great
importance for extension of the pseudospectral method to
MCSCF and some types of CI procedures. The actual per-
formance of the method is difficult to predict at this point;
however, the scaling with system size is certainly far superior
to any previously proposed strategy. Furthermore, the pres-
ent equations are quite similar to those which have to be
solved in coupled-perturbed HF theory. It seems quite likely
that large gains in efficiency in the calculation of second
derivatives (a very time consuming, but necessary part of
most investigations of molecular potential energy surfaces)
can be achieved.

The actual determination of x is performed via the direct
inversion in the iterative subspace approach. That is, the best
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solution (in a least-squares sense) possible is assembled
from the set of iterative trial vectors. An improved subspace
is obtained by preconditioning the A matrix by its diagonal
elements, a standard strategy in conjugate gradient type
methods. Only four iterations are typically required to ob-
tain the best convergence possible with our approximate
Hessian.

Optimization of the method is far from complete; in par-
ticular, integral cutoffs have not yet been introduced. Var-
ious other complex issues also need to be addressed.

E. Fock matrix updating

This strategy, introduced by Almlof and co-workers for
their direct SCF method,” is a natural complement to our
multigrid approach. The idea is to avoid using expensive
(fine or ultrafine) grids more than once. In a Fock matrix
updating algorithm, only the correction to the old Fock ma-
trix is assembled; if the difference between the old and new
density matrices is small, much less precision in the quadra-
ture scheme is required.

The iteration sequence utilized for glycine is shown in
Table 1. The initial iterations converge the medium grid to
within 10~ hartrees of its own solution. This set of coeffi-
cients is then used to assemble an ultrafine Fock matrix,
which serves as the base for updating. The next iteration
requires the fine grid, while all subsequent iterations can be
carried out on the medium grid. The Newton-Raphson pro-
cedure is used beginning one iteration prior to the ultrafine
iteration.

An important point to note here is that the ultrafine and
fine grid integrals are used only once. Consequently, they
never need to be stored; a direct procedure with regard to
these two grids has no cost. Thus, the storage requirement
for our algorithm is proportional at most to the medium grid
size. It is, of course, possible to recalculate medium and
coarse grid integrals as well; results will be given in Sec. II1
for both modes of running the program.

TABLE I. Pseudospectral SCF iteration scheme and convergence of total
energy of glycine molecule.

Iteration  Grid B E—Egu®

1 Medium — 280.830 962 2.0
2 Medium - 283.567 300 —0.72
3 Medium — 282.407 425 0.44

Begin the Newton-Raphson procedure

4 Medium — 282.855800 —0.011

5 Ultrafine — 282.853519 —0.0091
Begin Fock matrix updating

6 Fine —282.850398 —0.0059

7 Medium — 282.844 435 0.000 013

8 Medium - 282.844 459 —0.000011

9 Medium — 282.844 447 0.000 001

10 Medium — 282.844 448 0.0

#Total energy in hartrees for glycine 0° conformation.
®Difference between current energy and converged energy, in hartrees.
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F. Parameter optimization

Conventional RH programs yield useful chemical infor-
mation because they use carefully parametrized basis sets.
The development of contracted basis sets with optimized
contraction structure and exponents required years of in-
tense effort. Indeed, further development along these lines is
still taking place, particularly for transition metals and for
correlated calculations.

The pseudospectral HF method necessitates in addition
design of atomic grids and dealiasing functions. As indicated
earlier, we adopt the view that the procedure which com-
bines these into a molecular parameter set must be complete-
ly automatic, so that there is no question of having to adjust
the grid generation algorithm for each new molecule. The
algorithm which carries out this synthesis is in fact identical
to that used in Ref. 4; while alterations are certainly possible,
its performance up to now has been quite satisfactory.

At present, we have developed four atomic grids for hy-
drogen and the remaining first row atoms. The same grids
have been used for H, C, N, and O in calculations on a var-
iety of small molecules and on glycine. In a subsequent pa-
per, we will report a series of results for a large set of mole-
cules. Here, we focus on the glycine results. However,
satisfactory energies were obtained in all test cases to date
with the current parametrization.

