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We describe improved algorithms for carrying out pseudospectral Hartree-Fock calculations; these 
algorithms are applicable to other ab iplitio electronic structure methodologies as well. Absolute 
energies agree with conventional basis set codes to within 0.25 kcal/mol, and relative energies agree 
to better than 0.1 kcal/mol for a wide variety of test molecules. Accelerations of CPU times of as 
large as a factor of 6.5 are obtained as compared to GAUSSIAN 92, with the actual timing advantage 
increasing for larger basis sets and larger molecules. The method is shown to be highly reliable and 
capable of handling extended basis sets. 

I. INTRODUCTION in any first-principles electronic structure method. 

During the past several years, our research groups at 
Columbia, Caltech, and Schrodinger, Inc. have continued to 
develop a new approach to solving ab initio electronic struc- 
ture equations which involves the use of both numerical 
grids and analytical two-electron integrals.lw5 The basic al- 
gorithm that we employ is similar in structure to pseudospec- 
tral methods, widely used in hydrodynamic simulation?to 
and also in a variety of chemical physics applications, e.g., 
scattering theory and calculation of vibrational wave 
functions.“-I4 In these methods, one uses both a numerical 
grid and a basis set; in our case, the latter consists of stan- 
dard quantum chemical contracted Gaussian basis sets. How- 
ever, the details required to make such a method efficient for 
the specialized requirement of electronic structure calcula- 
tions are highly significant; the methods we have developed 
are best thought of as a synthesis of many numerical tech- 
nologies with complicated interconnections. 

There have been major advances in electronic structure 
methodology over the past few years; two-electron integral 
generation schemes have become much more efficient 
[GAUSSIAN 92 (Ref. 15) is perhaps 100 times faster than 
GAUSSIAN 86 for large molecules] and density functional 
theory and the associated computer codes have become 
much more accurate and reliable.16-# While we focus in this 
paper on single point Hartree-Fock calculations, the basic 
numerical technology described here is applicable to both 
density functional and wave function based electron correla- 
tion methods; results for these methods will be presented in 
subsequent publications, as will those for analytical gradient 
methodologies. Here our concern is the optimal ways of 
evaluating the Coulomb and exchange energies which arise 

“‘Current address: Los Alamos National Laboratory, T-12, M.S. B268, P.0. 
Box 1663, Los Alamos, New Mexico 87545. 

The use of numerical grid-based methods is significantly 
less developed in molecular electronic structure theory than 
conventional two-electron integral technology, which has 
benefitted from the-large number of man-years expended in- 
vestigating these problems over the past 20 years. However, 
this situation is changing rapidly, due in part, to the increas- 
ingly impressive performance available from density func- 
tional methods, where parts of the calculation have to em- 
ploy numerical integration. We believe that, as greater effort 
is expended, the value of such methods will become clear 
and that there will be a convergence in all electronic struc- 
ture codes in which numerical and analytical methods are 
intermixed. The key issues are then how to accomplish this 
admixture without sacrificing the high degree of reliability 
that is present in analytical two-electron codes like GAUSSIAN 
92. 

In this paper we present two new algorithmic strategies 
which substantially reduce the number of grid points per 
atom required to achieve accurate relative energies and total 
energies for calculations on large molecules. The first is to 
employ a larger number of analytical integrals in the assem- 
bly of the Coulomb and exchange operators. The develop- 
ment of efficient new schemes for the evaluation of two- 
electron repulsion integrals (ERI’s) has significantly reduced 
the computational effort required per integral, in part by re- 
ducing operation counts and in part by achieving better per- 
formance from vector hardware by reorganization of data 
structures. As we utilize only two-center and a seIected set of 
three-center ERI’s, the number of integrals to be evaluated in 
our formalism is orders of magnitude less than in conven- 
tional electronic structure codes. At the same time, this small 
subset of integrals includes the largest (by at least an order of 
magnitude) terms in the electrostatic energy; we are therefore 
able to substantially reduce the number of grid points that we 
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employ, as the precision required of:the numerical integra- 
tion scheme to achieve equivalent accuracy decreases ac- 
cordingly. The overall scheme for utilizing two-electron cor- 
rections to the pseudospectral calculations will be referred to 
as the two-electron correction (TEC) algorithm in what fol- 
lows. 

The second strategy, which we shall refer to as a length 
scales (LS) algorithm, involves sorting basis functions ac- 
cording to the size of the smallest exponent. We have gener- 
ally observed that projecting the pseudospectral Fock opera- 
tor onto a basis function is much more accurate if that basis 
function has a large exponent [i.e., is a short range (SR) 
function], in part because one can then restrict the domain 
over which the least squares fit is carried out, as has been 
described previously. In the case where one of the two Fock 
matrix indices is a short range function, this strategy can be 
implemented trivially. When both functions are long range 
(LR), however, more effort is required: we later describe an 
algorithm which works efficiently in this case as well. 

Once the basic algorithms have been coded, it is neces- 
sary to design a control structure which adjusts the usage of 
two-electron integrals as a function of iteration number (in 
general, smaller integrals need only be calculated on the 
most accurate iterations). Then, grids and dealiasing sets 
must be developed which take advantage of the IS and TEC 
algorithms in an efficient fashion. The entire scheme then has 
to be tested with regard to accuracy and efficiency on a large 
number of molecules and molecular conformations. 

The paper is organized as follows. Section II provides a 
very brief overview of the development of the pseudospec- 
tral (PS) formalism up to the present time; details can be 
found in previous papers. In Sets. III and IV, we present the 
formalism associated with the IS and TEC algorithms, re- 
spectively. Section V describes the detailed implementation 
of these methods, including grid and dealiasing optimization 
and development of iteration sequences. Section VI presents 
accuracy and timing tests, comparing our results with those 
obtained from GAUSSIAN 92. Section VII, the conclusion, dis- 
cusses future algorithmic improvements. 

In previous papers, we have emphasized agreement with 
analytical methods of the total energy, typically achieving a 
0.1 kcal/mol level of agreement. However, in reality, the only 
relevant quantities are total energy differences. By relaxing 
the constraint on such close agreement of the total energy 
(particularly for large molecules) but insisting on maintain- 
ing agreement for relative energies (easily tested by studying 
a series of molecular conformations), we are able to make 
significant reductions in our computational effort. This pa- 
rameter set displays very small total energy deviations (less 
than 0.25 kcal/mol) from GAUSSIAN 92 for the small and 
medium-size molecules we report in this paper (the largest is 
porphine, with -40 atoms). However, for larger molecules 
like C6a, a tighter parameter set is required to achieve this 
sort of agreement; discrepancies can be as large as several 
kcal/mol for the default parameter set. We note that Gaussian 
itself must use its own tight parameter set, at a very large 
cost in CPU time, to converge Cm, and that other numerical 
methods (e.g., those in commercial density functional codes) 
simply have not been tested with regard to the accuracy of 

energies -for molecules of this size. Thus, in dealing with 
large molecules the requirements for accuracy become quali- 
tutiveZy different and tests on small molecules are in no way 
sufficient to guarantee the accuracy of relative energies in the 
large molecule regime. We shall discuss these issues in detail 
in a subsequent paper. 

II. PSEUDOSPECTRAL ASSEMBLY OF COULOMB 
ANDEXCHANGEOPERATORS 

In conventional electronic structure theory, the Coulomb 
and exchange operators have the form 

kl 
(1) ~ 

Kij= IX iikljZ)pkl, 
kl 

-j (2) 

where (ijlkl) is a two-electron repulsion integral over 
atomic basis functions and p is the density matrix. Pseu- 
dospectral methods are based upon representing a two- 
electron integral (i j 1 kl) as a quadrature over grid points: 

(i.dW = c QkMjk)AklCg), 
R 

(3) 

where Rj(g) is an atomic basis function j evaluated at a grid 
point g, and 

A&)= f Rk\;~g’,(lg’) dg’ (4) 

is a three-center, one-electron integral (potential integral) 
representing the field at g due to the product charge distri- 
bution of basis functions R, and R, . 

