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A pseudospectral code for general polyatomic molecules has been developed using Gaussian
basis functions. As an example, the water molecule is studied using a 6-31G** basis set.
Quantitative agreement with conventional calculations is obtained for the equilibrium
geometry, total energy, first ionization potential, and vibrational force constants. Timing
results for a vectorized version of the code (run on a Cray X-MP) indicate that for large
molecules, rate enhancements of Hartree-Fock self-consistent field calculations of order 10°

can be achieved.

I. INTRODUCTION

For the past 30 years, the overwhelming majority of self-
consistent field (SCF) electronic structure calculations have
been carried out via the Roothaan basis set procedure.' This
method has many attractive features; it is strictly variation-
al, straightforward to implement numerically, provides clear
prescriptions for optimization (e.g., of the basis set), and
conforms well to chemical intuition. However, it is a highly
inefficient method of solving a nonlinear, three-dimensional
integro-differential equation. Indeed, analogous methods
are rarely employed by engineers or applied mathematicians
in large-scale computations of, e.g., fluid flow or mechanical
stress. The consequence of this inefficiency has been to limit
SCF calculations to a small basis set and (hence) to small,
gas-phase molecules. Because of the rapid (V*) growth of
computational effort with basis set size, the next generation
of supercomputers will only ameliorate (rather than rem-
edy) this problem.

Various attempts have been made to develop numerical
methods for solution of the Hartree-Fock equations.>™'° In
general, these methods have suffered from one of two serious
defects; either they are easily applicable only to atoms or
diatomic molecules, or they have been incapable of achiev-
ing the high accuracy of conventional techniques. The
source of this difficulty is twofold. First, the Coulomb singu-
larities at the nuclei (which can be arranged in an arbitrarily
irregular geometry) render traditional discrete methods
(finite differences, finite elements, numerical quadrature)
difficult and expensive. Second, the usual Rayleigh—Ritz
variational scheme appears to have remarkable success in
minimizing relative error. For example, the equilibrium ge-
ometry of the water molecule converges quite rapidly with
basis set size (i.e., a 6-31G** basis gives an acceptably accu-
rate H-O-H bond angle and O-H bond length) to the Har-
tree—Fock limit, despite the fact that the energy differences
involved in locating this minimum are two orders of magni-
tude less than the absolute 6-31G** basis set error in the
total energy. Numerical methods often have difficulty repro-
ducing this property, which is essential if they are to be com-
petitive for quantitative chemical applications on large mol-
ecules.
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Of all the modern numerical techniques used for large-
scale computations, the pseudospectral method of Ors-
zag'>™*® appears to have the greatest promise for studying
chemical problems. In addition to the original applications
to hydrodynamic simulations of isotropic turbulence and
wall-bounded flows, '*-2° variants of the method (not always
recognized as such) have recently been applied to atom-
surface scattering,?"*? vibrational bound state problems,*
and motion of a quantum mechanical electron in a molten
salt.*

The key idea is the use of both a basis set (to improve
accuracy in evaluating derivatives and integrals) and a phys-
ical space grid (on which to carry out multiplications), thus
retaining the speed of discrete methods and the smoothing
properties of continuous functions.

Modification of the ordinary pseudospectral approach
allows a synthesis of traditional quantum chemistry methods
with efficient numerical techniques. A global basis set of
standard quantum chemical functions is employed, and em-
phasis is placed on recovering the Rayleigh-Ritz variational
property by removal of aliasing errors (see Ref. 2 and be-
low).

The numerical grid eliminates two-electron integrals
and leads to an N * scaling of computation time and storage
space, where NV is the basis set size. Consequently, large rate
enhancements in calculation of molecular wave functions
are expected if sufficient accuracy can be achieved.

In two previous papers, 2 it was shown that a numerical
scheme based on the above principles yielded highly accu-
rate total energies, equilibrium geometries, orbital energies,
and force constants for atoms and diatomic molecules.
While these results are encouraging, they provide no guaran-
tee that application of the formalism in a fully three-dimen-
sional system (where the basis set is necessarily less accu-
rate) would be successful.

In this paper, we describe a general pseudospectral code
for polyatomic molecules using Gaussian basis functions.
The synthesis with conventional quantum chemistry has be-
come more complete; two-electron integrals over four basis
functions on the same atom are done explicitly (at negligible
computational cost), and optimization of some nonlinear
parameters is used to reduce error. The resulting algorithm
can be thought of as a truly hybrid scheme, borrowing com-
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putational machinery and philosophy from both ap-
proaches.

The water molecule is studied as a simple test case. With
a 6-31G** basis set, quantitative agreement with Raleigh-
Ritz values for the total energy, first ionization potential,
equilibrium geometry, and vibrational force constants are
achieved. Strategies are described for optimization of the
physical space grid and dealiasing functions. Timing results
indicate that rate enhancements of @(10®) over convention-
al calculations can be expected for large basis sets.

il. ELECTRONIC STRUCTURE OF THE WATER
MOLECULE AND ATOMIC BASIS SETS

We study the water molecule under the assumption of
C,, symmetry, ie., the two O-H bond lengths are con-
strained to be equal. There are then three distinct symmetry
groups: 4, B,, and B,, which we designate as groups 1, 2,
and 3, respectively. Group 1 generates three occupied orbi-
tals, while groups 2 and 3 produce one each. Group 2 hasasa
nodal surface the plane containing the molecule, while group
3’s nodal surface is the plane bisecting the H-O-H bond
angle.

The decomposition of the atomic basis sets into symme-
try-adapted functions is straightforward and will not be de-
scribed here in detail. We construct three disconnected
blocks of the Fock operator and diagonalize each to obtain
the new molecular orbitals in the iteration process.