A standard dealiasing set is appended to each grid for
each atom. There are differences among the dealiasing sets
for each atom, dictated by the different basis sets for the
atoms. In the interest of computational efficiency, we group
the dealiasing functions into blocks, containing s, p, and
sometimes d and f functions. The exponents are arranged
such that the uncontracted basis functions can be included in
the block structure. For example, the 6-31G** basis set for
carbon includes d functions with exponent 0.8, so s, p, and f
functions with exponent 0.8 are included in the carbon dea-
liasing set. A crucial point in achieving high accuracy is, for
the ultrafine grid, to space the exponents of the blocks by a
factor of 2, rather than 3 (the latter ratio was used in our
earlier paper).

Appendix A lists the four grids and the associated dea-
liasing sets for each atom. The only new feature in the grid
design is the necessity of choosing shell orientations in the
molecular reference frame. This does have some effect on the
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accuracy and more numerical experiments need to be carried
out to achieve a greater understanding of this aspect of the
grid design.

Optimization must be performed by evaluating the re-
sults of molecular (not atomic) calculations. This is because
the most demanding task an atomic grid must perform is
quadrature of functions centered on other atoms. Further-
more, truncation of the quadrature scheme by the Voronai
polyhedral cutoffs is not present in a purely atomic problem;
this is the least accurate part of the integration algorithm.

The present results were obtained by running a large
number of numerical experiments, mostly on glycine. The
results are robust in the sense that small changes in the grid
or dealiasing set produce answers of comparable accuracy.
Nevertheless, the reported parameters should be regarded as
tentative, pending much more extensive optimization on a
variety of molecules.

. RESULTS
A. Accuracy

We used a 6-31G** basis set for all pseudospectral cal-
culations. The three glycine geometries are all obtained from
Ref. 13. These geometries have the C—C torsional bond angle
at 0°, 150°, and 180", respectively; the remaining degrees of
freedom were optimized at the 4-21G level in Ref. 13 for
each geometry. These geometries represent three points on
the torsional potential curve (although they do not include
the highest point on the barrier). We have chosen them sim-
ply as a test case in which we compare pseudospectral and
RH results using the same basis sets. The RH results were
obtained by running GAUSSIANS2 and GAUSSIANS6 with the
same set of coordinates.

Table 11 shows the energies obtained for each geometry
with pseudospectral and RH calculations, the latter at both
the 6-31G** and 4-21G levels. The agreement of the pseudo-
spectral and RH methods when the same basis set is used in
all cases within 0.000 06 hartrees, or 0.04 kcal/mol. The
pseudospectral relative error is of the same order. Note that
the RH 4-21G and 6-31G** calculations differ substantially
in total energy, but yield very similar relative energies. This
cancellation of error is the property of the RH method which

TABLE I1. Comparison of pseudospectral and Roothaan~Hall results: total and relative energies for glycine at

three geometries.

Total energy” Energy relative to 0° conformation®
Roothaan-Hall® Roothaan—Hall®
Pseudcspectral Pseudospectral
Conformation® 4-21G 6-31G** 6-31G** 421G 6-31G** 6-31G**
o —282.164 275 — 282.844 468 — 282.844 448 0.0 0.0 0.0
150° — 282.161 212 — 282.841 397 — 282.841 345  0.003 06 0.003 07 0.003 10
180° — 282.161 379 — 282.841 671 — 282.841 679  0.002 90 0.002 80 0.002 77

* All energies in hartrees.

" Roothaan-Hall results obtained from programs GAUSSIANS6 (4-21G) and GAUSSIANS2 (6-31G**).