The matrix Qi(g) is a least squares fitting operator 
which is designed to fit any right-hand side Rj(g)Ak,(g) in 
the region of space relevant to atomic basis function Ii). If 
Ii) is a short range function, this is done by specifying a local 
fitting basis for each atom, solving the normal equations de- 
fined by the fitting basis and the numerical grid, and project- 
ing the resultant expansion onto Ii) via -analytical overlap 
integrals of the fitting basis with Ii). The mathematical de- 
tails of this procedure have been given in several papers and 
we shall not repeat them here. For our purposes, one can 
think of Q,(g) as a set of quadrature weights that are spe- 
cially designed to provide accurate integration over the func- 
tion Ii). Because of this special design, the accuracy of the 
result for a given number of grid points is necessarily much 
better than for a generic quadrature scheme (e.g., Gaussian 
quadrature) unless there are instabilities in the fitting proce- 
dure. From long experience, we have been able to control the 
instabilities by a variety of techniques so that the algorithm 
provides a robust performance for arbitrary molecules. 

Because of the projection onto analytical overlap inte- 
grals, our method reduces to the analytical result in the limit 
that the quadrature scheme becomes exact. Th$ can be ac- 
complished either by making the fitting basis complete with 
respect to the right hand side or by making the underlying 
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quadrature on the grid exact (in the latter case, one of course 
would not need to use the fitting basis). In practice a combi- 
nation of the two approaches is used to make the PS results 
very close, but not identical to, those obtained from analyti- 
cal theory. 

grids (-100 points/atom) of the present paper, the use of 
length scales improves the energy by an order of magnitude 
with perhaps a lo-20 % increase in CPU time. 

When Ii) is a long range function, the least squares fit 
has to be carried out over a large portion of the molecule. 
This leads to a significant loss of accuracy for a fixed number 
of grid points as well as greater computational expense in 
assembling the collocation matrix and solving the normal 
equations. The length scales algorithm described below is 
designed to deal with this problem. 

Substituting Eq. (3) into Eq. (1) leads to the following 
PS expressions for J and K: 

Jij=C Qik)J(g)Rjkj9 (5) 
K 

where the physical space Coulomb operator J(g) is given by 

J(g) = c A&)Pkl- (6) 
kl 

We wish to calculate elements of the Fock matrix for the 
Coulomb and exchange operators, avoiding the use of diffuse 
functions (e.g., 3s and 3p functions for a first row DZP 
basis; in the general case one can sort any basis set into short 
and long range functions by examining the smallest exponent 
of each basis functionj in the least squares fitting operator. If 
one of the indices in the Fock matrix element Fij (either i or 
jj is a nondiffuse function, the algorithm is trivial: one 
simply selects that function as the one lying on the left-hand 
side. In Eqs. (5) and (7) for example, one simply requires 
that the index i is a short range function. Note that in the PS 
formulation Jij Z Jji , unless the quadrature scheme is exact. 
Difficulties arise when both i and j are diffuse functions. At 
first glance, it would seem as though this problem was in- 
tractable, i.e., that one of the two diffuse functions would 
have to be used in the least squares operator. As is shown 
later, however, this is not the case, albeit at some additional 
computational cost. 

Kij=C Qiig)KjCSj> (7) 
g B. Coulomb operator 

and 

Kjigj=X Ajk(g)oi((g) (8) 
k 

is the pseudospectral physical space exchange field. The in- 
termediate quantity a,(g) is defined as 

Q-,(g) = c R,(g) Pkz . (9) 
1 

The key to a consistent length scale formulation is to use 
the symmetry of the two-electron integrals to rewrite the 
pseudospectral expressions for the Coulomb matrix ele- 
ments. An alternative formulation for Jij is 

N.? 
J,= C Aii(g)B(gjv 

g=l 

where B(g) is a quantity analogous to the Coulomb field but 
without the integration over the kernel r-c2 : 

These are the equations used in our electronic structure pack- 
age, PS-GVB, prior to the methods presented here. As noted 
before, the formal scaling of these equations is N3 (where N 
is the basis set size) and with the use of integral cutoffs this 
becomes N”. 

%j=C Q&~R~k)P~z~ 
kl 

III. LENGTH SCALE ALGORITHM 

A. Overview 

where pkl are elements of the density matrix. It is straight- 
forward to show that Eq. (10) is equal to the usual two- 
electron integral expression for the Coulomb operator [or to 
Eq. (1) in the limit that the quadrature scheme becomes ex- 
act]. 

In previous papers, we have shown that the accuracy of 
pseudospectral Fock matrix elements is highly dependent 
upon the ordering of the basis functions: it is best to fit 
diffuse functions and project onto short range functions. 
However, the structure of the Coulomb and exchange opera- 
tors makes it difficult to enforce this prescription at all times. 

We have worked out a way of doing this at a relatively 
small computational cost. Essentially, one never projects 
onto a diffuse function unless all three of the functions in 
Rj(g)Akl(g) are also diffuse functions. In the latter case, the 
fitting matrix does not need to contain tight functions and, 
hence, is inexpensive to assemble despite being extended 
over the en$re molecule. This length scale algorithm is a 
crucial complement to the increased utilization of analytical 
integrals described below. When we employ the very small 

Starting from Eq. (lo), it is now possible to construct a 
more complex scheme in which Q2k in Eq. (11) is never a 
diffuse function unless R, is also a diffuse function. In this 
case, the entire function to be fit via the least squares opera- 
tor contains only long wavelength behavior and, conse- 
quently, is relatively easy to integrate, even on a sparse grid. 
Furthermore, a small fitting basis containing only diffuse 
functions can be employed in this case, thus greatly amelio- 
rating the problem of the growth of the matrix that has to be 
inverted in solving the normal equations. 

We now explicitly consider the assembly of spectral 
Coulomb matrix elements Jij, where i and j are both long 
range functions, using the length scales algorithm. For the 
present purposes, we assume only two length scales, which 
correspond for first row atoms to 3sp functions (long range) 
and all remaining functions ( 1 s ,2sp, 3 d) designated as short 
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range. We first define a modified version of B(g) , which in 
the limit of exact quadrature is entirely equivalent to E @  
(11): 

B(g)= c c QkkMlk)PkZ 
k=SR I=SR 

+2 c c L?dg)&(g)Pk~ 
k=SR I=LR 

+ c c t?k(&‘)~~k)/Jk~- 
k=LR l=LR 

(12) 

The critical feature of this formulation is that it contains no 
terms in which R is short range and Q is long range. Thus, 
when used in Eq. (10) for both i and j long range, the long 
range Q operator is used only if the three remaining indices 
in the two electron integral are long range as well. There is 
an additional computational cost in this algorithm in the as- 
sembly of B(g), but the final calculation of J, in E @  (10) 
replaces an equally costly evaluation of QiJ(g)Rj in the 
standard ordering. The B(g) assembly cost can be reduced 
by using quantities that have already been evaluated for the 
ordinary pseudospectral exchange operator and by using cut- 
offs. 

C. Exchange operator 

A similar methodology can be used to implement length 
scales in the evaluation of the exchange operator. As before, 
if either i or j is an short range function, Kij can be com- 
puted by choosing the appropriate ordering in Eq. (3); thus, 
difficulties again arise only if both i and j are long range. In 
this case, we define a modified “short range” exchange field 
KfSR)(g) as 

KjSR’(g>= 2 Ajk(g)cisR)(g)+2 c Ajk(g)~~sR)(g)v 
k=SR k=LR 

(13) 

where the intermediate quantity gisR’(g) is given by 

flksR’(d = c Qdg)Pk[. 
l=SR 

(14) 

This field includes terms containing one or two short range 
functions; in every term, a short range Q is employed. Note 
that, in contrast to the usual intermediate (+ field, the modi- 
fied dsR’ field is formed from Q operators and the density 
matrix, as opposed to the R operators used in ordinary PS 
theory. 