We have chosen to utilize a 6-31G** basis set>>** to
study the water molecule. This basis set provides a crucial
test of the pseudospectral method; it yields an equilibrium
geometry in good agreement with Hartree~Fock limit calcu-
lations, but does not accurately reproduce the total energy.
A basis set without polarization functions (e.g., 4-31G)
would not possess the first property. There are thus 15 basis
functions on the oxygen (3s, 6p, 6d) and 5 on each hydrogen
(2s, 3p). When sorted into the appropriate symmetry
groups, there are 12 functions in group 1, 4 in group 2, and 7
in group 3. Two functions do not transform as any of the
above symmetry groups.

. PSEUDOSPECTRAL METHOD FOR HARTREE-FOCK
EQUATIONS

A. Basic formalism

The pseudospectral formulation of the Hartree~Fock
equations used here is essentially that described in Refs. 1
and 2. The basic idea is to use both a physical space (i.e.,
grid) representation ¥(#) and a spectral (basis set) repre-
sentation ¢ of the occupied molecular orbitals, and trans-
form between them. Producing function values on a grid
given the basis set and coefficients is straightforward. The
inverse transform is accomplished via a least squares proce-
dure in which additional functions (dealiasing functions)
are included and then discarded; this step is the only approx-
imation (other than basis set incompleteness) made in the
method. The number of grid points must be greater than or
equal to the number of basis functions.

The use of dealiasing functions'> has proved to be cru-
cial in obtaining accurate results with the pseudospectral

method. The pseudospectral Fock operator F,, (see below)
acts on a coefficient vector ¢ and produces a function on the
physical space grid. This function can be well represented by
the basis set, but there are some components produced (the
alias) which are outside of the basis set. If left alone, these
components are misinterpreted by the basis set, leading to
fluctuations as a function of geometry which degrade the
accuracy of the relative energy. By including additional
functions, the great majority of the alias is filtered from F , ¢,
rendering the pseudospectral calculation nearly equivalent
to a conventional one (in which the alias is exactly removed
by analytic integration). More discussion of this can be
found in Ref. 2.

The basis set coefficients satisfy the usual Fock equation

Fe = ScE, n
where S is the spectral overlap matrix, and F is given by
F=H,+2J—-K 2)

The operators H, (the standard one-electron Hamilto-
nian) and S are constructed by conventional analytic eva-
luation of integrals over the basis set. The two-electron oper-
ators J and K are formed via the equations

I=QJ,, 3)
K=0QK,, 4)

where J . K, produce on the physical space grid the result
of acting with the two-electron Coulomb and exchange oper-
ators on a coefficient vector ¢. The operator F,, is defined as
F,, =2, — K.

Conventional electronic structure programs replace
matrix multiplication by Q with analytic integration over
the basis functions; this leads to a requirement to compute
~ N * two-electron multicenter integrals and to perform four
index transforms in the SCF iteration procedure. Our dis-
crete equations avoid both of these, saving substantial com-
putation time but presenting problems in obtaining accepta-
ble accuracy in relative energies. Note that the basis set error
for the absolute energy is typically much larger than the
difference between the conventional and pseudospectral re-

sults.
The operators J,, and K, are constructed from the

three-center one-electron mtegrals

an(r)Xm(r) d3rl, (5)

|r, — 7]
where y,,,v . are the usual atomic basis functions. Formulas
for J,, and K, are given in Refs. 1 and 2.

The inverse operator Q is obtained from the normal
least squares equations, which give the best fit of the basis
and dealiasing functions to the result of the operation F, ¢,
i.e.,

Q=[R*wR] 'R*w. 6)

Here, R is the matrix of basis and dealiasing functions
on the grid, R* the transpose, and w a diagonal matrix of
least squares weights. The dealiasing functions are initially
orthogonalized to the basis set using analytic overlap inte-
grals and hence are simply ignored in subsequent calcula-
tion. In the present program, the matrix Q is formed explicit-
ly asin Eq. (6). For larger problems, this may be inefficient;
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full matrix inversion can be avoided by solving linear equa-
tion systems directly in the eigenvector solver.

Once the Fock operator is constructed, the usual intera-
tion of the pseudoeigenvalue equations is used to obtain a
solution. Canonical orthogonalization is employed to deal
with the overlap matrix. Because the pseudospectral Fock
operator is not necessarily Hermitian, a projection operator
technique is used to enforce orbital orthogonality. We have
improved the efficiency of the algorithm described in Ref. 2
by utilizing inverse iteration and by forming the projection
operator more rapidly.

B. Atomic Fock operators

A straightforward modification of the above scheme is
to partition the two-electron Fock operator into a sum of
purely atomic terms, = F,, and the remaining terms. We
compute the F, using conventional two-electron integrals
(cf. Ref. 31). This is trivial computationally (e.g., the neces-
sary integrals can be evaluated once and for all for any given
basis set) and removes aliasing errors from the largest ma-
trix elements. It also ensures that dissociation to the atomic
limit yields the conventional Hartree-Fock result; note that
all purely atomic terms are now computed spectrally.

In the present calculation on the water molecule, we
apply this technique only to the oxygen atom because the
symmetry considerations make it inconvenient to separate
the hydrogen Fock operator into atomic parts. However, we
have compared the pseudospectral and conventional atomic
hydrogenic matrix elements, and the difference is quite
small.

The above procedure does require assembly of the atom-
ic Fock matrices F, from the orbital eigenvectors and atomic
two-electron integrals. A naive calculation would imply a
computational effort proportional to N7, where N, is the
number of atomic basis functions. By exploiting symmetry,
however, the number of nonzero atomic two-electron inte-
grals is reduced considerably. Consequently, construction of
the F, constitutes a negligible fraction of the computation
time per iteration.

