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An improved version of the pseudospectral method is used to accurately solve the Hartree-Fock
equations for the neon atom and the diatomic molecules H, and Li,. Because the method
eliminates two-electron integrals and is amenable to efficient vectorization on a supercomputer,
order of magnitude reductions in computation time can be expected for large polyatomic
molecules (for which a straightforward generalization of the procedure described here exists).
The present work demonstrates that accuracy comparable to conventional methods can be

achieved by the pseudospectral technique.

I. INTRODUCTION

In a previous paper,' the Hartree-Fock equations for
the neon atom were solved using a pseudospectral meth-
od.>® This approach, adapted from hydrodynamic simula-
tions of wall-bounded flows?>*? and turbulence'®** (and re-
cently applied to quantum scattering problems),*?
eliminates the need to compute two-electron integrals, scales
like NV 3 rather than N * (where N is the basis set size), and is
amenable to efficient vectorization on supercomputers.
Hence, provided sufficient accuracy can be obtained, order
of magnitude reductions in computation time and storage
space (as compared to conventional methods) for polyato-
mic molecules can be expected.

In this paper, several numerical improvements are in-
troduced which yield stable and accurate results for all cases
studied to date. The most important of these is the use of
dealiasing,>® a standard technique for removing certain
types of errors from a pseudospectral code. Other modifica-
tions include an improved eigenvalue solver which enforces
orbital orthogonality, a linear least-squares approach to en-
sure stability of the collocation matrix, and use of the spec-
tral one-electron operator.

In addition to refining the neon results, the diatomic
molecules H, and Li, are investigated. Three-center, one-
electron integrals (the only difficult integrals required, even
for the polyatomic systems) are evaluated by a one-center
expansion method which employs Chebyshev polynomials.
While Slater functions are utilized in these calculations, the
integral package can handle arbitrary (including numeri-
cal) basis functions with no increase in computation time or
loss of accuracy.

The dealiasing procedure is designed to make the pseu-
dospectral calculation equivalent to a purely spectral (ie,
conventional Roothaan'®) one. The results reported here
demonstrate that this is the case; potential curves as a func-
tion of internuclear separation are computed and compared
with standard results for the same basis set. For reasonably
designed collocation grids, total energies are within 0.0005
hartree of the spectral results (which, it should be recalled,
are not exact solutions either). Furthermore, these results
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are relatively insensitive to the precise placement of grid
points. While several general principles are developed for
grid design, optimization procedures will be reported else-
where.”?

Timing results are unsurprising, but comparisons are
not emphasized here (note that spectral methods are most
efficient for diatomics, where only two-center integrals are
required). We are presently developing a vectorized polya-
tomic version of the pseudospectral code and integral pack-
age described below, to be run on a Cray X-MP.'? Efficiency
of the pseudospectral appoach will be best judged by the
results obtained from this program. This principal goal of
this paper is to demonstrate that the method is capable of
sufficient accuracy for chemical applications.

Il. PSEUDOSPECTRAL METHOD FOR THE HARTREE-
FOCK EQUATIONS

A version of the pseudospectral Hartree-Fock equa-
tions was derived in Ref. 1. In this paper, a somewhat differ-
ent formulation will be used.

A brief review of the underlying principles of the pseu-
dospectral approach will be presented first. The solution to
the equations under study appears in two representations:
spectral (i.e., as coefficients of a basis set) and physical (i.e.,
as a set of values of the solution on a grid of points in three-
dimensional space). The collocation method'” is used to
transform between representations.

The nature of the quantum chemical electronic struc-
ture problem requires considerable modification of the stan-
dard hydrodynamic methods, which are principally utilized
for regular geometries. However, the crucial factor that en-
hances computation speed, which is to do one nonlinear
multiplication in physical space rather than a spectral con-
volution, is preserved. More discussion of this point can be
found in Ref. 1.