The modified long range exchange field KY’(g) is 

KY(g)= c Ajk(g)aim)(g), 
k=LR 

(15) 

where cr”“: ‘(g) is given by 

ujLR’(g d= x &kh I-LR (16) 

Here we revert to the usual formulation of (T except that the 
sum is restricted to be over long range functions only. 

Kij is then obtained by projecting the modified exchange 
fields onto the appropriate complementary operator as 

C KjSR’(g)Ri(g) + C KiSR’(g)R&g) 
B g 

+ C f$LR’(g)Qi(g)- (17) 
B 

Decomposition of Eq. (17) into individual terms and com- 
parison with the full set of pseudospectral terms required to 
represent Kij reveals that every individual term is contained 
in Eq. (17) and that the only terms which require the use of 
a long range Q operator, represented in the third sum in Eq. 
(17), are those where the remaining three indices are also 
long range. Thus, the above formulation successfully accom- 
plished the desired task, namely the use of short range least 
squares fitting matrices wherever possible, 

IV. TWO-ELECTRON INTEGRAL CORRECTIONS 

A. Overview 

From an early point in its development, PS-GVB has uti- 
lized analytical integrals for one-center Coulomb and ex- 
change terms. These terms are small in number and their 
evaluation analytically is obviously trivial; hence, the com- 
putational cost of this strategy is virtually nonexistent. Accu- 
racy of the total energy is typically increased by one to 2 
orders of magnitude as compared to a fully pseudospectral 
calculation for a grid of 1000 points/atom. 

The development of very fast recursive two-electron in- 
tegral algorithms has now proceeded to the point where the 
calculation of additional integrals analytically is worthwhile. 
The basic idea is to order the integrals into classes and cal- 
culate analytically only the largest terms. If these are a suf- 
ficiently small fraction of the total number of integrals 
(which can be enforced by the use of cutoffs), the CPU time 
required is essentially negligible and permits a threefold to 
fivefold reduction in grid size for a comparable level of ac- 
curacy. The scheme described below can be improved upon 
and further reductions in computational effort will be pos- 
sible. 

In this paper we only consider utilization of integrals 
with at least one common product center, i.e., of the form 
(aa’lbc), where a and a’ are (possibly different) basis func- 
tions on the same atom (atom A) and b and c are basis 
functions on atoms B and C, respectively. Besides restricting 
the number of integrals, the common product center renders 
the calculation of individual integrals less expensive, as de- 
scribed later. 

For the Coulomb operator, a justification of this strategy 
is straightforward. Examination of statistics for the size of 
density matrix elements indicates that those in which both 
indices are valence functions. on the same center are 100 or 
more times larger than those for which the indices are on 
different atoms or for which one index is a polarization func- 
tion. This observation follows from the well-known fact that 
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electron densities in molecules are small perturbations on 
those in an atom. Hence, terms of the form (ablcd) where 
the pairs (a,b) and jc,d) are both on different atoms, con- 
tribute 10 000 times less amplitude to the Coulomb energy. 

form (,uu’~u”b); (5) three-center terms of the form 
(uu’lbc). Here a, b, and c represent atomic basis func- 
tions on atoms A, B, and C, respectively. 

For exchange, the situation is not so clearcut and we are 
still attempting to formulate a rigorous theoretical basis for 
sorting terms. In practice, we have chosen to include only 
two-center analytical integrals in assembly of the exchange 
operator, on the basis of empirical experimentation with the 
effects of three-center terms. This approximation works quite 
well in practice and, in fact, can be restricted to nearest- 
neighbor two-center terms for many of the self-consistent 
iterations (those where only -0.01-0.001 a.u. accuracy is 
required). However, we believe that inclusion of a limited set 
of three-center terms wiI1 prove useful and intend to evaluate 
this in the future. 

A crude way to assess the importance of each class of 
terms is to assign a value of 1 to density matrix elements for 
occupied orbitals on the same atom and S for ail other den- 
sity matrix elements. In the expression for the Coulomb en- 
ergy, terms (1) through (5) are multiplied by the following 
density matrix elements: 

(1) Paa’Pa”o”‘, 
(2) Pna’Pbb’3 
t3) Pabpa’b’, 

(4) Paa’Pa’% 
@) Paa’Pbc - 

Several technical considerations have played an impor- 
tant role in the development of the scheme presented below. 
First, the terms to be computed analytically must be sub- 
tracted from the pseudospectral operators to avoid double 
counting. For an arbitrary set of two-electron integrals, the 
subtraction procedures is nontrivial and indeed easily could 
be considerably more expensive to implement than the Fock 
matrix assembly itself. Consequently, it is important to carry 
out analytical corrections on groups of terms which can be 
replaced with relatively little effort in the pseudospectral as- 
sembly scheme. 

‘4 second feature of the methodology is the use of over- 
lap integrals to estimate the size of terms when considering 
whether to compute them analytically or numerically. Cutoff 
thresholds are established and terms whose estimators are 
below these thresholds are either done numerically or ne- 
glected entirely. This allows a considerable reduction in CPU 
time as compared with having to analytically evaluate the 
entire class of terms. 

Assuming that all of the functions are occupied orbitals, this 
leads to an approximate magnitude for each class of terms as 
~91): terms 1,2; @(bq: terms 4,5; @8): term 3. This leads to 
the following strategy (which must be tested empirically). 
Terms of the form (1) and (2) should be done analytically for 
all atoms A and all pairs a and b. Notice as well that there is 
virtually no falloff in the size of the integrals in class (2) as 
a function of the a-b separation distance, hence, no distance 
cutoffs are employed here. Terms of the form (4) and (5) are 
done analytically provided the overlap of the function pair 
lacking a center coincidence [d’b in (4), bc in (5)] is greater 
than a specified threshold. The threshold is adjusted empiri- 
cally to yield acceptable molecular properties in a given 
overall pseudospectral scheme and, hence, will be a function 
of the grid, dealiasing scheme, etc. The cutoffs are actually 
applied to blocks of integrals (e.g., a 2p-2p block, contain- 
ing nine different bc function pairsj and utilize pseudoover- 
laps computed by averaging the absolute values of the indi- 
vidual overlap integrals in the block and dividing by the 
number of integrals. 

To calculate the integrals, we have written a version of 
the Gill-Head-Gordon-Pople algorithm”5 (currently imple- 
mented in GAUSSIAN 92) specialized to the evaluation of in- 
tegrals sharing an atomic center. The modifications of the 
algorithm to achieve efficiency for these special cases is 
straightforward and is briefly described later. 

We describe here the implementation of two- and three- 
center corrections for the standard pseudospectral formulas. 
If the length scales algorithm is being used simultaneously, 
one has to subtract off the appropriate part of these terms as 
well. While this is not presented in detail below, and does 
involve a fair degree of complexity, it can be worked out 
using the basic approach described here, and the computa- 
tional expense is comparable to that for the corrections 
which are presented later. 

Terms of the form (3) a.re likely to be important only for 
atoms in close physical proximity. Consequently, we employ 
here a simple distance cutoff in which analytical corrections 
for these terms are carried out provided the distance between 
atoms a and b is less than a specified tolerance. This may not 
be optimal (perhaps different functions on the atoms should 
be treated differently) but leads to reasonable results as 
shown below. 

When a or a’ is a polarization function in an au’ pair, 
the magnitude of the corresponding density matrix element is 
considerabljr diminished. For (1) and (2), the cost of comput- 
ing the analytical integrals is essentially trivial and we ignore 
this effect. For (4) and (5), we set the cutoff threshold on the 
bc overlaps differently for this case than for the case where 
both a and a’ are occupied. The two cutoffs are empirically 
adjusted on a set of test molecules to yield reliable energies 
and other properties. 