IV. GRID AND DEALIASING DESIGN AND
OPTIMIZATION

A. General considerations

In principle, the results obtained with pseudospectral
code are nonlinear functions of the grid positions and the
dealiasing parameters. In practice, it is not possible to opti-
mize each of these separately starting from an arbitrary ini-
tial guess. Consequently, strategies must be developed for
constructing grid and dealiasing parameters from a set of
rules and a few variables which can be optimally adjusted.
The methods described below represent an initial attack on
this very complicated problem.

The strategies adopted in this paper have many ad hoc
features; they were developed by a combination of physical
reasoning, numerical experimentation, and the three opti-
mization criteria discussed in Sec. IV D. Subsequent ap-
proaches may discard many of these features; they should
not be regarded as demonstrably efficient in any compara-
tive sense. The main purpose of this paper is to show that the
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pseudospectral method can produce a quantitatively accu-
rate solution for a polyatomic molecule. The robustness of
the method will be addressed by displaying explicitly the
results of parameter variation.

B. Grid architecture

Each atom “carries” a grid arranged in radial shells
around the nucleus. Specification of an atomic grid then con-
sists of assigning the following parameters: (1) number of
radial shells; (2) position of each shell; (3) number of points
per shell; and (4) angular dispersion of the points in each
shell.

For the present problem, only one quadrant of a global
coordinate system centered on the oxygen atom needs to be
filled, because of symmetry. The oxygen grid contains either
two or six points per radial shell, with angular coordinates
given in Table I. Only one hydrogen atom is assigned a grid;
each radial shell has either two or four points, whose angular
positions are also given in Table I. Some of the points of the
hydrogen grid will spill over into a different quadrant; this is
inefficient, but causes no numerical problems.

Each radial grid is generated by specifying two regions,
one for the core (short-range) basis and dealiasing func-
tions, and one for the long-range valence functions. Each
region has P radial shells. First, preliminary radial shells are
defined by the inner and outer radius of each region and by
the zeros of the Chebyshev polynomial of order P + 1; the
actual points are embedded in the center of each preliminary
shell. The Chebyshev spacing concentrates points nearer to
the nucleus to resolve the exponential singularity there. Ta-
ble II lists the positions and number of points for each oxy-
gen and hydrogen shell. The parameters (inner and outer
radii) used to generate this grid were: oxygen region 1, 0.01-
0.5; region I1, 0.5-10.0; hydrogen region I, 0.01-0.2; region
11, 0.2-10.0.

For the present calculation, we used 100 points for the
oxygen grid and 68 for the hydrogen. This grid provides
great stability; even large alterations in the inner and outer
radii of the radial regions produce little change in many ob-

TABLE 1. Angular dispersion of grid points in a radial shell of radius
R = 1. x, y, and z are Cartesian coordinates relative to the nucleus.

Atom Number of points Point number x y z
(0} 2 1 1/v3 V3 —1/V3
2 1/v3 VA% I VA%
0o 6 1 0.823 0.402 0.402
2 0.402 0.823  0.402
3 0.402 0402 0.823
4 0.823 0.402 — 0.402
5 0.402 0.823 — 0.402
6 0.402 0.402 —0.823
2 1 1/v2 w2 o
2 Wi —i/V2 o0
4 1 1/v3 1/v3 13
2 1/v3 1V —1/V3
3 VA2 I VA" . VA )
4 WV —1/V3 —1/V3
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TABLE I1. Radial shell locations for the oxygen and hydrogen grids.
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Oxygen grid Hydrogen grid
Shell No. Shell location® Points/shell Shell location® Points/shell
1 0.027 2 0.016 2
2 0.076 2 0.035 2
3 0.153 2 0.066 4
4 0.255 2 0.105 4
5 0.373 2 0.150 4
6 0.5 6 0.2 4
7 0.552 6 0.271 4
8 0.708 6 0.484 4
9 0.964 6 0.836 4
10 0.32 6 1.32 4
11 1.77 6 1.93 4
12 231 6 2.66 4
13 2.94 6 3.50 4
14 3.64 6 4.43 4
15 441 6 5.44 4
16 5.25 6 6.52 4
17 6.13 6 7.65 4
18 7.06 6 8.81 4
19 8.02 6
20 9.00 6

*Values are in a.u., and indicate distance from the radial shell to the corresponding nucleus.

servable properties. When better optimization techniques
are developed, the number of grid points can undoubtedly be
substantially reduced.

The least squares weight of each point is calculated from
the volume of the radial shell in which it is embedded. Points

which are enclosed in both the oxygen and hydrogen spheri-

cal grids have their weight divided by a factor of 2.

The actual weight of each point is the weight of the shell
divided by the number of points per shell. A crude correction
for the spillover of the hydrogenic grid onto the neighboring
quadrant is made by dividing the weight of each point of the
hydrogen grid by 2 if its distance from the hydrogen is
greater than 1.8 a.u.

C. Dealiasing functions

Each atom is assigned a set of dealiasing functions. Con-
ventional Gaussian functions are utilized in the present pro-
gram. The problem is then to specify the exponents for the s,
D, 4, [, etc., functions to be employed.

The following approach is based on a combination of
analytic arguments and empirical results of numerical ex-
periments. As the ultimate goal is to develop a set of atomic
parameters which are transferable to arbitrary polyatomics,
the success of any derived rules will become apparent only
when additional molecules have been studied. In fact, it is
clear that better procedures will need to be developed; some
ideas in this direction are presented in the conclusion.

