MAGXNETIC PROPERTIES OF Thins,

compounds (R is a rare-carth clement), a value of
kra~0.85kpa used in conjunction with the above the-
ory predicts the correct magnetic ordering. It is of
interest to see if the above theory distinguishes between
the (xx0) and the (rwm) ordering observed for the
present rare-earth tri-indium and tri-platinum com-
pounds.

The tri-indium compounds have a value of #=12
for the number of valence electrons per magnetic atom;
this gives kroa= (371)13=17.1. The latter free-electron
value, as well as a kpa value reduced by about 15%,
both lie in the kra region which predicts the observed
(ww0) structure.® It should be mentioned that this
theory is based upon a spherical Fermi surface and
therefore its results would be expected to be less reli-
able at large values of # or kpea. In the case of the tri-
platinum compounds, it is not clear what precise value
of #n should be used for platinum. However, as in the
case of nickel, band structure information indicates
that a small value between 0.1 and 0.4 is appropriate.
Using values of # between 3 and 4 for the triplatinum
compounds results in kpe values between 4.9 and 4.5
which predict ferromagnetism. In order for this theory
to agree with the observed (wmw) ordering, values of
kra in the ranges 2.7-3.7 or 5.3-6.1 are necessary.’®
Therefore, in the case of the triplatinum compounds,
this theory does not apparently predict the observed
magnetic ordering. However, this discrepancy may be
due to the uncertainty in assigning the proper electron
concentration for platinum. Also, if platinum is a mag-
netic atom carrying a small moment in this compound,
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the present powder diffraction data would not detect
the magnetic character of the atom.
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The contraction of Gaussian basis functions for use in molecular calculations is investigated by con-
sidering the effects of contraction on the energies and one-electron properties of the water and nitrogen
molecules. The emphasis is on obtaining principles which can be used to predict optimal contraction schemes
for other systems without the necessity of such exhaustive calculations. Using these principles, contractions

are predicted for the first-row atoms.

I. INTRODUCTION

One of the most efficient means of solving the
Hartree-Fock equations’ for nonlinear polyatomic
molecules is to expand the solutions in large sets of
nuclear-centered Gaussian basis functions.? Such an
approach has been used to compute (near) Hartree-
Fock wavefunctions for water,® ethylene* formalde-
hyde,? and many other molecules.® However, in such
calculations, although the required integrals can be
computed quite efficiently, the iterative solution of the

matrix Hartree-Fock equations can be very time
consuming. Numerous techniques have been devised
to accelerate the convergence of the solutions, thus
reducing the time requirement by reducing the number
of iterations. On the other hand, a considerable savings
in the time required per iteration would be affected if
some of the bais functions could be grouped together,
i.e., contracted, and manipulated as only one func-
tion.*789 As such a procedure must adversely affect the
solution of the equations, the time saved per iteration
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must be balanced against the loss in variational
freedom.
We will define a coniracted basis function by

xi= 2 X' Ciiy
7

where {x,'} denotes the original basis set, called the
primitive sef, and {x;} the coniracted set. If there are n
functions in the primitive set and m functions in the
contracted set, then contraction reduces the number of
integrals to be manipulated by (m/n)*. In practice we
shall see that little accuracy is lost if m~yn/2, so that the
contracted set contains 1/16 the number of integrals and
will require only 1/16 of the time per iteration.

The efficacy of such a contraction procedure was
first noted by Shavitt,” Whitten,® Davis and Clementi?
and Schulman, Moskowitz, and Hollister.? In none of
these papers, however, was the procedure investigated
in sufficient detail. Whitten® tried only one type of
single- and double-zeta basis set; Davis and Clementi®
studied the effect of contraction on atoms, a procedure
which cannot be expected to anticipate those changes
which will result from molecular formation'®; and
Schulman, Moskowitz, and Hollister,* although they
experimented with a somewhat larger number of con-
tractions, chose such a large molecule (ethylene) that
their investigation was, of necessity, severely limited.
In all of these papers the approach to the problem tended
to be mathematical, obscuring any physical basis for
contraction. Nevertheless, these papers did bring into
view a powerful means of increasing the efficiency of
calculations with Gaussian hasis functions.