B. Coulomb corrections 

For the Coulomb operator, we consider the following 
types of two-electron integrals for analytical correc- 
tions: (1) One-center terms of the form [au ’ [a”~“) ; (2) 
two-center terms of the form (ua’[bb’); (3) two-center 
terms of the form (ablu’b’); (4) two-center terms of the 

Having constructed our correction scheme, we must now 
devise efficient algorithms for implementing the pseudospec- 
tral subtractions. We define two types of restricted Coulomb 
operators to be subtracted from the full operator in differing 
specific cases: JA, in which sums are over functions a,~’ 
that are both on the same atom, and J, , in which only terms 
where the absolute value of the overlap integral of the two 
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basis functions is greater than a given threshold is included: 

J,(g) = c &dg)~aa~ 9 (1% 
aa’ 

J&T> =- c &Z(LT)P~Z. (19) 
S&S& 

Note that the sum in Eq. (18)’ extends over all atoms in the 
molecule. 

‘ISvo versions of JA and J, are constructed. For JA , one 
term includes polarization functions and one does not. For 
Js, two different thresholds Stii, are defined, one of which, 
St, is to be used when a polarization function is involved and 
the other, Sz, which is used when no polarization function is 
involved (the usage of Ji and Js are described later). The 
computational cost of assembling these three operators is 
identical to that for evaluating a single operator, as partial 
sums can be constructed and then added into the appropriate 
term. 

Once the four operators are constructed, the final assem- 
bly of the spectral Coulomb matrix is carried out with the 
appropriate operator, i.e., one in which the terms to be com- 
puted analytically are subtracted from the pseudospectral 
evaluation of matrix element, so as to avoid double counting. 
For example, in the evaluation of a Coulomb matrix element 
J,,I between two occupied orbitals a and a’, we would sub- 
tract operator Js, if a or a’ is a polarization function: 

Ja,r=x Q,(g>[J(g)-Js,(g>lR,l(g>. (20) 
x 

If neither a or a’ is’a polarization function, Eq. (20) would 
be used with Js2 replacing Js,. Similarly, if functions b and 
c are on different atoms B and C, we would subtract either 
J,.,,, JA2. or nothing, depending upon the size of the overlap 
integral She . 

The principal reason for the use of these cutoffs is to 
limit the number of three-center, two-electron integrals of the 
form (aa’ 1 bc) that must be evaluated analytically. The same 
criteria involving the overlap integrals Sil are implemented 
in the two-electron integral code and only terms satisfying 
the criteria (e.g., for an (aa’lbc) integral with a,a’ not po- 
larization functions, S,,>S,) are evaluated. 

The above algorithm deals with all relevant terms above 
except for those of the form (abla’b’). In this case, One 
must compute a “diatomic” Coulomb correction matrix via 
the equation: 

J%‘= c Q&)J&PMg) (21) 
6 

where the diatomic pseudospectral Coulomb field J,(g). is 
defined by 

J&g> = 2 AazAg)Pab 
ub 

(22) 

the sum being restricted to functions a on atom A, b on atom 
B. 

Greeley et al.: Electronic structure calculations 4033 

While J,(g) itself does not involve extra computation 
(it can be formed as an intermediate step in ordinary Cou- 
lomb assembly), assembly of the correction matrix Jif) in 
Eq. (21) is additional work. JLi’ is then subtracted from the 
USUd Jab. Fortunately, for most iterations in the PS scheme, 
corrections of this type can be restricted to atom pairs that 
are nearest neighbors. 

C. Exchange corrections 

For exchange, an analysis of the density matrix elements 
analogous to that given earlier for the Coulomb operator 
yields, for cases (l)-(5), &7(l): terms 1,3; Q(s): term 4; 
e’(8): terms 2,5. This suggests that we treat only two-center 
terms analytically for’ exchange. Some compelling reasons 
for this are (1) corrections for the three-center terms of the 
fifth case are quite expensive; also, there is no reason to 
believe that these terms are smaller than many four center 
terms; (2) a simple distance cutoff can be used. The correc- 
tion procedure involves calculation of a “diatomic” K ma- 
trix K;;‘: 

k’%)= 2 Q,k)Kf-%L (23) 
R 

where 

04) 

is the pseudospectral physical space exchange field for the 
diatomic AB pair and the intermediate quantity a,(g) is de- 
fined as 

a?)= c Mg)Pkz* 
l=(d) 

(25) 

The sum over 1 again being restricted to functions on atoms 
A or B. 

Once Kif) is computed, it can be subtracted from the 
usual pseudospectral K matrix. Again, distance cutoffs are 
used to restrict the exchange corrections (which do involve 
extra work) to a small subset of atom pairs. 

D. Recursive two-electron integral codes 

We utilize the recursive two-electron integral algorithms 
developed by Gill, Head-Gordon, and Pople. As these au- 
thors have presented their formalism in detail in Ref. 25, we 
will not review it here, focusing instead upon the modifica- 
tions which provide additional efficiency for the special 
cases in which either the pair of basis functions in the bra or 
the ket in the BRAKET algorithm share a common center. This 
is the case in all of the integrals we utilize with the exception 
of those of the form (ab 1 a’b ‘) ; as these are computed only 
for atom pairs within the distance cutoff (reducing a formal 
N2 scaling to a constant factor), for they contribute a negli- 
gible amount to the overall computation time for large mol- 
ecules. 

A trivial modification of the algorithm when there is a 
center coincidence is to avoid recursive steps involving mul- 
tiplication by zero. There are numerous instances in which 
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the distance between the function centers of the bra or ket 
pair appears as a multiplicative constant in the algorithm; 
these steps can easily be eliminated. 

A more drastic simplification is possible when the dis- 
tance between the bra and ket product center multiplied by 
the exponent of the primitive Gaussian is large, i.e., when the 
charge distributions can be treated as interacting classically 
(see. Ref. 25 for details of when the “classical” approxima- 
tion is valid). In this case, if there. is a center coincidence, the 
recursive formulas are independent of the Gaussian expo- 
nents of the primitives as the initial recursive function [O](m’ 
(using the notation of Ref. 25) has reached an asymptotic 
(large) value. One can then calculate the recursion out to a 
certain point (the [r](O) functions depend on the [Olcm) func- 
tions in a way that again renders them independent of expo- 
nent) for the generic asymptotic value without having to redo 
the calculation for each pair of primitive Gaussians on the 
coincident center. As there are no cutoffs if both primitives 
are on the same atom, this will be considerable number of 
pairs, e.g.,‘21 pairs just for an 1 S- 1s bra or ket in a 6-31G** 
basis. Coding this efficiently is nontrivial because one has to 
sort the classical and nonclassical primitives in a systematic 
fashion to preserve the vectorization of the BRAKET algo- 
rithm; our solution to this problem is at present significantly 
nonoptimal and we expect that future versions of PS-GVB will 
have substantially improved CPU times for two-electron in- 
tegral generation as this algorithm is optimized. 

V. CODE AND PARAMETER SET OPTIMIZATION 

A. Overview 

The basic algorithmic structure described earlier is, in 
principle, enormously flexible, allowing various terms in the 
Hamiltonian to be treated at different levels of numerical 
accuracy (and, concomitantly, at different costs of CPU 
time). This complex structure requires control parameters to 
manage the choices (e.g., of which integrals will be done 
analytically and which numerically); optimal values of these 
choices change as a function of-.iteration number as well. 
Finally, the detailed implementation of the different integral 
computations is itself highly nontrivial and improvements in 
performance are available from a number of different strate- 
gies. 

We first describe the key control parameters which de- 
termine the basic structure of a given iteration, these include 
the two-electron integral cutoffs for both Coulomb and ex- 
change corrections and choice of numerical grid. We then 
present our empirically determined iteration sequence, de- 
signed to generate reliable relative energies for the vast ma- 
jority of molecules. 