¢ Angle refers to rotation about the C-C bond, as defined in Ref. 13.
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TABLE II. Comparison of pseudospectral (PS) and Roothaan-Hall (RH) results: eigenvalues of the Fock

matrix.*
o°® 150° 180°
Orbital RH* Ps RH PS RH PS
1 —20.61533 —20.61521 —20.61691 —20.61700 —20.61808 —20.61796
2 —20.56055 —20.56042 —20.55960 —20.55931 —20.55681 —20.55711
3 —15.54788 — 1554793 1555180 —15.55185 —15.55093 —15.55093
4 — 1138758 —11.38779 —11.38880 —11.38883 —11.38903 —11.38902
5 —11.27603  —1127597 —11.27668 —11.27661 —11.27730 —11.27717
6 — 145794 — 1.457 84 — 1.458 38 — 1.458 25 — 1.458 73 — 1.458 59
7 — 1.360 62 —1.360 42 — 1.36008 — 1.359 84 — 1.359 27 —1.359 12
8 - 1.18770 —1.18773 — 1.19097 —1.19099 — 1,191 46 —1.19143
9 — 097842 —0.978 46 —0.972 80 —-097277 — 097175 —097173
10 —0.815 57 —0.81564 —0.828 43 —0.828 43 — 0.829 96 —0.829 97
11 —0.701 21 —~0.701 15 —0.705 97 - 0.706 Ot —0.69777 —0.697 84
12 — 0.696 00 - 0.696 10 —0.688 09 —0.688 10 —0.69501 —0.695 19
13 —0.687 84 —0.68796 —0.682 66 — 0.682 56 —0.686 51 —0.686 44
14 —0.623 04 —0.622 97 —0.628 80 — 0.628 88 —0.621 32 —0.621 38
15 —0.592 49 —0.592 36 — 0.585 67 —0.585 60 —0.587 88 —0.58779
16 —0.582 61 —0.582 52 —0.578 05 —0.577 98 —0.578 03 —0.57797
17 —0.539 62 —0.539 58 —0.54500 —0.545 00 —0.546 74 —0.546 72
18 —0.481 37 —0.481 30 —0.479 46 —0.479 59 — 047577 — 047584
19 —0.45793 —0.45779 — 047579 —0.475 58 —0.47552 —0.47549
20 —0.39745 —0.39746 —0.390 49 —0.390 40 —0.390 85 —0.390 84

* All energies in hartrees.
® Angle refers to rotation about the C—C bond, as defined in Ref 13.
° RH results obtained from program GAUSSIANS2.

is so difficult for a numerical approach to-duplicate. Table I1
illustrates the success of the pseudospectral method in mim-
icking RH behavior, thus allowing the enormous literature
of conclusions based on this cancellation of error to be taken
over.

Tables I1I and IV display, respectively, the eigenvalues

and one-electron energies for the RH and pseudospectral
methods at the three geometries. Very close agreement is
obtained for all of these quantities across geometry. Note,
however, that the individual discrepancies in each term are
significantly larger than that for the total energy. This is not
accidental; we have observed identical behavior for hun-

TABLE 1IV. Comparison of pseudospectral (PS) and Roothaan—Hall (RH) results: one-electron energies.

0°® 150° 180°
Orbital RH* PS RH PS RH PS
1 —39.69374 —39.69371 —40.08590 —40.08589 —40.10469 — 40.104 67
2 —3997675 —39.97673 —39.64566 —39.64564 —39.63661 — 39.63657
3 —3221393 3221392 3228792 3228792 —32.29761 —32.29758
4 —29.29292  —29.29291 —29.25520 —29.25520 —29.24730 —29.24731
5 —27.75284 —-27.75284 2772379 —27.72378 2772135 —27.72136
6 — 1536977 —1536936 —1545094 —1544976 —1545237 —15.45204
7 — 1536018 —1535970 —15.32099 —15.32066 — 1532726 —15.32627
8 — 1334077 —13.34066 —13.38337 —13.38329 —13.39359 —13.39333
9 — 1342056 1342068 —13.42407 —1342413 1341575 —13.41584
10 — 1337566 —13.37622 —13.57465 —13.57508 —13.59871 —13.59882
11 —13.82600 —13.82679 —12.89347 —12.88888 —12.10405 — 12.10340
12 —12.08043 —12.07846 —13.62852 —13.62909 —13.83344 —13.83307
13 — 1382671 —13.82624 —13.14544 —13.14960 —13.78845 —13.79115
14 — 1322861 —13.22893 —13.38646 —13.38848 —13.41236 — 13.41305
15 —12.87733 —12.87930 1344887 — 1346342 —13.02606 — 13.04145
16 — 1348236 —13.48051 —13.08228 —13.06860 —13.43738 —13.42232
17 — 1195149 1195263 —12.01205 —12.01110 —12.08137 —12.08215
18 —13.79683  —13.79783 —13.66224 —13.66884 — 1340034 — 13.40077
19 —13.87231 —13.87153 —1345279 —13.44560 —13.60756 — 13.60624
20 - 1221120 —1221194 —1251616 —12.51670 —12.54598 — 12.54506