More recently, contraction has been investigated by
Ritchie and King,"" Basch, Robin, and Kuebler,'? and
Neumann and Moskowitz3 Again, however, these
studies were never pursued sufficiently far to allow a
valid assessment of the potential of the technique:
Ritchie and King! limited their investigation to just
the inner-shell s basis functions and, although Basch
et al.? and Neumann and Moskowitz?® consider p-orbital
contractions, their s set is both inferior to and larger
than the one employed here. Further, in none of these
works was an attempt made to thoroughly compare the
various contracted sets or to compare corresponding
contracted and uncontracted results. However, the
contraction schemes they suggested closely parallel
many of those put forward here and indicate an implicit,
if not explicit, awareness of the basic nature of contrac-
tion (the same can be said of Whitten’s double-zeta
basis set?).

In the next section Hartree-Fock calculations on the
water molecule are used to determine optimum con-
tracted basis sets for the oxygen (9s5p) and hydrogen
(4s) primitive sets obtained by Huzinaga.’® The effect
of contraction on the calculated charge distribution, as
reflected in the total energy and one-electron properties,
is carefully examined. These studies are used to develop
general principles for contracting basis sets for other
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first-row atoms. In order to assess the generality of the
contraction schemes so obtained, the contracted basis
sets for the nitrogen atom are used for calculations on
the nitrogen molecule. The accuracy of the contracted
Gaussian basis sets is compared to that of Slater basis
sets for the nitrogen molecule. In the following section
these optimum contraction schemes are given a simple,
physical interpretation and rules are formulated to
allow their extension to other atoms. In the last section
we discuss some additional aspects of the contraction
problem and indicate further work which is presently
being pursued.

The notation used is that suggested by Schulman,
Moskowitz, and Hollister*: Parentheses are used to
denote primitive basis sets and brackets are used to
denote contracted basis sets.

II. CALCULATIONS

The best means of ascertaining the effect of contrac-
tion is through a series of calculations on a given
molecule with various contracted basis sets obtained
from the same primitive set. In order that the compari-
son be meaningful the way in which the primitive
functions are grouped together, i.e., the contraction
splitting, for a given size contracted set must be opti-
mized. Of course, such a procedure would be quite useless
if it had to be followed for each molecule of interest—it
would be more efficient to just do the calculation with
the uncontracted basis set and be done with it. On the
other hand, it might be hoped that the contraction of a
given primitive basis set is closely related to the
physical problem at hand, rather than being a purely
mathematical artifact. If this were the case, a careful
study of a model system could be expected to lead to a
set of rules of general applicability. The present work is
predicated upon this assumption. The validity of this
viewpoint is strongly supported by the success of the
calculations reported here.

In order to be as economical and as general as possible
a number of limitations must be placed on the contrac-
tion schemes. First, a given primitive function cannot
appear in more than one contracted function, i.e., the
contracted functions must be formed from disjoint sets.
If the contracted sets were not so restricted, it would be
necessary to compute many of the integrals more than
once, thus increasing the integral computation time
substantially. In addition, we shall take the contraction
coefficients directly from the atomic calculations. This
independence of the method from molecular information
greatly enhances its generality. Fortunately, as we
shall see, the combined effect of these restrictions is of
no consequence.

A. The Water Molecule

In this section the optimum coniraction splittings are
determined for various sizes of oxygen and hydrogen
contracted basis sets for the water molecule. In addition,
we extensively compare the wavefunctions obtained
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with the various optimum contracted sets and the un-
contracted set. Finally, there is a brief discussion of the
contraction schemes previously advanced by others.

The primitive basis set for water is a (9s5p/4s)
Gaussian set with the oxygen orbital exponents and the
contraction coefficients taken from Huzinaga’s®® atomic
calculations and the hydrogen exponents and coefficients
from Huzinaga’s® four-term expansion of a 1s orbital
with an exponent of 1.2. This particular basis set was
chosen because it appears to be an ideal candidate for
moderately accurate calculations on relatively large
molecules containing as many as four or so first-row
atoms.

The geometry used is that chosen by Aung, Pitzer,
and Chan and corresponds fairly closely to the
experimental equilibrium geometry': an OH bond dis-
tance of 1.8111 a.u.and an Z HOH bond angle of 104°27’.
The molecule lies in the xz plane with the z axis being
the symmetry axis. The coordinates of the nuclei are
H1 (143153, 0.0, 1.10941), H2 (—1.43153, 0.0,
1.10941), and O (0.0, 0.0, 0.0), all in atomic units.