The program contains a substantial number of param- 
eters that are not described later, for example, those control- 
ling the accuracy of the one- and two-electron integrals, or 
the thresholds for eliminating them completely. These are not 
really relevant to the basic issued addressed in this paper- 
: implementation and performance of the TEC and LS al- 
gorithms. Discussions of these parameters can be found in 
the PS-GVB users guide. 

B. Control parameters 
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1. Grids and fitting basis 

The most important parameter for any iteration is the 
grid parameter. We have optimized three types of grids: F 
is. fine (-300 points/atom), A4 is medium (-100 points/ 
atom) and C is coarse (-70 points/atom). Optimization is 
carried out for a series of small molecules for each atom for 
a given basis set and then tested for accuracy on a larger list 
of molecules. Finally, the performance is evaluated by com- 
puting energy differences for various conformational states 
of several molecules. Each grid has associated with it a 
dealiasing file of fitting functions which is optimized along 
with the grid. 

The grids are atom centered, consisting of spherical 
shells with the points arranged according to the quadrature 
schemes of Lebedev which exactly integrate spherical har- -: monies up to a certain order. Atomic gnds are synthesized 
into a molecular grid by truncating the g$d at the Voronoi 
surfaces of each atom, with a Lagrange interpolation scheme 
to insure smooth assignment of grid weights as a function of 
molecular geometry. Our grid generation scheme has been 
described in detail in a previous paper.26 .?‘he major modifi- 
cation we have made here is that the position of each radial 
shell is individually optimized and the angular point distri- 
bution of each shell is also optimized. The latter feature per- 
mits considerably better performance for small grids. 

The grid sizes used. here are 2-3 times smaller than 
those used in the previous version of PS-GvB. This is a con- 
sequence of the use of analytical corrections, which remove 
the largest part of the Coulomb and exchange operators from 
the grid. Further reduction of the grid would in fact be pos- 
sible were it- not for difficulties that arise due to the transfor- 
mation from atomic orbitals to molecular orbitals. Standard 
electronic structure basis sets typically contain a few small 
eigenvalues in the overlap matrix, on the order of 
10-3-10-4. Matrix elements of the canonical molecular or- 
bitals associated with these eigenvalues are very sensitive to 
errors m the corresponding A0 matrix elements because the 
transformation coefficients are very large. As these basis 
functions invariably make very small contributions to the 
energy (indeed, such contributions are much smaller than 
those left out due to basis set incompleteness), it should, in * 
principle, be possible to remove these functions with no loss 
of chemical accuracy. We have impl,emented a scheme to 
remove canonical functions via a projection operator which 
works reasonably well for the smallest eigenvalues. How- 
ever, this is not a complete solution to the problem and other 
strategies should result in superior performance. 

In Tables I, II, and III we present grid generation param- 
eters for atoms in the first two rows for the coarse, medium, 
and fine grids, respectively. The angular structure of the grid 
utilizes point distributions developed by Lebedev; we indi- 
cate the number of points in each radial shell in the table 
which suffices to uniquely specify the appropriate Lebedev 
grid. The shell positions and Lebedev order for each shell 
have been optimized empirically. 

The dealiasing, or fitting basis is used in the least 
squares fitting procedure to expand the pseudospectral Fock 
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TABLE I. Coarse grid generation parameters. TABLE II. Medium grid generation parameters. 

Atom 
Radial shell 

position (bohr) Points/Shell 

Li 0.142 94 6 
0.714 70 8 
1.429 41 12 
2.687 91 20 
4.407 27 26 
6.572 12 20 
8.806 37 12 

11.841 18 8 
14.801 48 6 

N 0.071 12 6 
0.355 62 8 
0.71125 12 
1.337 46 20 
2.192 98 12 
3.270 18 12 
4.381 91 x 
5.891 98 6 
7.364 97 6 

0 0.068 15 6 
0.340 77 8 
0.681 55 12 
1.281 61 20 
2.10140 26 
3.133 61 20 
4.198 91 12 
5.645 92 8 
7.057 40 6 

H 0.100 00 6 
0.446 35 12 
0.845 46 14 
1.407 77 12 
2.179 98 12 
3.750 00 6 
4.500 00 6 

0.071 12 6 
0.355 62 8 
0.711 25 12 
1.337 46 20 
2.192 98 12 
3.270 18 12 
5.000 00 6 
9.000 00 6 

0.065 30 6 
0.326 50 8 
0.653 00 12 
1.227 92 20 
2.013 37 26 
3.002 34 20 
4.023 01 12 
5.409 41 8 
6.761 76 6 

operator, as described in detail in Refs. 2, 3, and 5. The local 
least squares matrices for each atom are built from dealiasing 
sets that are typically a few hundred functions. Solution of 
the normal equations for such matrices is computationally 
trivial, and the overall effort scales linearly with molecule 
size as one simply adds an additional local operator for each 
new atom. For projection onto long range functions, the 

Atom 

H 

Li 

C 

N 

0 

Radial shell 
position (bohr) 

0.044 63 
0.223 17 
0.446 35 
0.845 46 
1.407 77 
2.179 98 
3.25160 
4.064 50 
5.080 63 

0.142 94 
0.714 70 
1.429 41 
2.687 91 
4.407 27 
6.572 12 
8.806 37 

11.841 18 
14.801 48 

0.071 12 
0.355 62 
0.711 25 
1.337 46 
2.192 98 
3.270 18 
4.381 91 
5.891 98 
7.364 97 

0.066 77 
0.333 87 
0.667 73 
1.255 63 
2.058 8 1 
3.070 10 
4.113 80 
5.53148 
6.914 35 

0.068 15 
0.340 77 
0.681 55 
1.281 61 
2.101 40 
3.133 61 
4.198 91 
5.645 92 
7.057 40 

0.065 30 
0.326 50 
0.653 00 
1.227 92 
2.013 37 
3.002 34 
4.023 01 
5.409 41 
6.761 76 

Points/Shell 

6 
8 

12 
20 
26 
20 
12 
8 
6 

6 
8 

12 
20 
26 
20 
12 
8 
6 

6 
8 

12 
20 
26 
20 
12 
8 
6 

6 
8 

12 
20 
26 
20 
12 
8 
6 

6 
8 

12 
20 
26 
20 
12 
8 
6 

6 
8 

12 
20 
26 
20 
12 
8 
6 

length scales algorithm described earlier ensures that the 
dealiasing basis need only contain long range fitting func- 
tions, thus greatly reducing its size. This computational effort 
still formally grows as N3 but has a very small prefactor for 
the molecules we examine here. For very large systems, 

J. Chem. Phys., Vol. 101, No. 5, 1 September 1994 
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4036 Greeley et a/.: Electronic structure calculations 

TABLE III. Fine grid generation parameters. 

Radial shell Radial shell 
Atom position (bohr) Points/Shell Atom position (bohr) Points/Shell 

H 0.036 92 6 N 0.039 78 6 
0.184 62 8 0.099 46 8 
0.369 24 12 0.298 37 12 
0.742 67 26 0.497 29 20 
1.229 44 50 0.844 87 26 
1.854 85 50 1.212 17 50 
2.645 36 26 1.757 36 90 
3.516 97 12 2.532 23 90 
4.496 08 8 3.404 84 50 
5.620 10 6 4.308 52 26 

5.695 05 20 
7.118 81 12 
8.898 52 8 

11.123 15 6 

Li 0.070 09 6 0 0.040 6 1 6 
0.175 24 8 0.101 52 8 
0.525 71 12 0.304 55 12 
0.876 18 20 0.507 58 20 
1.488 59 26 0.862 35 26 
2.135 73 50 1.237 25 50 
3.096 31 90 1.793 72 90 
4.461 58 90 2584 62 90 
5.999 03 50 3.475 29 50 
759124 26 4.397 66 26 

10.034 18 20 5.812 88 20 
12.542 73 12 7.266 10 12 
15.678 41 8 9.082 62 8 
19.598 02 6 11.353 28 6 

c 0.045 38 6 F 0.038 91 6 
0.113 45 8 0.097 26 8 
0.340 34 12 0.291 79 12 
0.567 24 20 0.486 3 1 20 
0.963 72 26 0.826 23 26 
1.382 68 50 1.185 41 50 
2.004 56 90 1.718 57 90 
2.888 44 90 2.476 35 90 
3.883 80 SO 3.329 70 50 
4.914 60 26 4.213 44 26 
6.496 17 20 5.569 37 20 
8.120 21 12 6.Y6171 12 

10.150 27 8 8.702 14 8 
12.687 83 6 IO.877 67 6 

straightforward strategies are available to reduce the scaling 
from N” to N (e.g., partitioning the molecule into regions). 