Numerical implementation of the pseudospectral ap-
proach requires specification of the precise forms of the op-
erators comprising the Fock operator F. The final calcula-
tion consists, as in standard techniques, of iterating the
pseudoeigenvalue equations

F¢]-¢, =€, (N
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where the @; can be represented either in spectral or physical
space. In Ref. 1, a physical space formulation was used. The
improvements described below mandate that the ultimate
representation be a spectral one; the physical space vectors
are used in intermediate calculations required in the assem-
bly of F.

A. Construction of the Fock operator in spectral space
The one-electron operator

1 Z
H=-—vV_-YyY_ T~
0 2 ;’|r

N
— Iyl

(2)

will be represented by the usual basis set matrix, i.e.,

[HO]ij = <¢i|HOI¢j> ’

where the {#, } are a standard quantum chemical basis set of
N atomic orbitals. This smooths errors at the nuclei and
costs no computation time, as the spectral H, matrix is re-
quired to evaluate the total energy in any case. The colloca-
tion matrices R and R™", defined by [R],; = ¢,(r;), where
the {r, } are a set of N grid points, are used to construct the
Coulomb and exchange operators as in Ref. 1, but the final
matrix equation is ultimately in spectral, rather than phys-
ical, space. For example, the spectral Coulomb operator J,
is

J, =R 'J,R. ' (3)

R takes the spectral vector ¢ into physical space, J;, is
the diagonal physical space Coulomb operator defined in Eq.
(10) of Ref. 4, and R™! returns to spectral space. The ex-
change operator is transformed in a similar fashion. Canoni-
cal orthogonalization'® is used to eliminate the overlap ma-
trix on the right-hand side of the spectral Hartree-Fock
equations, and canonical functions with small eigenvalues
are discarded as in standard procedures.

The important aspects of the pseudospectral approach
are

(1) In each of the nonlinear terms (Coulomb and ex-
change) a convolution in spectral space mandated by the
Roothaan procedure is replaced by a multiplication in phys-
ical space. This eliminates two-electron integrals, leads to
O(N?) computation time scaling and integral storage re-
quirements, and allows straightforward vectorization of
Fock matrix assembly.

(2) The price to be paid for this is the approximation
entailed in constructing the spectral vector ¢ via R~ from
physical space on a relatively sparse grid (a large number of
points could be used, of course, but this would increase com-
putation times). As long as the basis set is highly accurate,
this step leads to small errors. For smaller basis sets, how-
ever, undesirable dependence of the results on the colloca-
tion grid can result. In the next two sections, useful modifi-
cations of the pseudospectral technique are described which
will remedy this problem at minimal cost. Substantial gains
in accuracy with respect to earlier work are obtained.

It should be noted that the above approach is similar in
spirit to the discrete variable representation (DVR) of Light
and co-workers.>* More specifically, Eq. (3) is analogous to
Eq. (2.17) of Ref. 24, with J replaced by a linear external
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potential matrix V. The DVR can in fact be considered a
particular formulation of the pseudospectral approach, and
results should be transferable between the two formalisms.

B. Dealiasing

The concept of dealiasing is best understood in spectral
space. Consider a spectral vector

acted on by an gperator (either linear or nonlinear) O. The
exact action of O on ¢ is given by

ac=a[2cj¢,]
=3 ¢,04, . (4)

If the operation 6¢j produces only functions contained
in the original basis set for all ¢;, no aliasing terms (compo-
nents outside the basis set) are produced. However, this is
not generally the case, especially for basis functions and op-
erators used in quantum chemistry.

For the pseudospectral Coulomb and exchange opera-
tors, the operator O generates the results of Og; in physical
space. To return to spectral space, the collocation method is
used (see Ref. 1 for simple illustrations in the quantum
chemistry context); thus

Oc=R"'0,c, (5)

where O,, produces a vector in physical space, and R™" is
the collocation matrix defined above.