Two considerations are important in choosing dealias-
ing functions. First, it is essential to use functions which
project onto F,c. Second, the least squares collocation pro-
cess should be as free from instability as possible. These two
imperatives can come into conflict, although effective opti-
mization of the grid would alleviate this problem.

The action of F,; on ¢ typically produces terms which
have the form of a basis function multiplied by an integral

A, (r) [cf. Eq. (5)]. The latter behaves like 1/r at long
range; at short range, there are some fast components, but
the dominant component is slowly varying. Higher angular
terms are produced in accordance with the combination
rules for spherical harmonics, e.g., the product of three d
functions produces terms ranging from / =0to/=6.

Because the valence and core functions have angular
momentum of / = 0 or / = 1, a relatively small angular dea-
liasing set can be used. Here, we include functions up to f
orbitals on the oxygen, and up to d orbitals on the hydrogen.

A second conclusion to be drawn from the above discus-
sion is that the dealiasing exponents should be similar to
those of the basis functions [ perhaps somewhat larger, as the
potential integrals 4,,, (») do decrease away from the nu-
cleus]. These considerations contribute to the empirical con-
struction procedure for the dealiasing functions described
below.

Webegin by considering the valence (s and p for oxygen,
s for hydrogen) dealiasing functions. A reasonable rule is to
space the exponents by about a factor of 3. For oxygen, the
initial {smallest) exponent is chosen to lie between the long-
range (0.28) and medium-range ( ~1.0) exponents in the
basis set, while for hydrogen, the initial exponent is similarly
located between 0.12 and 0.44.

Probiems can arise in terms of linear independence on
the grid if the dealiasing set is too similar to the basis func-
tions. For example, a gap (at A=~ 1.0) in the hydrogen set
was found empirically to improve results.

For the oxygen d functions, one exponent was set to 2.4
(three times the existing exponent of 0.8) while the other
was set t0 0.4 (slightly larger than the 0.28 s and p exponents
it is intended to mimic). One fexponent of 6.0 (an interme-
diate value between the largest and smallest short-range s
and p exponents) is included as well. Two hydrogen p expo-
nents of 3.0and 0.3 (bracketing the existing exponent of 1.1)
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complete the initial dealiasing set. Decomposing the above
functions into the three relevant symmetry groups for the
water molecule (symmetry-adapted functions are used for
the hydrogens) yields 27 functions for group 1, 11 for group
2, and 18 for group 3. The second of these totals is inade-
quate; this is a consequence of the expansion centers’ loca-
tion in the nodal plane of this group, ruling out, e.g., the use
of linear combinations of hydrogen 1s functions. To remedy
this deficiency, we include an additional d exponent on oxy-
gen (A=72, or 3X24), an f exponent on oxygen
(4 =0.4), ad exponent on hydrogen (4 = 3.0),and p and d
exponents between the two hydrogens (4 = 3.0). These ad-
ditions contribute seven more symmetry-adapted functions,
or 18 dealiasing functions in all for group 2.

In the next sections we describe several optimization
criteria which are used (see the results section) to improve
the above exponent values. However, the basic spacing prin-
ciples are preserved; violation of this can cause difficulties.

D. Optimization criteria

Three general principles should guide the choice of grid
locations and dealiasing functions. First, the dealiasing set
should span the space of the alias produced by the pseudo-
spectral Fock operator as closely as possible. Second, the
basis set should possess as great a degree of linear indepen-
dence as is possible on the grid. Third, the grid should be as
close to an integration grid as is practical, i.e., one would like
the condition

3 #E0g 0w, =f¢,:p, dr 7

to be satisfied for all basis and dealiasing functions ¢. How-
ever, note that the method is not dependent on Eq. (7) being
accurately fulfilled for all functions; to achieve this, a much
larger grid would have to be used.

Unfortunately, rigorous implementation of each of
these conditions requires solution of extremely complicated
nonlinear equations. Furthermore, the conditions are mutu-
ally interdependent; a change of dealiasing exponent may at
the same time improve spanning of the alias and generate
instability in the least squares collocation matrix. Thus, we
concentrate below on the development of approximate, em-
pirically based procedures.

Of the three general criteria, the last is the hardest to
optimize beyond using least squares weights proportional to
occupation volumes of the grid points. Hence this aspect of
things is ignored here; it will certainly need to be considered
further in subsequent work. A possible strategy is to use a
nonlinear least squares routine to minimize the difference
between the left- and right-hand sides of Eq. (7) by varying
grid points.

Errors are amplified by the least squares procedure
when the matrix R* wR (with diagonal elements normalized
to unity) has small eigenvalues. The amplification has ad-
verse consequences only to the extent that such eigenvectors

Richard A. Friesner: Hartree-Fock squations

project onto the basis (as opposed to dealiasing) functions.
To study this, we form the projection

Ny 172
P, =[ > Cfa] /€w (8)
=1

which represents the average error induced in the basis set by
misinterpretation of an aliasing term by the eigenvector «
with eigenvalue €, . The ¢, are the normalized eigenvector
coefficients.

We must now translate this information into a proce-
dure for evaluating the “goodness” of the parameter set: we
choose here to study P, for the smallest eigenvalue in each of
the three symmetry groups, designating the resulting opti-
mization parameters P,, P,, and P,. This approach will have
to be modified when considering larger systems without
symmetry, e.g., one might retain all eigenvalues below a cut-
off threshold.

Two methods are used to examine the effectiveness of
the dealiasing functions in removing the alias. The first is
simple and direct; we calculate the difference between the
spectral and pseudospectral atomic Fock operators FF and
F?* while the aliasing errors in F* are directly removed by
replacement with F2* (cf. Sec. II B), they provide a measure

- of the efficacy of the dealiasing procedure. Probably, errors

should be weighted differently for polarization and valence
matrix elements. Here, however, we simply sum the absolute
value of all errors to arrive at a single number, the atomic
aliasing error (AA) expressed in a.u.