Tables IV and V present the fitting basis (dealiasing set) 
associated with the grids described in Tables I, II, and III. 
Again, empirical optimization has been used to determine the 
exponents and angular momenta of each fitting function. Re- 
call mat in the local least squares method, fitting functions 
for projection onto a short range basis function are required 
only in the region where this function has substantial ampli- 
tude. Therefore, we define a fitting basis for each local least 
squares matrix in terms of functions on the “home” atom 
(i.e., the atom on which the function we are projecting onto 
is located), nearest neighbors, next nearest neighbors, etc., 
and this information is presented in Tables IV and V. 

An important consequence of the new PS algorithms is 
that the results are much less sensitive to the fitting basis; 

one can add a few extra functions without substantially af- 
fecting the results (significantly fewer fitting functions are 
required because the accuracy demanded in the PS part of the 
method is now significantly less). We therefore believe that 
the titting basis in Tables IV and V is much more robust than 
those developed previously. 

.-. 

2. Two-electron integral correction control 
parameters 

The most basic control parameters are those which de- 
termine which corrections scheme is used for each iteration 
and whether length scales is used. The correction schemes 
that are currently supported in Ps-bvs are one-center correc- 
tions only for Coulomb or exchange, two- and three-center 
corrections as described for Coulomb and two-center correc- 
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TABLE IV. Coarse and medium grid dealiasing functions. 

4037 

H- 
0.0400 

SR LR 
0 0 
0 0 
0 0 
0 0 
0 0 

0.0100 
Li SR LR 

0 0 
0 0 
0 0 
0 0 
0 0 

0.0400 
C SR LR 

0 0 
0 0 
0 0 
0 0 
0 0 

0.0500 
N SR LR 

0 0 
0 0 
0 0 
0 0 
0 0 

0.0700 
0 SR LR 

0 0 
0 0 
0 0 
0 0 
0 0 

0.0900 
F SR LR 

0 0 
0 0 
0 0 
0 0 
0 0 

0.0800 0.1613 0.3200 0.6400 1.1000 2.2000 
SR LR SR LR SR LR SR LR SR LR SR LR 
2 2 2 2 0 2 0 0 2 0 0 0 
0 0 2 0 2 0 2 0 2 0 0 0 
0 0 2 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

0.0180 0.0360 0.0800 0.2000 0.4000 0.6000 
SR LR SR LR SR I*R SR LR SR LR SR LR 
2 1 3 3 0 0 4 3 0 1 0 0 
0 0 2 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

0.0840 0.1687 0.3500 0.8000 1.6000 2.4000 
SR LR SR LR SR LR SR LR SR LR SR LR 
2 2 3 2 0 2 4 0 0 0 0 0 
2 0 3 0 3 0 4 0 0 0 0 0 
0 0 2 0 0 0 3 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

0.1060 0.2120 0.4100 0.8000 1.6000 2.4000 
SR LR SR LR SR LR SR LR SR LR SR LR 
2 2 3 2 0 2 4 0 0 0 0 0 
2 0 3 0 3 0 4 0 0 0 0 0 
0 0 2 0 0 0 3 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

0.1350 0.2700 0.4800 0.8000 1.6000 2.4000 
SR LR SR LR SR LR SR LR SR LR SR LR 
2 2 3 2 0 2 4 0 0 0 0 0 
2 0 3 0 3 0 4 0 0 0 0 0 
0 0 2 0 0 0 3 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

0.1800 0.3582 0.5600 0.8000 1.6000 2.4000 
SR LR SR LR SR LR SR LR SR LR SR LR 
2 2 3 2 0 2 4 0 0 0 0 0 
2 0 3 0 3 0 4 0 0 0 0 0 
0 0 2 0 0 0 3 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

tions for exchange. There are thus two options for,each op- 
erator. We have found that over half of the iterations can be 
done with one-center corrections only; the remainder require 
more corrections. For two-center exchange corrections, one 
specifies the distance cutoff D,, which restricts the atom 
pairs that are corrected (this criterion is also applied to the 
(abla’b’) corrections in the Coulomb term; For the three- 
center Coulomb corrections, the overlap integral cutoffs St 
and S2 must be specified. -~ 

-~. 

iteration. The basic strategy is to start out with a medium 
grid iteration of reasonably high quality, then converge the 
medium grid energy to its level of resolution (-0.01-0.001 
au.) using Fock matrix updating via several inexpensive it- 
erations. At this point, one rebuilds the Fock matrix with the 
fine grid and now converges to the fine grid energy via an- 
other Fock matrix updating schedule. Standard DIIS methods 
are used to achieve convergence.27-29 The parameter values 
in Table VI have been optimized via tests on a series of 
molecules, the results for which are presented later. 

C. Iteration sequences 
VI. RESULTS 

As indicated earlier, we have developed an iteration se- 
quence, which is fast while giving chemical accuracy. Table 
VI presents this sequence, showing the grid used, values of 
the two-electron control parameters, and the nature of the 

A. Overview 

We present results here for single point Hartree-Fock 
calculations using the 6-31G ** basis set; future publications 

J. Chem. Phys., Vol. 101, No. 5, 1 September 1994 
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4038 Greeley et al.: Electronic structure calculations 

TABLE V. Fine grid dealiasing functions. Italics indicate differences with the dealiasing functions used for the course and medium grid, as shown in 
Table IV. 

Atom Exponent 

0.0400 0.0800 0.1613 0.3200 0.6400 1.1000 2.2000 
H SR LR SR LR SR LR SR LR SR LR SR LR SR LR 

0 0 2 2 3 2 0 2 0 0 3 0 0 0 
0 0 2 0 3 0 2 0 2 0 3 0 0 0 
0 0 0 0 2 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.0100 0.0180 0.0360 0.0800 0.2000 0.4000 0.6000 
Li SR LR SR LR SR LR SR LR SR LR SR LR SR LR 

0 0 2 3 3 4 0 0 4 4 0 3 0 0 
0 0 0 0 2 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.0400 0.0840 0.1687 0.3500 0.8000 1.6000 2.4000 
C SR LR SR LR SR LR SR LR SR LR SR LR SR LR 

0 0 2 2 3 2 0 2 4 0 0 0 0 0 
0 0 2 0 3 0 3 0 4 0 0 0 0 0 
0 0 0 0 2 0 0 0 3 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.0500 0.1060 0.2120 0.4100 0.8000 1.6000 2.4000 
N SR LR SR LR SR LR SR LR SR LR SR LR SR LR 

0 0 2 2 3 2 0 2 4 0 0 0 0 0 
0 0 2 0 3 0 3 0 4 0 0 0 0 0 
0 0 0 0 2 0 0 0 3 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.0700 0.1350 0.2700 0.4800 0.8000 1.6000 2.4000 
0 SR LR SR LR SR LR SR LR SR LR SR LR SR LR 

0 0 2 2 3 2 0 2 4 0 0 0 0 0 
0 0 2 0 3 0 3 0 4 0 0 0 0 0 
0 0 0 0 2 0 0 0 3 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.0900 0.1800 0.3582 0.5600 0.8000 1.6000 2.4000 
F SR LR SR LR SR LR SR LR SR LR SR LR SR LR 

0 0 2 2 3 2 0 2 4 0 0 0 0 0 
0 0 2 0 3 0 3 0 4 0 0 0 0 0 
0 0 0 0 2 0 0 0 3 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TABLE VI. DefauIt cutoff parameters. 