The optimization procedure used was quite simple.
First a given type of contracted basis set was chosen,
say the [35s2p/2s]. Then, starting from some base mode
of contraction, the splittings of the various groups
(hydrogen, oxygen p, and oxygen s) were optimized in
turn. Using this information as a starting point, the
set was further uncontracted and the contraction
splitting again optimized. As an example of this pro-
cedure, the optimization of [:352p/2s] basis set is given
in Table L

Studying Table I in some detail, we see that the total
energy is rather sensitive to the splittings of each of the
basis function groups, i.e., the oxygen s, oxygen p and
hydrogen groups. In order to obtain satisfactory results,
the splittings of each of these groups must be optimized.

Table II lists the total energies, orbital energies and
selected one-electron properties obtained for the water
molecule for all of the (optimum) contracted basis sets
(the basis sets are given in Table IV.A, Appendix A).
In addition the table contains the corresponding in-
formation for the uncontracted (9s5p/4s) basis.
Examining Table II, one fact which we immediately
note is that the energy is raised by only 0.0052 a.u.
(or 0.0079) by the loss of variational freedom for the
smallest basis set, [ 3s2p/2s7]. Also, we see that in general
the properties are accurate to within 1-59 for the same
set. For the most flexible contracted set investigated,
the energy error is reduced to only 0.0005 a.u. and the
orbital energies and one-electron properties are accurate
to 3-19,. Even for this set there are just 20 basis func-
tions as compared to 32 in the primitive set, which means
there are less than # the number of integrals to be
processed. This clearly demonstrates the effectiveness of
contraction and suggests that there is little reason to use
completely uncontracted basis sets.

Studying Table II in further detail, we find that the
[453p/2s] set appears to be a good compromise between
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TasLe 1. Optimization of the contraction splitting for the
[3s2p/2s] basis set by Hartree-Fock calculations on the water
molecule.

Hartree-Fock

S splita P splits  H splite energy

Optimization on the hydrogen contraction

4/3/2 3/2 2/2 —75.9718
4/3/2 3/2 3/1 —75.9864
Optimization of the oxygen 2p contraction
4/3/2 4/1 3/1 —75.9984
Optimization of the oxygen (1s, 25) contraction
7/1/1 4/1 3/1 —75.9553
5/2/2 4/1 3/1 —76.0073
6/1/2v 4/1 3/1 —176.0080

% In the contraction splitting P/Q/R indicates that the first P primitives
are contracted together, the next Q together, etc. Except as noted, the higher
exponents are always to the left.

b In this contraction the function with { =9.5322 is the uncontracted
function. The function with { =3.4136 has been included in the six function
contraction. See the discussion in the text and Table IV.A, Appendix A.

accuracy and the desire to keep the basis set as small as
possible. Comparison with the [5s3p/2s] and [5s3p/3s7]
sets show that the oxygen and hydrogen s sets are well
approximated by the [4s] and [2s] contractions while
comparison with the [4s2p/2s7] set reveals that the
oxygen p set requires a [ 3p ] contraction [note especially
¢::(0) ]. Further, we note that for this set the energy
penalty is just 0.0028 a.u. and, with minor exceptions,®
the properties have converged to within 19, of the
uncontracted results. For all properties, this set yields
results within 19, of the most flexible contracted set
investigated, [5s3p/3s]. Augmentation of this basis set
with suitable polarization functions should be far more
important than increasing the flexibility of the (sp)
set.”?

Calculations were also carried out to compare the
double zeta basis set, [4s2p/2s], obtained here with
that put forth by Basch et al.> They'? use an oxygen 10s
set obtained from Whitten’s atomic calculations® and an
oxygen 5p set and a hydrogen 4s set identical to that
employed here. As might be expected from the similarity
of the basis sets, the two wavefunctions are shown by the
one-electron properties to be nearly identical in the
important valence regions of the molecule. The lower
energy (0.0057 a.u.) obtained in the present work,
although substantial, is essentially due to a better
description of theoxygen inner-shell region by Huzinaga’s
atomic set.”® The principle advantage then of the
[4s2p/2s] basis set proposed here is that the primitive
set of each first-row atom requires one less basis func-
tion.

A comparison with the contraction scheme proposed
by Ritchie and King" can only be made indirectly since
they would completely uncontract the oxygen p and
hydrogen s components of the [553p/3s] set.”® The
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TaeLe II. A comparison of the optimum contracted basis sets and the uncontracted basis set for the water molecule: total energies,
orbtal energies, and selected one-electron properties. {All quantities are in atomic units.)