The second criterion is to examine the Hermiticity of the
Fock matrix. We exclude matrix elements between two po-
larization functions as being relatively unimportant. The
mean square aliasing for each symmetry group o is then de-
fined as

172
MSA=[ZZ(F§;”—F},-"’)2/N,,] , (9)
i

where N, is the number of elements in the sum in Eq. (9).
Hence, the MSA is the average error per matrix element.

Finally, the five optimization criteria must be employed
in guiding development of the parameter set. A large value of
AA reflects an inferior dealiasing set, and should be correct-
ed (the question of what is “too large” must be studied em-
pirically). Similarly, poor results are obtained if the MSA
exceeds a certain magnitude. Small changes in either quanti-
ty are not very significant, as they represent very crude esti-
mates of the efficacy of the parameter set (i.e., errors in some
matrix elements may be much more relevant than in others).

On the other hand, P,, P,, and P, have proven to be
sensitive indications of the accuracy in relative energies. Re-
duction of these quantities below empirically determined
threshold values appears to be an effective way to ensure
accurate calculation of the equilibrium geometry and force
constants, as is demonstrated in what follows.

For the stability analysis carried out in Sec. V, the MSA
varied minimally (this would not be true for more drastic
variations of the grid and dealiasing parameters). Conse-
quently, values of this quantity are not displayed in Tables V
and VI. It was, however, used extensively in developing the
empirical rules for dealiasing and grid design described
above.
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TABLE III. Dealiasing functions.

Function
number Location* Type® Exponent
1 (o] 1s 0.73
2 o] 1s 2.2
3 O 1s 6.6
4 0 1s 17.9
S O s 510
6 O s 150.0
7 o 2p 0.8
8 o 2 2.5
9 o} 2p 6.8
10 o 2 18.0
11 (o] 3dw 0.4
12 0 3d? 0.4
13 0o 3d® 0.38
14 (8] 3d 24
15 (o} 3d® 7.2
16 o 4 10.0
17 o 4 6.0
18 o e 6.0
19 o 4@ 0.4
20 H 1s 0.3
21 H s 2.8
22 H Is 9
23 H 1s 27
24 H 2p 0.3
25 H 2p 3
26 H 3d@ 3
27 B 202 3
28 B 3d? 3

*O = oxygen, H = hydrogen (symmetry adapted linear combinations are
employed), B = between the two hydrogen atoms.

® Superscripts indicate that only functions belonging to the designated sym-
metry group are included. The absence of a superscript implies that all
angular functions consistent with the angular quantum number (s, p, d, or
/) are classified into the appropriate symmetry groups and utilized.

V. RESULTS
A. Accuracy of the potential surface

Twenty-five water geometries (R = 1.76-1.80 in steps
of 0.1, 8 = 101.4°-108.6° in steps of 1.8°) were employed in
each generation of a potential surface. A quadratic least
squares fit was then made to extract the equilibrium position
(R.,0.) and the force constants fzz, fre»and fee. The latter
are expressed in atomic units, with the angles measured in

radians. The above procedure for computing force constants
is not highly accurate, but should be adequate for present
purposes, which are the establishment of agreement in the
5%-10% range.

Note that in the above paragraph, g refers to the H-O-
H bond angle while R designates the O—H bond length of
both O-H bonds. The least squares fit for the coefficient of
the quadratic term in R is actually the sum of the symmetric
and antisymmetric force constants. Consequently, we utilize
the value of the antisymmetric force constant of — 0.005
from Ref. 26 to obtain fz; from the fitted coefficient.

Energies were converged to 1072 a.u. Convergence of
the Hartree-Fock iteration procedure was unproblematic,
starting from a rather poor initial guess. No attempts were
made to optimize this aspect of the program.

Using the optimization criteria, general principles, and
initial exponents described in Sec. IV, a relatively small
number of unsystematic parameter variations produced the
results shown in Table IV. The precise grid configuration
and set of dealiasing functions are listed in Tables I-III.

The equilibrium geometry is reproduced quite accurate-
ly, while force constants differ from Hartree—Fock limit val-
ues by roughly 5% or less (see Table IV). This performance
is quite comparable to that of a conventional calculation us-
ing a 6-31G** basis set. Thus, assuming the procedures here
can be systematized, refined, and efficiently applied to gen-
eral polyatomics, the pseudospectral method is capable of
matching a spectral program in converging relative energies
long before the total energy is at the Hartree—Fock limit.

The total energy obtained here by the pseudospectral
code is somewhat lower (0.004 a.u.) than the spectral 6-
31G** result. To some extent, this is due to a decision to
optimize relative as opposed to absolute aliasing error. This
has no serious practical consequences as the discrepancy is
an order of magnitude less than that for either calculation as
compared to the Hartree-Fock limit. Nevertheless, refine-
ment of the grid (which has a strong effect on the MSA
criterion, the best predictor of total energy) could reduce
this discrepancy.

We now turn to a discussion of numerical stability and
efficacy of the optimization criteria. First, several global
considerations will be briefly discussed without displaying
detailed calculations. The grid used here is one of many

TABLE IV. Comparison of pseudospectral and conventional calculations on the water molecule.

Conventional
Near Hartree—

Property 4-31G* 6-31G**® Fock limit® Pseudospectral
Total energy — 75.907 — 76.023 — 76.065 — 76.027
R, 1.797 1.782 1.776 1.782

6, 112 106.0 106.1 105.0
Srr e .. 0.632 0.603
Sfoo 0.179 0.182
Fro 0.030 0.032
First ionization
potential 0.500 0.497 0.506 0.497
2 Reference 25. *Reference 25. °Reference 26.
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TABLE V. Effect of 10% variation of dealiasing exponents.