Iteration 

Grid 

1 

Medium 
F matrix updating 
2-e- analytic corrections 
Nonpolar function overlap cutoff 
Polar function overlap cutoff 
Exchange inclusion distance cutoff 
Contraction pair prefactor cutoff 
Classical limit cutoff 

No 
YeS 
10-z 
10-l 
3.0 
10-S 
10-6 

2 

Medium 
Yes 
No 

3 

Medium 
YeS 
No 

4 

Fine 
No 
YeS 
10-4 
10-Z 
5.0 
10-s 
10-6 

5 

Medium 
Yes 
No 

6 

Medium 
Yes 
No 

7+ 

Coarse 
Yes 
No 
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will describe results for other basis sets, aside from prelimi- 
nary cc-pVTZ basis set30,31 results we give in Sec. VI E. In 
general, the advantages of the PS method increase as the 
basis set becomes more dense (e.g., for a triple zeta basis) 
and when the shells in the basis set do not share exponents, 
as is the case in the present basis. Despite the fact that the 
present basis is the most advantageous DZP basis for stan- 
dard two electron methods, we show here that significant 
timing improvements as compared to GAUSSIAN 92 can be 
obtained with minimal sacrifice of accuracy. 

In previous work, we emphasized the agreement of ab- 
solute energies from PS-GvB and GAUSSIAN. However, insis- 
tence on such agreement for large molecules leads to loss of 
efficiency in PS-GVB. The only chemically relevant quantities 
are energy differences; indeed, it should be remembered that 
energies obtained by GAUSSIAN are themselves off by hun- 
dreds of kcals/mol from the exact differential equation solu- 
tions, due to basis set incompleteness. While absolute energy 
agreement is still in general very good (within a few tenths 
of a kcal/mol for the vast majority of cases), we have suc- 
ceeded in developing grids, dealiasing sets, and iteration se- 
quences in which the internal cancellation of error in PS-GVB 
is very reliable despite absolute energy differences with 
GAUSSIAN of as much as 1 kcal/mol for large molecules. 

We have, in addition, developed parameter sets which do 
reliably reproduce the absolute energies from GAUSSIAN 

within 0.2 kcal/mol, even for quite large molecules where 
summation of the long range Coulomb fields to an accuracy 
of one part in lo7 is very demanding. These parameter sets 
are -30% slower than the default parameters; however, they 
aliow the user to compare total energiesdirectly with GAUSS- 
IAN if this is desired. Discussion of such a tight parameter 
set, as well as the optimization of second-row atoms, is re- 
served for a subsequent paper. 

It is important to realize that the issues addressed here 
with regard to the reliability of grid-based methods in elec- 
tronic structure are just as crucial for density functional 
codes as they are for Hartree-Fock based wave function 
codes. To our knowledge, there have been no published pa- 
pers in which the accuracy of relative energies for existing 
density functional codes (DGAUSS, DEMON, DMOL) has been 
examined for an extensive set of complicated molecules. Our 
experience is that some test cases are much more difficult to 
reproduce than others and that to conclude that the accuracy 
is adequate on the basis of tests on two or three simple mol- 
ecules like ethane or benzene is grossly insufficient. Of 
course, one may not care about deviations of 0.1-1.0 kcal/ 
mol in the energy, for example in the calculation of a metal- 
ligand bond energy of a few hundred kcal/mol where corre- 
lation errors will certainly be worse. However, for 
conformational energies of biological molecules, for ex- 
ample, or for evaluating the energy of different phases of a 
material, such errors can have significant chemical conse- 
quences and need to be understood. 

B. Total energies 

Table VII presents total energies for a wide range of 
molecules in their equilibrium geometries using GAUSSIAN 92 
and the default and tight parameter sets for the 6-31G** 

TABLE VII. Absolute energy comparisons: 6-31G** basis. Hartree- 
Fock energies (1 kcal/mol=O.0016 au.). GAUSSIAN 92: default cutoffs 
used. 

Molecule 
E  CG92) 
(hartrees) 

E  P’S) 
(hartreesj 

AE (PS-G92) 
(kcal/mol) 

Cd-f2 
c6H, 

W4S 

C3S2H4 

C4H4 
CH$‘H 
CH,Cl 
CH,SH 
CH,SiH, 
CH2NH 
CH,F 
CH,CH,OH 
H&O 
Glycylglycine 
Glutamine 
Glycine 0” 
Hz02 

H; 
HCN 
H&S 
H2S2 
HsSiCl 
HCP 
HOC1 
HOCN 
CH,OH 
CH4 
NH&HO 
NHZF 
Porphine 
P2H4 

s3 

SC4H4 

Si2H6 
Sis 
Si, 
Si6 
SiF, 
SiH2 
S&F 
SiH, 
so3 
vrosine 
Uracil 
He0 

-76.821 835 -76.821825 0.0063 
-230.701680 -230.701660 0.0125 
-475.525 899 -475.525 982 -0.0521 
-910.814 150 -910.814 115 0.0220 
-153.634 912 - 153.634 860 0.0326 
-380.209 898 -380.209 865 0.0207 
-499.088 628 -499.088 617 0.0069 
-437.664 129 -437.664 034 0.0596 
-330.279 077 -330.279 204 -0.0797 

-94.035 705 -94.035 658 0.0295 
-139.038 781 - 139.038 719 0.0389 
- 154.089 013 - 154.088 985 0.0176 
- 113.869 736 - 113.869 687 0.0307 
-489.550 210 -489.549 941 0.1688 
-528.646 741 -528.646 595 0.0916 
-282.844 462 -282.844 579 -0.0734 
- 150.770 782 - 150.770 599 0.1148 

-1.293 591 - 1.293 587 0.0025 
-92.865 967 -92.865 995 -0.0176 

-436.469 855 -436.469 858 -0.0019 
-796.177 451 -796.177 420 0.0195 
-750.181 166 -750.181 154 0.0075 
-379.106 572 -379.106 702 -0.0816 
-534.847 156 -534.847 147 0.0056 
- 167.729 020 - 167.729 334 -0.1970 
- 115.045 719 -115.045 630 0.0558 

-40.201399 -40.201470 -0.0445 
- 168.937 654 -- 168.937 572 0.0515 
- 154.959 172 - 154.959 114 0.0364 
-983.163 305 -983.163 186 0.0747 
-683.756 972 -683.757 103 -0.0822 

-1192.441 335 - 1192.441380 -0.0282 
-550.917 166 - 550.917 146 0.0125 
-581.311568 -581.311723 -0.0973 
-866.607 046 -866.607 057 -0.0069 

- 1444.43 1461 - 1444.431561 -0.0627 
- 1733.362 994 - 1733.362 841 0.0960 

-487.862 53 1 -487.862 486 0.0282 
-290.002 560 -290.002 566 -0.0038 
-390.145 882 -390.145 858 0.0151 
-291.230 804 -291.230 822 -0.0113 
-621.980 612 -621.980 732 -0.0753 
-626.232 318 -626.232 230 0.0552 
-412.479 477 -412.479 089 0.2435 

-76.023 615 -76.023 596 0.0119 

basis. For the cases shown here, the parameter set described 
above gives total energies that are very close to the GAUSS- 
IAN results. These results are obtained with grids that are 
considerably smaller than those used in other numerical 
methods in electronic structure theory (- 100 points/atom on 
most iterations as compared with - 1000 points/atom in typi- 
cal density functional codes to obtain an accuracy that is 
significantly worse than what we report here). The improved 
performance is obtained by the use of pseudospectral meth- 
ods, two-electron integral corrections, and length scales al- 
gorithms, as described earlier. The cost of the correction 
and length scales procedures is at present -30% for the CPU 
time for a large molecule; the pseudospectral fitting proce- 
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TABLE VIE. Relative energy comparisons: 6-31G** basis. Hartree-Fock-energies (1 kcal/mol=1).0016 
au.). 