Optimum contracted sets

Propertiess [3s2p/25] [4s2p/257 [4s3p/25] [5s3p/2s] [5s3p/35] (9s5p/4s)
g —76.0080 —76.0093 —76.0105 —~76.0116 —76.0128 —76.0133
e(lay) —20.5547 —20. 5594 —20. 5629 —20. 5608 —20. 5606 —20. 5606
e(2a1) —1.3595 —1.3613 —1.3609 —1.3615 —1.3613 —1.3609
e(1by) —0.7147 —0.7165 —0.7160 ~0.7159 —0.7156 -0.7155
e(3ar) —0.5655 —0.5668 —0.5670 ~0.5671 —0.5671 —0.5673
e(1by) —0.5037 —0. 5063 —0. 5060 ~0. 5059 —0. 5057 —0.5056
ub 1.0701 1.0558 1.0519 1.0511 1.0432 1.0428
{x?) (c.m.)ed 7.1954 7.2315 7.2180 7.2184 7.1922 7.1920
() (a.m.) 5.4910 5.4916 5.4904 5.4908 5.4955 5.4914
{z2) (c.m.) 6.4989 6.5128 6.5093 6.5094 6.5059 6.5035
{r?) (c.m.) 19. 1853 19,2358 19.2176 19.2186 19.1936 19.1869
O ()0 1.8591 1.8302 1.8414 1.8413 1.8681 1. 8650
0,, (c.m.) —1.7321 —1.7077 —1.7150 ~1.7152 —1.7347 —1.7320
0,. (c.m.) —0.1270 —0.1225 —0.1264 —0.1261 —0.1334 —0.1330
(1/ra e 5.7386 5.7384 5.7389 5.7389 5.7399 5.7403
{1 /r0) 23.4488 23,4426 23.4387 23.4409 23.4412 23,4386
e (H1)t 0.0959 0. 1000 0.0939 0.0940 0.0919 0.0903
I, (H1) 0.0336 0.0366 0.0331 0.0332 0.0345 0.0332
E.(0) —0.2495 —0.2479 —0.1920 —0.1919 —0.1887 —0.1389
qyy(D)# 0.3128 0.3114 0.3082 0.3083 0.3087 0.3071
faa(D) 0. 2485 0. 2467 0.2436 0.2437 0.2428 0.2412
gas(D) —0.5612 —0. 5581 —0.5518 —0.5519 —0.5516 —0. 5483
¢ 2°32 2°43' 2°43' 2°43' 2°35’ 2°35
G2(0) —1.8203 —1.8084 —1.9138 —1.9126 —1.9172 —1.9084
quy(0) 2.0366 2.0517 2.1147 2.1147 2.1168 2.1103
q::(0) —0.2162 —0.2432 —0.2009 —0.2020 —0.1995 —0.2018
(6(r-H) )b 0.4132 0.4147 0.4120 0.4121 0.4105 0.4083
6(r-0)) 295.1358 295.0512 295.0717 294. 6061 294. 6091 294.1736

A For the definition of the operators see Refs. 3 and S. ¢ Quadrupole moment. 1 a.u.=1.34492 Buckinghams.

b Dipole moment. 1 a.u. =2.54158 D.
¢c.m. denotes the center of mass, which is at (0.0, 0.0, 0.1176).
d This property is composed of only an electronic contribution.

results presented in Table IL for the [5s3p/3s] sct
should, however, be a bound on the results obtainable
with their scheme. The agreement between their basis
set and the uncontracted basis set is expected to be
excellent. However, their approach does not go far
enough, completely neglecting any contraction of the
oxygen p and hydrogen s functions. As the results
presented here illustrate, this extra contraction can be
done quite efficiently.

Finally, in order to test the sensitivity of the wave-
function to the hydrogen scale factor, this parameter
was optimized for the [4s3p/2s] basis set. The optimum
scale factor is 1.275, which is remarkably close to the
optimum hyvdrogen exponent in a minimum basis set

{ Electric field.
£ Electric field gradients. 1 a.u. =3.24140 X105 esu/cm3.
b Density at the nucleus.

calculation on water.!* The total decrease in the energy
was slight (just 0.0004 a.u.) and the one-electron
properties were little affected (changes on the order of a
1-59%, for the most sensitive properties).