* All energies in hartrees.
® Angle refers to rotation about the C—C bond, as defined in Ref. 13.
“RH results obtained from program GAUSSIANS2.
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dreds of alternative parameter sets. In this sense, the pseudo-
spectral method does have its own cancellation of errors.

Of particular note in Table III is the presence of acciden-
tally, nearly degenerate orbitals in glycine which change
their energy gaps significantly as a function of geometry.
This means that small discrepancies in the off-diagonal Fock
matrix elements between these orbitals has potentially large
consequences for the eigenvector coefficients and hence for
the one-electron energy. The success of the pseudospectral
method in dealing with this problem is encouraging with
regard to its generality.

Table I shows the total energy error as a function of
iteration number, when the code is run according to the iter-
ative scheme indicated. We use the complete neglect of dif-
ferential overlap (CNDO) initial guess of GAUSSIANS2 as a
starting point and iterate until the total energy is converged
to within 10~° hartrees. Convergence at the start of the
Newton—-Raphson procedure (iteration 4) is nearly qua-
dratic, then deteriorates as the solution is reached. This is
expected when utilizing an approximate Hessian, as is done
here (the coarse grid is used to construct the action of the
second derivatives on the trial rotation vector).

B. Computational efficiency

We report in Table V CPU times in seconds for our
pseudospectral code run in two modes; with and without
recalculation of integrals, and for the programs GAUSSIANS2,
GAUSSIANS6, and GRADSCF. All timings are for closed shell
HF calculations on glycine at the 0° geometry, run on the
University of Texas Center for High Performance Comput-
ing Cray X-MP/24 (the X-MP/24 has two processors, but
all of the codes tested here, including the pseudospectral, use
only one). A significant advantage is achieved even as com-
pared to GRADSCF, which is specifically designed for Cray
computers. Furthermore, we expect our timing results to
improve substantially as algorithmic development proceeds.

Table V also displays the disk storage, input/output,
and core memory requirements of each program. We have
chosen to report the I/0 in terms of the total number of
words which must be read or written during the entire pro-

TABLE V. Comparison of pseundospectral and conventional programs:
computational efficiency.®

CPU time Disk storage® Total 1/0 ¢ Memory*
(s) (megawords) (megawords) (megawords)

GAUSSIANS2 711.7 20.0 439.2 0.164
GAUSSIANg6 564.5 24.6 406.5 0.381
GRADSCF 194.8 13.5 286.5 0.704
Pseudospectral,

integrals stored  89.3 16.6 200.1 1.020
Pseudospectral,

integrals

recalculated 129.2 6.6 63.0 1.020

*All data are from glycine 6-31G** single-geometry (0°) HF calculations
on a Cray X-MP/24 without multitasking.

®Maximum disk storage space used.

¢Total amound read from or written to disk during calculation.

4 Central memory used (maximum).
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gram cycle. The use of the solid state storage device (SSD)
on the Cray means that 1/0 is in fact quite inexpensive for
glycine in the RH programs, because all of the integrals can
fit on the SSD. However, this would not be true for larger
molecules.

We have not efficiently optimized our usage of memory
and disk space (the pseudospectral code is at present a re-
search project rather than a commercial product). We cur-
rently run our program using about one megaword of core
memory; this could be reduced. Most importantly, the mem-
ory size does not increase substantially as the molecule
grows in size. Thus, if all integrals are recalculated, there is
no barrier to carrying out calculations on a molecule of arbi-
trary size; the disk storage needed grows only as N2 (or,
incorporating various types of cutoffs N).