Molecule 
-- - E (G92) AE” E G’S) AAEb 

(hartree) (kcal/mol) (hattree) (kcal/mol) 

glycine 0” -282.844 462 
glycine 1.50” -282.841392 
glycine 180” -282.841665 
biphenyl 0” -460.266 416 
biphenyl 22.5” -460.268 991 
biphenyl 45.0” -460.270 672 
biphenyl 67.5” -460.269 115 
biphenyl 90.0” -460.267 927 
diphenylether 30°-30” -535.105 210 
diphenylether 40”-40” -535.111927 
diphenylether 50”-50’ -535.113 118 
diphenylether 60”-60” -535.112 484 
diphenylether 70”-70” -535.111329 
diphenylether SO”-80” -535.110 248 
diphenylether 90”-90” -535.109 773 

1.926 
1.755 

- 1.616 
-2.670 
-1.693 
-0.948 

-4.216 
,-4.962 
-4.564 
-3.839 
-3.161 
-2.863 

-282.844 579 
-282.841434 
-282.841680 
-460.266 008 
-460.268 656 
-460.270 335 
-460.268 682 
-460.267 480 
-535.104 526 
-535.111174 
-535.112 326 
-535.111768 
-535.110 672 
-535.109 641 
-535.109 104 

0.047 
0.064 

0.045 
-0.045 
-0.015 
-0.024 

-0.045 
-0.068 
- 0.020 

0.017 
0.048 
0.009 

BGAUSSIAN 92 energy differences calculated relative to the top listed energy for each method: the 0” conformers 
of glycine and biphenyl; the 30”-30’ conformer of dipheny1 ether. 

bPS-GVF3 energy differences show deviation from corresponding GAUSSIAN difference. 

dure itself requires only the preprocessing time, which scales 
linearly with system size and is -10% of the CPU time for 
porphine. From this analysis, we conclude that the tech- 
niques described here are considerably more efficient for a 
given level of accuracy than any published alternatives. 

C. Relative energies 

Table VIII compares energy differences for a selected set 
of molecular torsional barriers and conformations for GAUSS- 
IAN 92 and PS-GVB for our parameter set, again using the 
6-31G** basis. In all cases, the relative energies agree to 
better than 0.1 kcaYmo1, independent of the size of the mol- 
ecule. This demonstrates that PS-GVB now has its own can- 
cellation of error comparable to that in GAUSSIAN 92. Again, 
we emphasize that the GAUSSIAN 92 results are nowhere near 
the Hartree-Fock limit due to basis set incompleteness, so 
that energy differences are in fact the only basis for a fair 
comparison of the two methods. 

We have recently begun to study torsional energies as a 
function of electron correlation. Correlation effects can be on 
the order of several kcal/mol even for systems as simple as 
butane or urea. Consequently, the “errors” in PS-GVB energy 
differences are trivial compared to uncertainties due to basis 

set and correlation effects. This argument applies even more 
strongly to bond energies where correlation effects are still 
larger. In summary, then, ~the performance of PS-GVB With 
regard~to accuracy is quite adequate at the level of our pa- 
rameter set optimized for computational efficiency and tim- 
ing comparisons with GAUSSIAN at this level are meaningful. 

D. Timing results: 6-31G** basis 

Table IX presents CPU times for a selected set of mol- 
ecules as compared to GAUSSIAN 92. For small molecules, a 
factor of 2 is obtained routinely for 6-3 lG** while for larger 
molecules a factor between 3-3 is obtained for both a Cray 
vector supercomputer and for am IBM Model 580 RISC 
workstation. These results do not represent a major break- 
through but they do reflect a significant quantitative advan- 
tage for the PS method. For other basis sets, the advantages 
are greater; the larger and more complex the basis set, the 
more the advantage of PS grows, as stated above. To illus- 
trate this, .we present results for the Dunning correlation- 
consistent TZP basis below. 

TABLE M. User CPU time comparisons: 6-31G** basis. All times in user CPU seconds. 

Workstationa 
Number of 

Supercomputer 

Molecule Basis Fens G92 time PS time G92 time PS time 

Water 25 6.3 13.7 4.35 5.00 
Glycine 0” 100 187.1 172.9 40.88 24.91 
Uracil 140 5423 340.9 76.42 36.93 
Glutamine 200 1400.5 770.6 186.55 68.84 
Tyrosine 2.50 2674.5 1207.8 311.02 104.90 
Porphine 430 9941.0 3683.9 948.25 275.82 

aWorkstation is an IBM RS/60CHl Model 580. Supercomputer is a Cray Y-MP C90. All calculations utilize direct 
SCF methods with symmetry explicitly turned off. Default cutoffs used in GAUSSIAN W.. 
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TABLE X. User CPU time comparisons: cc-pVlZ basis. All times are 
user CPU seconds. 

Number of 
Supercompute? 

BE 
Molecule Basis Fens G92 time PS time (kcal/mol) 

Glycine 0” 170 270.3196 160.3925 -0.0471 
Uracil 236 728.8067 272.9761 0.0477 
Glutamine 340 2201.4424 533.4242 -0.1004 
Diphenylether 30”-30” 415 3615.1448 734.0660 0.0201 
Tyrosine 424 4322.0474 809.7973 -0.0998 
Porphine 726 I.5 131.2271 2428.6439 0.1161 

‘Supercomputer is a Cray Y-MP C90. All calculations utihze direct SCF 
methods with symmetry explicitly turned off. Default cutoffs used in all 
cases. 

E. Timing results: cc-pVTZ basis 

In Table X we show our preliminary cc-pVTZ (Refs. 30 
and 31) results for a subset of molecules presented earlier; 
the larger molecules were chosen to better illustrate the scal- 
ing advantage of the PS method. Up to a factor of 6.5 im- 
provement over GAUSSIAN 92 run with its default cutoffs is 
achieved in this size regime, showing the PS method’s better 
scaling with basis set size. It should be noted that this basis 
set uses general contractions, which forces GAUSSIAN 92 to 
recalculate elementary integrals. However, PS-GVB must also 
recalculate these quantities and, therefore, this timing com- 
parison is more directly illustrative than those for basis sets 
with shared exponents, such as 6-31G**, where as yet PS- 
GVB does not take advantage of this construct in its analytical 
two-electron package described earlier. With the expectation 
that future research will focus on larger molecules, as well as 
bigger basis sets to better model chemical properties, the 
utility of such a better scaling algorithm as the PS method in 
ab irtitio chemistry is apparent. 

VII. CONCLUSION 

We have demonstrated that PS methods are capable of 
reliable computing energy differences and total energies for 
the Hartree-Pock equations while displaying substantial ac- 
celeration of CPU time as compared to GAUSSIAN 92, which 
is generally accepted as the standard in the field; for single 
point Hartree-Fock direct self-consistent field calculations 
on large molecules without symmetry, we believe that 
GAUSSIAN 92 is the most efficient electronic structure code 
available using conventional analytical two electron integral 
methodology. A graphical user interface for UNIX systems 
has been constructed which makes PS-GVB easy to use as 
well. A description of the entire software .package (as op- 
posed to the present paper which has focused primarily upon 
algorithmic issues) will be presented elsewhere. 

We have implemented an analytical gradient GVB cor- 
relation methods of various types, and a continuum treatment 

of solvation based on accurate solution of the Poisson- 
Boltzmann equations using a new version of the DELPHI 
program.‘223 These results will be described in other publi- 
cations. Density functional and localized MP2 algorithms are 
currently under development and we expect that very sub- 
stantial savings in CPU times will be obtained in both cases 
as compared to existing methodology. 
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