B. The Nitrogen Molecule

In order to test the generality of the contraction
schemes obtained for the oxvgen (9s5p) set in the
preceding section, a limited number of calculations were
carried out on the nitrogen molecule using the cor-
responding contracted nitrogen basis sets (obtained
using the rules to be discussed in the next section). The
nitrogen basis sets are given in Appendix A, Table
TIT.A, Because of the more intense electric fields
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Tantk IT1. Total energies, orbital energies, and selected one-electron properties for the nitrogen molecule
obtained with the recommended contracted Gaussian basis sets. (All quantities are in atomic units.)

Contracted basis setb

Properties® [3s2p] [4s2p] [4s3p] [5s3p]
Iiur —108.8133 —108.8782 —108. 8877 —108. 8890
€lo, —15.7156 —15.7191 —15.7072 —15.7055
€20, —1.5077 —1.5282 —1.5252 —1.5254
€30, —0.6138 —0. 6246 —0.6267 —0.6267
€15, —15.7120 —15.7156 —15.7036 —15.7019
€24, —0.7671 —0.7723 —0.7723 —0.7726
€1x, —0.6268 —0.6264 —0.6237 —0.6236
(x?) (c.m.) 7.5423 7.5658 7.5704 7.5706
() (c.m.) 24.2281 24.3480 24.3304 24.3287
0. (c.m)) —1.7175 —1.8140 —1.7918 —1.7899
1/rn) 21.6187 21.6233 21.6367 21.6385
E. (N) —0.3040 —0.2514 —0.2138 —0.2138
g:2 (N) 1.0619 0. 8826 1.2480 1.2474
(3(r—N) ) 195. 1300 195. 4635 195. 4258 195. 1851

& See the footnotes to Table II.

associated with the presence of two first-row nuclei, we
should expect to see the differences between the various
contracted basis sets greatly magnified.

The internuclear distance employed in this calcula-
tion is that used in a number of previous calculations'®*
and corresponds to the observed equilibrium distance,
2.068 a.u.” The z axis is the internuclear axis.

In Table IIT we list the total energies, orbital
energies and selected one-electron properties obtained
for the nitrogen molecule with these contracted basis
sets. As expected, and in contrast to the results on
water, we note a marked difference between the results
obtained with the various contrasted basis sets for the
nitrogen molecule: the [3s2p] set yields an energy
nearly 0.06 a.u. higher than the [4s2p] set, which in
turn gives an energy nearly 0.01 a.u. above that of the
[4s3p] set. The difference between the [5s3p7] and
[4s3p] sets, on the other hand, is seen to be negligible.

The most significant changes in the one-electron
properties are for the quadrupole moment, electric
fields, and field gradients, in line with the known
sensitivity of these properties to the accuracy of the
wavefunction. One point of special interest is the large
fluctuations which occur in the field gradient. Not only
does this reflect the sensitivity of this property to the
flexibility of the p-orbital set, but it also illustrates the

b See Table I1L.A.

strong coupling between the s and p orbitals in the
nitrogen molecule. It should also be noted that the order
of €35, and erry is quite sensitive to the basis set.

The results presented in Table III emphasize the
accuracy of the [4s3p] contracted Gaussian basis set.
Although the choice was not quite so obvious from the
calculations on water, the substantial differences
between the [452p] and [4s3p] sets in the calculations
on the nitrogen molecule strongly support our choice of
this particular set as the optimum contracted basis set
for accurate calculations on larger polyatomic mole-
cules. Of course, should circumstances rule out the use
of the larger basis set, the double-zeta set should in
many instances be satisfactory.

C. Accuracy of the Contracted Gaussian Basis Sets

In order to establish the accuracy of the contracted
Gaussian basis sets proposed here, the results presented
in Sec. II.B for the nitrogen molecule are compared
with those obtained using Slater basis sets. While the
(955p) Gaussian basis sets yield atomic energies which
are worse than double-zeta Slater sets, the point of
interest here is the relative accuracy afforded by the
two types of functions for molecules.

In Table IV we list the total energies and orbital
energies for the nitrogen molecule obtained with a
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Tasre IV. Calculations on the nitrogen molecule with various
atomic Slater basis sets: total energies and orbital energies. (All
quantities are in atomic units.)