If O, ¢ contains no aliasing errors, this procedure is
exact. If there is aliasing, however, the residual of O, cout-
side the basis set will be (incorrectly) represented by avail-
able basis functions. Several options are possible in dealing
with this problem.

One approach is to ignore the entire issue. Many fluid
mechanical calculations are carried out this way, and the
results are not necessarily worse than for a dealiased code.’
However, there are some situations in which undesirable
consequences of aliasing appear. Numerical results indicate
that the present problem is of this type.

A second approach is to project out the alias. Purely
spectral methods do this exactly. In hydrodynamic pseudo-
spectral codes, analogous results are obtained by discarding
some percentage (typically 1/2) of the basis set coefficients.®
This results in an exact dealiasing because the Navier—-Stokes
equations are quadratically nonlinear and the basis sets used
are either Fourier modes of Chebyshev polynomials, which
yield functions of at most index 2N (where N is the label of
the largest wave vector in the basis set) from a quadratic
multiplication step.

The analogous procedure for the HF equations will not
lead to as well defined a result, because the basis functions
and operators are more complicated.

However, we can use as dealiasing functions atomic or-
bitals with large radial or angular quantum numbers, or dif-
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ferent exponents than those used in the basis set. Indeed, the
optimal choice would be functions which would complete
the basis set most rapidly; thus, standard approaches to con-
structing accurate large quantum chemical basis sets can be
employed.

To formalize the procedure, we assume a single symme-
try block (extension to more blocks is trivial) in the Fock
matrix. The pseudospectral problem is now defined with N
basis functions, M dealiasing functions, and N + M grid
points. The function matrix R is then N X (N + M) (only
basis functions are included), but the collocation matrix
R !is the inverse of the full (N 4+ M) X (N + M) function
matrix. The operator O,,, which takes N basis coefficients to
(N + M) grid points, is therefore (N + M) X N. For exam-
ple, the pseudospectral Coulomb operator J, is given by the
product of the N X (N + M) function matrix with the diag-
onal (N 4+ M) X (N X M) physical space Coulomb matrix.
The spectral Coulomb operator J, becomes

J,=PR™'J
=PR™'J,R. (6)

Here P is a projection operator which removes the dealiasing
functions. If these are constructed to be orthogonal to the
basis set (e.g., via Schmidt orthogonalization) then P is the
N X (N + M) matrix

P=[1 0],

where 1,0 are N X N unit and M X N zero matrices, respec-
tively. The result for J,, is then an N X N matrix which is a
suitable component for the spectral Fock operator.

The principal computational requirement for dealiasing
is generation of the potential integrals

Auntr) = [ 220000 M

v —r,]

at N + M (rather than ) grid points. Thus, for M = N (i.e.,
one dealiasing function per basis function), integral compu-
tation time would increase by a factor between 1 and 2 (dou-
bling the grid size does not necessarily double integral com-
putation time).

This is a worthwhile tradeoff for the improved numeri-
cal accuracy obtained. Note that in the limit that the dealias-
ing procedure becomes exact, the pseudospectral method is
variational. Also, increasing the basis set size to N+ M
would raise integral computation and storage requirements
to (N + M)? rather than to at most (N + M)N 2.

It is also necessary to compute the overlap integrals of
the basis and dealiasing functions in order to perform the
Schmidt orthogonalization. This leads to a negligible in-
crease in computation time.

C. Least-squares method

The collocation method as used in this paper has one
substantial difficulty; in the absence of an efficient grid opti-
mization algorithm, instabilities on the order of + 0.005
hartree in the total energy can be generated by the presence
of small eigenvalues in the collocation matrix. These result
in the inverse transform R™' amplifying errors due to in-
completeness of the basis set. The problem occurs only in the

largest basis set calculation (on Li,), and is manifested in
that the above energy fluctuations can be produced by small
perturbations of the grid. This is clearly undesirable for ac-
curate quantum chemical calculations.