The fact that integral recalculation (without use of inte-
gral cutoffs) increases CPU time by only 45% is of great
importance for practical applications. It implies that current
limitations on many machines due to lack of disk storage can
be overcome. How significant this will be in the future re-
mains to be seen; there are many directions in which compu-
tational hardware can be improved and the balance of CPU
efficiency, fast memory, and disk space will be different in
every new design. Nevertheless, in the present environment,
elimination of large scale disk requirements appears to be
quite useful.

IV. CONCLUSION

We have demonstrated in this paper that a numerical
method is capable of obtaining accurate solutions (in the
sense of computing reliable energy differences) to the HF
equations for a reasonably large and complicated molecule
by the standards of current quantum chemical technology.
This represents the first such demonstration in the roughly
35 years that computational quantum chemistry has been a
workable proposition. In particular, the present approach
efficiently solves the problem of numerically treating nonlo-
cal exchange operators, which is essential if one wishes to
pursue a systematic ab initio approach, as opposed to a local
density functional type of theory.

It is still too early to precisely predict what sort of ad-
vantage (if any) will be realized over state-of-the-art con-
ventional quantum chemistry programs, when both meth-
ods are optimized for a given hardware configuration.
However, it is quite clear that the pseudospectral method is
at this point a serious competitor, with a number of intrinsic
properties which suggest that it will ultimately lead to signif-
icant reductions in computational effort for large molecules.
It should be kept in mind that substantial changes in the
algorithm are not only possible, but even likely, and that
these will yield significant improvements over the timings
reported in this paper.

One example of a major algorithmic modification that
should yield large improvements in efficiency is the expres-
sion of the primitive integrals of the theory (three-center,
one-electron integrals) in terms of multipole moments at
long distances. The multipoles can be evaluated much more
rapidly (by a factor of 5-10) than the current, exact integral
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evaluation procedure; furthermore, it is possible to carry out
integrals over the multipoles analytically. Preliminary re-
sults indicate that this technique, in conjunction with suit-
able integral cutoffs, will lead to substantial CPU and stor-
age reductions even for glycine and considerably more for
larger systems. In effect, the asymptotic scaling of integral
evaluation and storage can be reduced to NN, N, , where N
is the number of basis functions, N,, the number of neigh-
boring basis functions for which nonzero primitive integrals
must be evaluated, and N, is the number of grid points in the
near field (for which exact integral evaluation is required).
Note that only N grows with molecular size. This is to be
contrasted with conventional two-electron integral codes,
where the asymptotic number of required integrals scales
roughly as N2N 2, (the assumption has been made here that
the molecule is not of sufficient size to allow truncation
based on diminishment of the Coulomb field—this limit is
not a practical one). When one in addition considers that the
individual integrals in the pseudospectral method are much
less expensive and that the multigrid approach reduces N,
substantially for all but a few iterations, the potential advan-
tages for very large molecules become overwhelming.

A second key modification is localization of the least-
squares procedure. In principle, it should not be necessary to
fit functions over the entire molecule in order to produce a
quadrature scheme for a localized basis function. Prelimi-
nary numerical experiments indicate that one only needs to
keep basis and dealiasing functions centered on atoms which
are within range of the function in question. This means that
the maximum linear equation system that will need to be
solved is on the order of 500-1000 in dimension. Such a
restriction in turn implies that this part of the algorithm will
not be an important contributor to CPU time or storage for a
very large molecule. ‘

A final topic is extension of the method to other types of
calculations (e.g., analytic derivatives, excited states) and to
correlated wave functions. As stated above, an analytic gra-
dient procedure has been successfully developed and will be

TABLE V1. Coarse and medium grids for atoms H, C, N, and O.

Ringnalda, Won, and Friesner: Calculations on glycine

reported shortly. No difficulties are expected in second de-
rivative evaluation. Any one-electron properties (e.g., di-
pole moments) can be computed as in conventional codes, as
asolution in terms of standard basis sets is available. Similar-
ly, modification of the one-electron matrix (e.g., use of pseu-
dopotentials) are straightforward to incorporate into the
present code.