Richard A. Friesner: Hartree-Fock equations

Perturbed
Case function® R, A Jrr Jos Sro Py P, P, AAA
0 none 1.782 105.0 0.603 0.182 0.0318 4.48 1.24 1.04 0
1 1 1.782 105.0 0.609 0.182 0.0325 4.32 1.24 1.04 0
2 2 1.782 105.0 0.603 0.182 0.0318 3.66 1.24 1.04 0
3 3 1.783 104.9 0.603 0.182 0.0328 3.97 1.24 1.04 0
4 4 1.781 105.0 0.599 0.183 0.0305 4.67 1.24 1.04 0
5 5 1.782 105.0 0.602 0.182 0.0317 4.67 1.24 1.04 0
6 6 1.782 105.0 0.603 0.182 00318 448 1.24 1.04 0
7 7 1.786 104.7 0.569 0.172 0.0315 532 1.96 0.83 0.03
8 8 1.781 104.9 0.612 0.187 0.0313 3.58 0.75 1.07 0.01
9 9 1.787 105.0 0.583 0.172 0.0367 7.01 0.66 1.15 0
10 10 1.783 105.4 0.612 0.187 0.0377 6.63 1.24 0.62 - 0.01
11 11 1.782 105.0 0.600 0.181 0.0306 8.65 1.24 1.04 - 0.01
12 12 1.783 104.7 0.606 0.183 0.0315 448 0.617 1.04 0
13 13 1.783 104.1 0.603 0.184 0.0346 4.48 1.24 0.90 0
14 14 1.783 105.4 0.594 0.180 0.0351 3.76 1L.10 1.03 0.07
15 15 1.783 104.8 0.594 0.180 0.0327 4.48 1.21 1.04 0.015
16 16 1.780 104.4 0.590 0.186 0.0254 7.01 1.24 1.04 0
17 17 1.782 104.6 0.592 0.184 0.0301 4.48 1.08 1.04 0
18 18 1.781 105.0 0.600 0.191 0.0319 4.48 1.24 1.01 0
19 19 1.782 1054 0.594 0.178 0.0332 448 2.90 1.04 0

*The exponent of the corresponding function in Table III was increased 10%, with all other exponents held constant.

which yields reasonable results. Poor grids are signalled by
large MSA values, with those from symmetry group 2 exhi-
biting the greatest sensitivity. Further discussion of grid op-
timization will be deferred to a subsequent paper in which
superior construction algorithms will also be developed.

We next consider the effect of varying dealiasing expo-
nents. To keep the data manageable, only oxygen exponents
are varied; similar results are obtained for the remaining
functions. Table V displays the results obtained on increas-
ing each exponent by 10%, holding the remainder constant.
For both Tables V and VI, AAA is the AA of the relevant
case minus AA for the reference case (case O in Table V).

Several points are immediately apparent upon a cursory
examination. First, the equilibrium geometry exhibits very
small fluctuations, as do f;, and f,,. On a percentage basis,
Je deviates from the HF limit results of Table IV by as much
as 30%. This can be partially attributed to its small absolute
magnitude and/or inaccuracies in the least squares fitting
routine.

Second, a few simple rules concerning the optimization

criteria suffice to eliminate almost all of the more inaccurate

TABLE VL. Effect of 50% variation of dealiasing exponents.

results. Case 14 suffers from poor agreement with atomic
spectral integrals, while cases 7,9, 10, 15, and 19 have at least
one projection P; which increases by 50% or more over the
starting parameter set. The only unclear case is 13, which
would be predicted to be at roughly the same accuracy level
but suffers a degradation of 8, and f,,. This indicates that
further development of optimization criteria will be re-
quired. The remaining parameter sets all exhibit comparable
accuracy to the original one.

As the s and p dealiasing functions are constrained to
approximately multiples of 3 ratios on physical grounds, it is
inappropriate to study substantial variations of them. In Ta-
ble VI, the remaining exponents are increased 50% to study
the effect of a rather large perturbation. Cases 4, 7, 8, and 9
display ~100% increases in a projection P;; case 4 also
suffers from an extremely large increase in the atomic alias-
ing error. Again, variation of the long-range d function for
group 3 (case 3) yields inferior results which are not predict-
ed by the optimization criteria.

In summary, we believe that the results shown here are
quite encouraging with regard to the possibility of designing

Perturbed Total
Case function® R, 9, Jrz Soo Sre P, P, Py AAA energy
1 11 1.782 105.0 0.589 0,180 0.0294 7.40 1.24 1.04 - 0.06 - 76.027
2 12 1.785 104.5 0.604 0.183 0.0319 4.48 1.04 0.78 0.01 - 76.028
3 13 1.785 103.6 0.612 0.188 0.0370 4.48 1.24 0.93 - 0.02 - 76.028
4 14 1.781 106.7 0.543 0.186 0.0237 8.48 0.40 0.56 0.25 - 76.022
5 15 1.783 104.7 0.590 0.176 0.0325 4.48 1.4 1.04 — 0.02 - 76.028
6 16 1.786 104.9 0.592 0.177 0.0333 12.0 1.24 1.04 0 — 76.027
7 17 1.783 104.3 0.548 0.186 0.0212 4.48 8.0 1.04 0 - 76.026
8 18 1.776 104.9 0.617 0.216 0.0301 4.48 1.24 2.84 —-0.02 - 76.030
9 19 1.783 107.2 0.567 0.146 0.0332 4.48 2.76 1.04 0.015 - 76,021

* The exponent of the corresponding function in Table III was increased 50%, with all other exponents held constant.
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a general, accurate polyatomic pseudospectral program.
This is particularly true in view of the level of effort needed
to produce the above calculations; the length and complexity
of the computer code is considerably reduced from that of a
conventional ab initio program.