The problem can be remedied by introducing additional
grid points and using a linear least-squares (rather than col-
location) matrix to transform from physical to spectral
space. At the cost of a modest (209%-30% ) increase in com-
putation time, stability of the results is enhanced substantial-
ly.

The least-squares procedure is implemented by evaluat-
ing the basic potential integralsat N + M + L grid points (L
is the number of additional points), so as to generate the
results of multiplications in the nonlinear terms on this ex-
panded grid. The function matrix R (including both dealias-
ing and basis function) is now (N 4+M)X(N+ M+ L);
the inverse transform matrix R~ is computed from the nor-
mal least-squares equations,'” i.e.,

R '=P(R*R)'R*. (8)

Note that R™!is now an N X (N + M + L) matrix (recall
that the dealiasing functions are projected out by the projec-
tion operator P). This operator is computed as a preprocess-
ing step which consumes negligible computation time; the
primary increase comes from the requirement that addi-
tional potential integrals be evaluated.

A modification of the above procedure is to weight the
grid points in the least-squares fitting procedure differently.
This is accomplished with a trivial alteration of Eq. (8), and
is used to allow placement of additional points where greater
variation of the wave function (but not necessarily larger
contributions to the energy) are expected.

D. Implementation of symmetry conditions

As in conventional techniques, the Fock matrix must be
factored into separated blocks if basis functions cannot be
mixed because of symmetry. This is accomplished simply by
setting F; equal to zero if ¢, and ¢; are decoupled. Note,
however, that the potential integrals 4,,,,, [cf. Eq. (7)] must
still be evaluated for all pairs of basis functions # and m to
compute the nonzero exchange interactions between orbitals
of different symmetry.

E. Enforcing orthogonality

The pseudospectral Fock operator is not, in general,
symmetric, even after canonical orthogonalization. Hence,
there is no guarantee that orbital solutions will be orthogo-
nal, other than in the limit that the basis set becomes exact.

However, orthogonality can be enforced by a deflation
procedure in which orbitals are successively removed from
the basis set. Suppose the first solution is ¢, and we want i,
to satisfy (#,|#,) = 0. We define a new basis set consisting
of the N — 1 functions

¢; = ¢j - <'/’o|¢j>'//o ’
where the function ¢, with the maximal projection on t, is
excluded. The new Fock matrix is
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F,=(4\F )
= (¢;|F |¢:) — (Yol |4;) . 9)
Note that (¢,|F # €,4, because a non-Hermitian matrix
has differing left and right eigenvectors. The new F must be
reorthogonalized by the inverse of the overlap matrix of the
{4, }'s. All of these operations consume relatively little com-
putation time, and readily generalize to an efficient recursive
procedure for M occupied orbitals. The lowest eigenvalue of
the new Fock matrix is computed by the power method,"’
which is very efficient when a good initial guess is available.
Hence, the overall procedure involves ignoring overlap for
the first few iterations and employing the IMSL routine
EIGRF to diagonalize F, followed by the above procedure to
refine the solutions.

F. Numerical integration methods

The principal integral computations required in the
pseudospectral method are three-center, one-electron inte-
grals of the form specified by Eq. (7). For this paper, these
integrals were evaluated by a numerical integration method
using a one-center expansion in Chebyshev and Legendre
polynomials. The details of the method will be described in a
subsequent paper.'? Slater basis functions were employed,
although the integrator is capable of handling any basis func-
tions (including numerical ones) without an increase in
computation times. Integral accuracy was established to be
10~% hartree. Calculation of overlap, kinetic, and nuclear
potential energy integrals using the same approach is
straightforward, consuming negligible computation time.