We have recently combined our HF program with the
GVB2P5 program of Goddard and co-workers.'? Accuracy
for pseudospectral GVB calculations appears to be compar-
able to that obtained with HF wave functions. These results
will be reported in a subsequent publication.

In summary, we believe that pseudospectral electronic
structure calculations have a promising future and hold out
the prospects of carrying out high quality ab initio calcula-
tions on large molecules and molecular assemblies in reason-
able CPU times. If this promise can be realized, the impact of
ab initio quantum chemistry upon systems of interest to the
majority of chemists will be greatly enhanced.
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APPENDIX A: ATOMIC GRIDS AND DEALIASING
FUNCTIONS

Asin Ref. 4, the atomic grids are composed of spherical
shells containing (L + 1)? gridpoints. The current grids use
L values of 1, 2, 4, 10, and 11. For spherical shells with
L = 1, the angular distribution scheme of Ref. 4 was modi-
fied such that there are now two rings of four (rather than

Coarse grid for H ~ Coarse grid for C,N, O  Medium grid for H MediumgridforC,N,O

Shell Radius® L* Radius L Radius L Radius L
1 0.2 1 0.022 1 0.113 2 0.029 2
2 0.8 1 0.25 1 0.3 2 0.102 2
3 1.85 1 0.75 1 0.7 2 0.202 2
4 34 1 1.438 2 1.085 4 0.307 2
5 31 2 1.369 4 0.4 2
6 1.818 4 0.6 2
7 2.7 4 1.114 4
8 4.3 4 1.515 4
9 6.5 2 1.889 4

10 2.322 4
11 29 4
12 4.1 4
13 8.0 2

“ Distance in bohr from nucleus to spherical shell.

®Spherical shells contain (L + 1)2 gridpoints, with angular distribution as given in Ref. 4, except L = 1, which

has 2*(L + 1) = 8 points.
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TABLE VII. Fine and ultrafine grids for atoms H, C, N, and O.

TABLE IX. Dealiasing set for medium and fine grids.

Fine grid Ultrafine grid

Shell Radius® L Radius® L°
1 0.065 2 0.065 4
2 0.146 2 0.146 4
3 0.254 4 0.254 4
4 0.4 4 0.4 4
5 0.6 4 0.6 4
6 0.811 4 0.874 10
7 1.037 4 1.173 10
8 1.279 4 1.501 11
9 1.539 4 1.862 10
10 1.820 4 2.261 11
11 2.123 4 2.704 10
12 2.452 4 32 11
13 2.809 4 38 10
14 32 4 4.222 10
15 3.8 4 4.765 2
16 5.098 4 5.486 2
17 8.0 2 6.494 2
18 8.0 2

® Distance in bohr from nucleus to spherical shell.
®Spherical shell contains (L + 1)? grid points, with angular distribution as
given in Ref. 4.

two) points each, making eight gridpoints altogether. Tables
VI and VII list the radial shell positions and L values for the
four grids (coarse, medium, fine, and ultrafine). For the
coarse and medium grids, two parameter sets were used; one
for hydrogen and another for C, N, and O. For the larger
grids, a single gridpoint distribution was used for all atoms.

Table VIII shows the dealiasing functions used with the
coarse grid. Because there are so few dealiasing exponents,
no attempt was made to use the block algorithm described in
Sec. II B with this grid. Tables IX and X display the dealias-
ing sets used for the three larger grids. The exponents are fit
to the basis set in such a way that the uncontracted basis
functions fill gaps in the sp, spd, or spdf block structure of
the dealiasing set. Blocks of dealiasing exponents are other-
wise spaced in a regular fashion.

There is clearly room for further optimization here; e.g.,
a separate dealiasing set could be developed for the fine grid
and individual grids could be created for each atom. Never-
theless, the fact that satisfactory results have been obtained
without extensive parameter optimization is encouraging.