B. Timing results

All computations were performed on the University of
Texas Center for High Performance Computing Cray X-MP
supercomputer. Extensive use has been made of CRAY as-
sembly language software, as described below. However, the
routines utilized are for standard operations (matrix multi-
ply, vectorized conditional statements), so that analogous
packages exist on other systems (e.g., Cyber 205).

We concentrate on the computational steps which scale
like N3, i.e., potential integral generation {cf. Eq. (5)] and
Fock matrix assembly. For the present calculation, these
steps actually consume a negligible fraction of computation
time; they will, however, dominate for large molecules.

The formulas of Ref. 31 were used in constructing all
Gaussian integrals. Most of the required operations are easi-
ly vectorized over the grid points. However, some care is
required in evaluating the primitive functions F, (¢). Effi-
cient algorithms exist for < 1 and 7> 1. Unfortunately, the
vector of ¢ values for each three-center integral is not or-
dered, and will typically vary wildly in magnitude for each
integral. A direct sorting algorithm would be very ineffi-
cient.

The solution adopted here is tabular interpolation com-
bined with a change of variable. Definingx = 1/(1 + ¢), we
construct a table of 10 000 values of each F, [¢(x) ], with x
ranging from O to 1 in equally spaced intervals. For ¢ > 1, the
function F, () X¢¥+ /2 is stored, while for ¢ < 1, the table
contains F, (¢) X 1.0. It is important to include the value
t = 1 (for which ¥+ 2 = 1) explicitly in the table.

In evaluating F, (¢) for arbitrary 7, the first step is to use
the vector conditional CVMGP hardware routine to set a
variable SCALE equal to either 1.0 or ¥ * /2 The value of x
is then computed from ¢, and linear interpolation on the table
is multiplied by SCALE to produce the final result. The en-
tire procedure is performed in one vectorized loop and re-
quires about ten operations per value of z.

The advantage of this approach is easily understood by
examining  Fy(z) < 1/t"2%erf(t'/2).  [Note  that
F, (1) « (1/t*Y2)erf(t /?) ast— oo forallv.] F,y(t) itselfis
slowly varying on the interval [0,1]; however, it is impracti-
cal to directly construct an interpolating table which accu-
rately evaluates larger arguments (7 can easily reach a value
of 10°). On the other hand, erf(z '/2) rapidly approaches its
asymptotic value of 1 for #> 1, so that this function can uti-
lize widely spaced interpolating points in this region. The
scaling function 1/(1 4 ¢) provides appropriate point spac-
ings, i.e., large spacing for ¢> 1, small for S 1. An accuracy
level of 1078 for all integrals was achieved with a 10 000
point table for each F, (¢).

To facilitate comparisons with conventional methods,
the two-electron integrals for H,O in a 6-31G** basis ex-
cluding d functions were computed by the ab initio program
TEXAS (written by Pulay).*° d functions were excluded be-

cause, unlike our pseudospectral code, the version of TEXAS
used here does not utilize genuine Cartesian d functions. The
resulting basis set contains 36 primitive Gaussians. To allow
calculation of computation time per primitive integral, the
integral cutoff was set to zero. Total integral evaluation time
was 1.37 s, leading to an average rate of (36)*/
(8 1.37) = 162 000 integrals per second.

We used the same 36 Gaussian functions and a grid of
120 points; this required 0.020 s of computation time. The
net rate of integral generation is thus [(36)2X 1201/
(2X0.02) = 3 900 000 integrals/s. This implies a ratio of
about 24:1 in individual primitive integral computation

" time.

The integral package of TEXAS has not been vectorized.
However, vectorization of conventional ab initio integral
routines is very difficult; a typical result is achievement of a
factor of 2 improvement.*® On the other hand, our program
does not combine the 2s and 2p shells and is not fully opti-
mized with regard to minimizing the number of actual oper-
ations [for example, a special routine could be written to
evaluate F, (#) when it is known that all 7 will be » 1]. Thus,
the above timing ratio appears reasonable when projecting
improvement of both approaches.

To proceed further in timing comparisons, we must esti-
mate the number of grid points required per basis function.
Taking the largest symmetry block of 12 functions, we arrive
at a figure of roughly 15 grid points per function. While this
can almost certainly be reduced substantially by optimiz-
ation, a fully three-dimensional grid (as opposed to confine-
ment to one-quarter of the volume) will probably require a
compensating increase, thus motivating use of the present
value. Integral cutoffs will affect the performance of both
programs considerably; we defer examination of this to a
later paper, and here assume that equivalent reductions can
be obtained. '

Designating N as the number of basis functions and N,
as the number of primitives, we estimate N, =~ 2N for typical
contraction schemes. We then obtain the scaling

1P~ (2N)*15N /2 (10)
for the pseudospectral approach and
L&)~ (2N)*/8 (11)

for a conventional algorithm. Using the above ratio for
primitive integral calculation yields

£/t P = 24N /15 = 1.6N. (12)

int

This leads to a factor (for a double zeta plus polarization
basis) of 0(10) for a small molecule, O(100) for a medium-
sized molecule, and O(1000) for a large molecule. Large
basis set calculations should become inexpensive for the first
time; integral generation for 400 basis functions would re-
quire only 320 CPU s, not considering the effects of integral
cutoffs (which should drastically reduce this value).