IIl. NUMERICAL RESULTS
A. Grid design, choice of basis set, and dealiasing
functions

The purpose of this paper is to demonstrate that reason-
able results can be achieved by a pseudospectral approach
with minimal effort in grid construction and choice of dea-
liasing functions. The results reported in the engineering and
fluid mechanics literature for grid optimization*'® suggest
that it will be possible to develop highly accurate, automatic
procedures for the present problem. Here, however, grids
were constructed using a few simple principles:

(1) Avoidance of regions very close to the nuclei, where
the basis set is inaccurate.

(2) Avoidance of small eigenvalues in the collocation
matrix, which introduce large numerical errors when R~ is
applied. This requires minimally adequate separation of grid
points.

(3) Coverage of the relevant region of physical space
(easily deduced from the basis set).

For an atom, only a one-dimensional grid is required;
this was obtained simply by associating two grid points with
each basis and dealiasing function, placing them around the
function’s maximal density. For the diatomic molecules,
each atom “carries” a two-dimensional atomic grid which
moves with it as the internuclear separation R increases.
This atomic grid is generated from an exponential distribu-
tion for each orbital dispersed in an angular pattern which
covers the upper half of the ¢ = 0 plane. In addition, several

points are placed in the bonding region and remain fixed as R
is varied. For a homonuclear diatomic, only one atomic grid
is required, the points of which lie on one side of the mirror
plane of symmetry.

The results reported here were obtained from grids gen-
erated by using the above guidelines. Perturbation of grid
points by 5%—10% produces little change in the total energy
or orbital eigenvalues (=~ =+ 0.0001 hartree) unless a near
singularity is introduced in the collocation matrix. Further-
more, relative energy differences as a function of R appear to
be affected even less.

On the other hand, major changes in the grid structure
(e.g., significantly different inner or outer radii) can lead to
larger variation ( =~ + 0.005 hartree). Thus, automatic opti-
mization procedures will have to be developed for polyato-
mic molecules. As stated above, this should be attainable,
given the success of grid optimization in other disciplines for
extremely demanding problems (e.g., shock waves in highly
irregular geometries).

Standard quantum chemical basis sets were used for all
calculations. Dealiasing functions were chosen so as to pos-
sess amplitude and functional variation in the regions of
space occupied by the orbital solutions. Again, no effort was
made at optimization, and the final results are relatively in-
sensitive ( £ 0.0001 hartree for 5%-10% variation) to pre-
cise choices of exponents. Improvement of the dealiasing ba-
sis set (e.g., via conventional Roothaan calculations on
small systems, for later use in large problems) will be
straightforward

B. Neon atom

We have obtained results for the neon atom using the
Slater basis set of Clementi and Roetti® with two additional
2p functions and a complementary set of dealiasing func-
tions. Each symmetry block has six basis functions and six
dealiasing functions. The same 12 radial grid points are used
for each block. Exponents for the functions and grid posi-
tions are given in Table I.

Orbital eigenvalues and total energy results are present-
ed in Table II. As can be seen, quantitative agreement of the
total energy is obtained. No problems arose in achieving con-
vergence of the HF equations, e.g., starting from eigenvec-
tors of the bare one-electron operators.

Differences in orbital eigenvalues are as large as 0.001
hartree (for the €, eigenvalue). This can possibly be attribut-
ed to the augmentation of the basis set in our calculations
with functions whose density peaks near the nucleus. Alter-
natively, it is not surprising to detect greater variation in the
wave function than the total energy for the spectral and
pseudospectral procedures. It is by no means clear that a
spectral approach provides a more accurate wave function;
indeed, by a least-squares criterion, collocation often pro-
duces a better fit to a function than complete projection. This
issue may be relevant in computing (e.g.) accurate tails of
wave functions, as are required in electron transfer calcula-
tions.

Similar effects are evident in the eigenvalues computed
forLi, at R = 5.051 a.u. (Table VIII). Again, the discrepan-
cy is at this point of uncertain significance.
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TABLE I. Parameters for the neon atom.

TABLE III. Parameters for the H, molecule.