APPENDIX B: PSEUDOSPECTRAL NEWTON-RAPHSON
ALGORITHM

Following Levy et al.,!" the elements of the second de-
rivative matrix A are given by

TABLE VIII. Dealiasing set for coarse grid.

Atom L Exponents
H None
C, N, O s 3.0
r 58

Atom L Exponents®
H s 0.08 . 032 064 1.1 33 9.9
p 008 01612778 032 064 . 33 9.9
C s 0.3 0.8 2.4 7.2 21.6
P 0.3 0.8 24 7.2 21.6
d 0.3 * 24 72
f 0.8
N 035 0.8 24 72 206
P 035 038 2.4 72 21.6
d 035 * 24 72
f 0.8
(o] s 0.4 0.8 24 7.2 21.6
P 0.4 0.8 24 7.2 21.6
d 0.4 * 24 7.2
S 0.8

* Asterisks indicate the location of uncontracted basis functions.

A, = (V|F|v) — (0| F |0} + 3(ov|ov) — (oo|wv),

(B1)
Ao = (U|F|v) + 3(vo|v'o) — (oo|wv'), (B2)
Ao = (0'|F|0) + 3(vo'|vo) — (00 |vv), (B3)
A ve =4 (vo|v'0") — (vo'|v'0) — (d'o|v'y), (B4)

where 0 and o’ represent (distinct) occupied molecular orbi-
tals and v and v’ virtual orbitals. Equations (B1)-(B4) cor-
respond to Eqgs. (44)—(47) of Ref. 11.

We split this matrix into three parts: a diagonal part D
whose elements are the difference in diagonal Fock matrix
elements between the two molecular orbital indices; the part
which depends upon off-diagonal Fock matrix elements
(this is typically quite small as one approaches the self-con-
sistent solution), which we call H; and the remainder G
which is composed of two electron integrals over molecular
orbitals. Thus

D0 = (¥|F v} — (0| F o), (B5)
Dypvo =Dyour =Dyyyy =0, (B6)
Hyyo = (U|F|v), H,,y = (0|Flo), (B7)
H,., =H,,. =0. (B8)

If the notational restriction that v and v’ (0 and 0’) represent
necessarily distinct orbitals is relaxed, the contributions to G
from Eqs. (B1)-(B4) can be written compactly as

G oo = 4(v0|V'0") — (vo'|Vv'0) — (d'0|v'y). (B9)
Note that G does retain some diagonal terms.

The most straightforward approach to solving the New-
ton-Raphson equations is to directly construct G via a four-
index transform of two-electron integrals, assemble A, and
then use a standard matrix inversion algorithm to solve the
linear system Ax = b. However, the effort involved in this
procedure scales as N ° and furthermore is not diminished by
using the pseudospectral method, because the last step (in
which the elements of G are actually evaluated) cannot re-

quire less effort than N* (the number of matrix ele-
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TABLE X. Dealiasing set for ultrafine grid.

Ringnalda, Won, and Friesner: Calculations on glycine

Atom L Exponents®

H s 004 0.08 * 032 0.64 1.1 22 44 88 176
p 004 008 0.1612778 032 0.64 * 22 44 88 176
d 0.08 0.161277 8 032 064 1.1 22

C s 004 0.08 * 035 08 1.6 3.2 6.4 128  25.6
p 004 008 * 0.35 0.8 1.6 32 6.4 128  25.6
d 0.08 0.168 714 0.35 . 1.6 32 6.4
f 0.8

N s 005 o011 * 0.41 0.8 1.6 32 6.4 128  25.6
p 005 011 * 041 0.8 1.6 32 6.4 128 256
d 0.11 0.212 031 0.41 * 1.6 32 6.4
f 0.8

(0] s 007 014 048 08 1.6 3.2 6.4 12.8  25.6
p» 007 0.14 048 038 1.6 3.2 6.4 128 25.6
d 0.14 0.270 005 8 0.48 * 1.6 3.2 6.4
f 0.8

® Asterisks indicate the location of uncontracted basis functions.

ments) X M (the number of grid points). In any case, this
procedure is clearly not competitive with alternative accel-
eration methods for large problems.