We next discuss Fock matrix assembly. All of the requi-
site operations can be programmed as calls to the Cray as-
sembly language matrix routines like MXMA and MXVA.
This results in a factor of 5-10 enhancement beyond vectori-
zation. For the present problem, Fock assembly time per
iteration was less than 10~2 CPU s (as compared to 107! s
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for TEXAS). This comparison is not really rigorous because
symmetry block factorization was not employed in TEXAS.
However, it seems clear that substantial gains will be real-
ized in this part of the calculation. Furthermore, initial cal-
culations can be run using a reduced grid (perhaps by a fac-
tor of 5), so that only a few expensive iterations need be
performed. The latter statement also implies that integrals
for this last stage can be profitably recalculated at each iter-
ation, reducing storage space requirements.

VI. CONCLUSION

Two important points have been demonstrated in this
paper. First, our version of the pseudospectral method is
capable of producing quantitatively accurate results for a
polyatomic molecule using a basis set of moderate quality.
Second, substantial computation time reductions can be
achieved in both integral evaluation and Fock matrix assem-
bly. The magnitude of improvement in computational effi-
ciency is sufficiently great that one can easily imagine doing
accurate HF calculations on molecules which have previous-
1y been considered too large to treat at any level other than a
minimal basis set one. It is this prospect which justifies the
large investment in software development which will be re-
quired to transform the method from a research problem
into a working tool of the quantum chemist.

The next logical step is to treat fully three-dimensional
systems {with no symmetry) and to systematically study a
series of small molecules using various basis sets. During this
time, we will focus on optimization of the grid and dealiasing
functions. Some promising possibilities include: (1) use of
adaptive grids®®; (2) further exploration of bond-type dea-
liasing functions, also use of angular functions with /> 3; and
(3) increase in the number of dealiasing functions, coupled
with direct removal of functions which produce small eigen-
valuyes of the least squares collocation matrix.

~ The present results do not by any means establish the
pseudospectral approach as a definitive replacement for con-
ventional Hartree-Fock programs; this can only be asserted
if a single, automated program can produce accurate
answers for an arbitrary molecule, with order of magnitude
reductions in computation time. They do suggest that this
goal is a realistic one. A contrast in this regard can be made
with other numerical approaches, which typically have had
difficulty in establishing either time advantages or adequate
accuracy or both, even for diatomics.

The importance of the details of numerical implementa-
tion should be stressed; the quality of results achieved is
quite sensitive to these details. For example, a recent paper
by Thole? derives (independently) and employs basic equa-
tions which are similar to those of Refs. 1 and 2. However,
total energies for the CO molecule displayed errors of =~0.05
a.u. in the total energy despite the use of 575 grid points (our
diatomic calculation on Li, used only 28 grid points and
obtained agreement to 10* a.u. for the total energy). Com-
putation times were comparable to or greater than in con-
ventional calculations. The large errors are possibly attribut-
able to failure to utilize dealiasing functions, although other
numerical subtleties (e.g., how orbital orthogonality is en-
forced) may play some role.

Richard A. Friesner: Hartree-Fock equations

At this point in the pseudospectral method’s develop-
ment, some comparisons with the numerical methods used
to solve the SCF equations of local density functional
(LDF) theory can be attempted. A variety of approaches
which can in principle yield accurate results (within the con-
text of the LDF approximation) have been devel-
oped.?"?3+-3% We choose to examine the discrete variable
method (DVM) of Ellis and co-workers,>>~*® which is simi-
lar in many respects to the approach taken here.

Both algorithms utilize a grid and a basis set (the DVM
actually has auxiliary basis sets as well). The action of the
SCF Hamiltonian on an orbital vector is eventually comput-
ed on the grid. To return to the basis set, the DVM employs
direct numerical quadrature. Our operator Q [cf. Eq. (6)]
would in fact be equivalent to the DVM formulation if the
matrix R*wR was the identity matrix. This will be true in
the limit that the grid reproduces analytic overiap integrals
accurately.

Our experience has been that this requires a very large
number of grid points. Indeed, Ref. 35 indicates that conver-
gence of the SCF solutions to the accuracy obtained here (it
is, unfortunately, difficult to make precise comparisons in
this regard) requires at least several thousand grid points per
atom. The use of Eq. (6) combined with dealiasing appears
to yield a substantial reduction in computational effort by
allowing a much sparser mesh to be utilized. Thus, this as-
pect of the algorithm suggested here could be profitably ap-
plied to LDF calculations.

A second difference is the use of charge density fitting in
the DVM. This procedure is probably uneconomical for the
HF equations because many product densities of the form
@;Xx (wWhere @; is a molecular SCF orbital and y, is a basis
function) would have to be expanded in order to construct
the nonlocal HF exchange operator. For the LDF equations,
the obvious advantage of this approach is the reduction of
integral storage. Given that this is not an issue, comparison
of computation times is not straightforward, and would have
to be made explicitly.

One point emphasized in Ref. 35 is the use of compara-
ble approximations in various parts of SCF calculations.
This philosophy is also advocated here; the great numerical
precision of conventional HF calculations is meaningless in
view of the basis set and correlation errors. As long as rela-
tive energies are evaluated with an accuracy in line with the
errors inherent in the approximations, the failure to satisfy
the Rayleigh-Ritz variational criterion exactly is irrelevant.

Prospects for proceeding beyond gas phase Hartree—
Fock calculations also appear promising. Some of the impor-
tant possibilities are (1) solution of MCSCF equations
(where the high velocity of Fock matrix assembly should be
very important), (2) incorporation of an external environ-
ment or pseudopotentials by direct evaluation of the effec-
tive field on the physical space grid, (3) application to solid
state problems, and (4) density functional theory, possibly
using an effective nonlocal exchange-correlation potential.
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