A. Basis set (B) and dealiasing (D) functions for the neon atom

A. Basis set (B) and dealiasing (D) functions for the H, molecule

Function Exponent Orbital type Function Exponent Orbital type
B 9.485 Is B 1.16 1s
B 15.566 Is B 1.84 1s
B 1.962 2s B 1.04 2s
B 2.864 2s B 1.67 2p
B 4.825 2s B 2.51 3d
B 7.792 2s D 1.80 2s
D 20.0 Is D 2.50 2s
D 150 2s D 3.0 2p
D 20.0 3s D 3.0 3p
D 2.86 3s D 3.0 3d
g 1(5)8 :s B. Physical space grid for the H, molecule®
. $ Point r(a.u.) A(rad)
B 1.452 2p
B 2.382 2p
1 0.3 0.0
B 4.485 4 2 0.44 1.57
B 9.135 2p 3 0.65 3.14
g ;g-g gp 4 0.95 0.94
e 10,0 31’ 5 1.41 1.89
pt 200 31’ 6 2.07 3.14
» 50 41’ 7 3.06 1.57
' o P 8 4.5 2.35
b o.g 4 9 2.03 1.37
b 3. 3p 10 4.51 1.48
D 10.0 5p
B. Physical space grid for the neon atom ® Values are given at the equilibrium separation R, = 1.39 a.u. Points 9 and
Grid point r(a.u.) 10 are stationary; the remainder move with the atom as R is varied.
1 0.02
2 0.075
3 0.1 . . e s .
4 02 basis set. Table V displays equilibrium positions, force con-
5 0.4 stants, and dissociation energies for the H, and Li, calcula-
6 0.7 tions. The pseudospectral results yield quantitative agree-
! 1.0 ment for all quantities for H,.
8 1.4 . . .
9 18 The H, calculations are very stable with respect to grid
10 2.2 placement and dealiasing exponents. Hence, it was unneces-
1 2.6 sary here (as in the Ne case) to use the least-squares proce-
12 3.0

C. H, molecule

Five symmetry adapted basis functions were used in this
calculation, obtained from Ref. 14. These were complement-
ed by five dealiasing functions; there are thus ten grid points
in all. Grid and basis set parameters are summarized in Ta-
ble III. Note that “bonding” points 9 and 10 do not move as
the internuclear separation is varied.

Table IV presents a total energy curve for H, as a func-
tion of internuclear separation. A comparison is made with
results from Ref. 15, which employed a somewhat inferior

TABLE II. Total energy and orbital eigenvalues for the neon atom.

Quantity (in a.u.) This work Spectral results®
Total energy — 128.547 10 — 128.547 05
€ —32.7712 — 327725
€ —1.9305 — 19304
€ —0.8500 —0.8504

®Reference 9.

dure.

D. Li; molecule

Twenty-two symmetry adapted Slater basis functions
[11( + ) functions, 11( — ) functions] were utilized, pri-
marily taken from Ref. 14. Eight dealiasing functions were
employed. The canonical orthogonalization procedure re-
moves one basis function, so a total of 18 functions were used
in all. The relevant information is summarized in Table V1.

TABLE V. Potential energy for H, as a function of internuclear separation
(a.u.).

Separation (a.u.) This work Ref. 15 Ref. 14°
1.2 — 1.12502 — 1.124 588
1.3 —1.132 06 —1.13162
1.4 — 1.133 68 —1.13323 — 1.1336
1.5 — 113142 —1.13097
1.6 — 1.126 40 —1.12593
1.8 — 1111 08 - 1.11097
2.0 — 1.09193 — 1.09103
3.0 —0.989 91 — 0.988 00

*This result was achieved using the same basis set as the pseudospectral
calculations.
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TABLE V. Spectroscopic constants for Li, and H,.

Molecule Quantity This work Ref. 15
H, we (cm™1) 4580 4582
H, De (eV) 3.64 3.64
H, Re (a.u.) 1.39 1.39
Li, we (cm™ ") 301 326
Li, De (eV) 0.17 0.17
Li, Re (a.n.) 5.26 5.26

TABLE VI. Parameters for the Li, molecule.