A much more efficient approach is to use an iterative
method to solve the linear system, in which case one needs an
algorithm for acting with G on x. This may be carried out via
the pseudospectral method as follows (note that this algo-
rithm avoids the necessity of transforming integrals to the
molecular frame):

(i) Form the matrix Y from x as follows:

Y.=Y,=x,, Y,=Y, =0. (B10)
Note that Y differs from X in-that Y is symmetric, while X is
skew symmetric.

(ii) Transform Y to the atomic orbital space, creating a
“pseudodensity” matrix P:

P =cYc'

which then has elements

(B11)

Pu=3 3 (ki + €€y )Xy (B12)

v

This requires an effort of magnitude N * and hence is negligi-
ble compared to other steps.

(iii) Pass P to the usual algorithm for assembling the
two-electron part of the Fock matrix from the density ma-
trix.

(iv) Transform the resultant “Fock” matrix F back to
molecular orbital (MO) space. This is then the result of G
acting on x.

Proof: We wish to show that

[¢'Fe],, = [Gx],,.
Expansion of the left-hand side of Eq. (A13) gives

[e'Fel, =3 3 ;¢ F;
7

(B13)

(B14)

i

and the elements of F are

Fy=3 5 Pul2lkD — Gk D). (BI5)

Combination of Eqs. (B12), (B14), and (B15) yields, afte
some rearrangement,

[c.th]uo = 2 [2 ; ciucjocku'clo' (Ulkl)
- v'o’ itk
+2 z €1 CjoCro Cry (§|k)
ikl
- }; € Cior €0 €4y (1K |j1)
73

— ) €€, €, C (iK UI)] Xy (B16)
1

£
which can be written in terms of two-electron integrals in
MO space as

[¢'Fe],, = Y [2(vo|v'o’) + 2(volo'v')

v'o'

— (vo'|ov’) — (vv'|00") 1%,

= z [4(vo|v'o’) — (vo'|v'0) — ('o|v'v) 1x,y

= vao,u'a'xv'o' = [Gx]uo . (B17)
v'o’

The above algorithm thus scales like N 2M, just as the
ordinary Fock matrix assembly in the pseudospectral meth-
od does. We considerably reduce M by using the coarse grid.
This implies the use of an approximate Hessian in the New-
ton-Raphson procedure, so that quadratic convergence de-
grades as one approaches the solution. Fortunately, when
one is very close to the solution, Fock matrix updating is
inexpensive, so that carrying out a few extra iterations in this
region is not costly.

Given the above procedure for acting with G on x, we
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can now specify the entire iterative algorithm:

(i) Asnoted above, the elements of H are very small and
exclusion of these terms does not change the convergence
rate significantly. Therefore, we assume A =D + G.

(i1) Produce an initial guess for x; this is done by assum-
ing that G is zero and solving the diagonal system Dx =b.

(iii) Obtain the vector Gx using the algorithm outlined
above.

(iv) Form the vector Ax = Dx + Gx.

(v) Solve the diagonal system

Dx,., =b— Gx (B18)

to obtain the new, preconditioned guess for x.

(vi) Repeat steps (iii)—(v), storing all of the x and Ax
vectors. This allows construction of the L by k [k is the
number of iterations of steps (iii)—(v) above] matrices M
and N, where the columns of M are the various x vectors and
the columns of N are the Ax vectors.

(vii) Solve the equation Nz = b by least squares

z= [N'N]~'N". (B19)

(viii) Find the best solution x to the original problem
Ax = b by forming a linear combination of the k trial solu-
tions contained in M:

X = Mz. (B20)
If one wishes to avoid storage of the x vectors, the above

iterative procedure can be equivalently replaced by the con-
jugate gradient procedure with D as a preconditioner. The

computational effort is roughly the same, but significantly
less storage is required if one needs to carry out a substantial
number of iterations. As only four iterations are needed in
the present case, this is not a major issue.

Once the optimal x vector is determined, the corre-
sponding X matrix is exponentiated approximately via a
Taylor series expansion, a rapidly convergent procedure
when one is close to the solution.
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