A. Basis set (B) and dealiasing (D) functions for the Li, molecule®

Function Exponent Orbital type
B 2.350 1s
B 4.300 Is
B 0.665 2s
B 3.049 25
B 1.553 3s
B 2.700 3s
B 3.977 3s
B 0.700 3p
B 1.500 3p
B 2971 3p
B 1.151 3d
D 0.700 Is
D 5.500 1s
D 0.700 3s
D 5.000 3s
D 0.700 3p
D 3.000 3p
D 2.000 4p
D 1.5 3d

B. Physical space grid for the Li, molecule®
Point r(a.u.) 6 (rad) Weight

1 0.20 0.31 1.0

2 0.26 0.94 1.0

3 0.34 3.14 2.0

4 0.45 0.31 1.0

5 0.59 0.94 1.0

6 0.77 3.14 20

7 1.0 0.31 1.0

8 1.34 0.94 1.0

9 1.75 3.14 20
10 23 1.57 1.0
11 23 0.63 1.0
12 2.46 1.57 1.0
13 2.63 2.82 1.0
14 2.82 0.94 1.0
15 3.02 1.72 1.0
16 3.23 3.14 1.0
17 3.46 0.94 1.0
18 371 1.72 1.0
19 3.98 3.14 1.0
20 4.26 1.26 1.0
21 4.56 1.89 1.0
22 4.88 3.14 1.0
23 5.23 1.26 1.0
24 5.60 1.89 1.0
25 6.0 3.14 1.0
26 4.02 1.46 1.0
27 7.09 1.41 1.0
28 10.06 1.45 1.0

*Symmetry adapted functions were employed; identical ( + ) and ( — )
sets were utilized.

®Values are given at the equilibrium separation R = 5.26 a.u. Points 26-28
are stationary; the remainder move with the atom as R is varied. The least-
squares weight of each point is also given.

The increased number of functions renders design of an
optimized grid more difficult. In particular, calculations
with a variety of 18 point grids consistently displayed small
(less than 10™3) eigenvalues in the collocation matrix and
produced energy errors of as much as 0.01 hartree. There-
fore, the least-squares approach of Sec. I C was implemen-
ted. The final grid of 28 points provides great stability with
respect to grid fluctuation; even large alterations in grid den-
sity and angular dispersion produced variation of ~0.001
hartree. Three or four trial variations of the inner and outer
radii of the two exponential grids (points 1-10 are between
0.2 and 2.3, points 11-25 are between 2.3 and 6.0) were
sufficient to yield the present results. More points were
placed in the internuclear region than on the far side so as to
accurately average over variation there.

The grid used here is almost certainly larger than neces-
sary; on the other hand, it was constructed in a most primi-
tive manner. As the purpose of the present paper is to dem-
onstrate the potential utility of the pseudospectral approach
for general quantum chemical systems, the present calcula-
tion is in some ways more relevant than a calculation em-
ploying a highly refined grid would be. Note that the least-
squares approach minimizes concerns about movement of
overlapping grids (which could cause singularities in a collo-
cation procedure).

The resulting potential energy curve for Li, is presented
in Table VII, along with several comparison values from
Ref. 15. Re, we, and De are summarized in Table V. Agree-
ment is better than + 0.0001 hartree in the equilibrium re-
gion. At large separation, the larger ( 4+ 0.001) discrepancy
indicates that some grid reconfiguration is desirable (e.g.,
the bonding points should perhaps be moved away from the
center).

The Li, molecule represents a more difficult test for the
pseudospectral method than the previous two cases. For a
diatomic molecule with three occupied orbitals, complete
convergence of the basis set is more problematic. Further-
more, the Li bond is very weak; to obtain accurate estimates
of the force constant and bonding strength requires an order
of magnitude greater precision than in previous cases.

The results presented in Table V are quite satisfactory.
The equilibrium bond length and dissociation energy agree
quantitatively, while the vibrational frequency is about 10%
lower than the results of Ref. 15. This might be due to the use
of a slightly different basis set, or to disagreement at the
0.0001 hartree level between the pseudospectral and spectral
calculations. Further investigation will be required to distin-
guish these alternatives.

It is clear that the pseudospectral calculation reported
here could be improved in several ways: increasing the num-
ber of functions (both basis set and dealiasing), grid opti-
mization, or optimization of the dealiasing functions. The
results presented above demonstrate that even an unopti-
mized calculation produces acceptable answers. Subsequent
publications will describe the effect of employing systematic
optimization procedures.

IV. CONCLUSION

This study indicates that the possibility of using pseudo-
spectral methods to substantially accelerate self-consistent
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TABLE VII. Potential energy for Li, as a function of internuclear separa-
tion (a.u.).

Separation (a.u.) This work Ref. 15

4.65 ~— 14.868 91

4.75 - 14.869 92

4,77 — 14.869 72
4.85 - 14.870 66

495 - 14.871 20

5.05 - 14.871 55

5.07 - 14.871 59
5.15 - 14.87175

5.25 — 14.871 82

5.35 - 14.87177

5.37 - 14.871 80
5.45 — 14.871 63

5.5 — 14.871 48
5.55 — 14.871 41

5.65 — 14.871 12

5.75 --14.870 77

5.85 — 14.870 37

5.95 - 14.869 95

6.00 — 14.868 65
6.05 - 14.869 4

electronic structure calculations for large molecules is worth
pursuing. Of course, explicit tests on large systems will be
required to demonstrate this definitively. Work in this direc-
tion is currently in progress.

A large number of potential improvements and path-
ways for exploration are suggested by our results. It will
undoubtedly be several years at a minimum before the nu-
merical technology involved in pseudospectral electronic
structure calculations is sufficiently mature so that the best
choices for basis sets, grid optimization procedures, dealias-
ing, etc., are established. For example, the present calcula-
tions were carried out using Slater basis sets; either numeri-
cal basis functions or Gaussian functions might prove to be
ultimately superior. Or, perhaps, molecular fragment meth-
ods to generate group basis functions would be useful for
very large systems. When one considers the amount of nu-
merical work that has been put into quantum chemistry and
hydrodynamic/engineering pseudospectral solution of par-
tial differential equations, it is clear that the synthesis of
these techniques will be a lengthy process.

Other workers have presented numerical methods for
solving the Hartree—Fock equations.'' In general, these
methods do not utilize any sort of physical space grid and
hence must ultimately compute two-electron integrals spec-
trally. It is not clear whether any of these procedures can be
efficiently generalized to polyatomics or how they would
compare in computation time.

TABLE VIII Total energy and orbital eigenvalues for Li, at R = 5.051
(a.u.).

Quantity This work Ref. 14
Total energy — 14.871 55 — 14.871S

€ —2.452 —2.452

€' —0.184 —0.182

€, - 2.452 — 2452

yd

A rather different question concerns the calculation of
the correlation energy. MCSCF equations are clearly ame-
nable to our approach; the required two-electron integrals
can easily be evaluated directly over occupied molecular or-
bitals, and the approximations made here should be ade-
quate for this purpose. Computation of matrix elements of
highly excited virtual orbitals would be less reliable, so that
large scale configuration-interaction calculations should be
approached with more caution (although use of a larger set
of dealiasing functions might facilitate this).

An alternate approach is introduction of a density func-
tional to represent the correlation energy. The numerical
technology developed here opens the possibility of solving
equations incorporating a nonlocal density functional
(which, e.g., gives the correct answer for the hydrogen atom
in a natural manner). This approach is being pursued in our
laboratory.
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