Basis set
Properties (452p)= (4s3p) (5s3p)b
Lnp —108.8617 —108. 8865 —108. 8967
€10, —15.7099 —15.7169
€20, —1.5336 —1.5381
€304 —0.6324 —0.6374
€loy —15.7062 —15.7133
€2y —0.7792 —0.7823
€1r, —0. 6286 —~0.6311

# Reference 19,
b Reference 20.

number of atom-optimized Slater basis sets.”®?* Com-

paring these results with those given in Table TII for

the Gaussian sets, we see that the [4s3p] Gaussian set
gives a slightly lower energy (0.0012 a.u.) than the
corresponding (453p) Slater set, and a considerably
better energy than the double-zeta Slater set® (0.0260
a.u.). In fact, the double-zeta Gaussian set gives an
energy some 0.017 a.u. below that for the corresponding
Slater set. However, both the [4s3p] and [5s3p]
Gaussian sets are ~0.009 a.u. ahove the more extensive
(5s3p) Slater set.?

In Table V we compare the properties for the nitrogen
molecule obtained with the [4s3p] Gaussian basis set
and the (4s3p) Slater set. The exponents of the (4s3p)
Slater set are those obtained by Bagus, Gilbert,
Roothaan, and Cohen? and are the optimum exponents
for the ground state (*S) of the nitrogen atom. The
wavefunction for the nitrogen molecule in this basis was
not available in the literature and was computed. We
see that, although the energies of the two wavefunctions
are nearly identical, the charge distributions differ in
some significant ways. For example, the molecule in the
Slater basis is somewhat “larger” than in the Gaussian
basis as measured by (x?) and (2?); also, the force on the
nuclei is just half as large for the Slater as for the
Gaussian basis. On the other hand, the quadrupole
moment, the electronic potential at the nuclei, and the
field gradients are quite comparable for the two wave-
functions. All in all, we can conclude that the two basis
sets, the [453p7] contracted Gaussian set and the nomi-
nal (4s3p) Slater set, provide molecular wavefunctions
of similar accuracy.

The result for the [4s3p] Gaussian set at first seems
somewhat puzzling since the atomic energy of the
Gaussian set is some 0.0055 a.u. above that of the
nominal (4s3p) Slater set. Why then should the
Gaussian set give an energy for the nitrogen molecule
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0.0012 a.u. below that of the nominal set? This phe-
nomenum can probably be attributed to two factors:

(1) The decreased importance (energetically) of the
atomic regions relative to the valence regions in a
molecule. Tt is, of course, the exponentiallike atomic
regions which are most poorly described by Gaussian
functions.

(2) The presence of two s functions in the Gaussian
basis which are heavily concentrated in the valence
region (the 3s function in the Slater set is not as effective
in this respect as can be seen from the atomic expansion
coefficients?),

III. RATIONALIZATION

In any study such as this it is very important to
search for a meaningful rationalization of the results if
possible. In this way the rather limited observations can
be extended to a larger class of systems. During the
course of this investigation it became clear that all of the
results could be explained by a simple and physically
appealing rationalization. In this section we will discuss
this interpretation and show how the concepts so
derived can be applied to other cases.

The optimum splittings of the contracted functions
which were obtained in the last section can be explained
by the application of the following two rules:

Rule A: Those members of each group which are most
strongly concentrated in the internuclear regions should
be allowed to vary freely.

TaBrLE V. Comparison of calculations on the nitrogen molecule
using a (4s3p) Slater basis and a [4s3p7] Gaussian basis: total
energies, orbital energies, and selected one-electron properties.
(All quantities are in atomic units.)

Slater Gaussian
Properties® (453p) [4s3p]
Lup —108. 8865 —108. 8877
€10, —15.7099 —15.7072
€2, —1.5336 —1.5252
€30, —0.6324 —0. 6267
€lo, —15.7062 —15.7036
€20, —0.7792 -0.7723
€1, —0. 6286 —0.6237
{x2)(c.m.) 7.7443 7.5704
(z2)(c.m.) 24,4246 24. 3304
0..(c.m.) —1.7121 —1.7918
A /ra} 21.6363 21.6367
E.(N) —0.1294 —0.2138
q::(N) 1.2433 1.2480

2 See the footnotes to Table II.
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Rule B: If, within a particular group, one of the
primitives spans two (or more) spaces, then this
function should be allowed to vary freely.

In Rule B by spaces we mean orbital spaces, e.g., the 1s
space and the 2s space of atoms, etc. These rules can be
easily understood just on physical grounds.

Those functions which are most likely to be influenced
by molecular formation are those which extend into the
valence regions. In the (9s5p/4s) set it is those basis
functions with the smaller exponents of each of the
groups which are most concentrated in the interatomic
regions of the molecule.® Hence, the coefficients of these
functions should be allowed to vary freely. Rule 4 can,
thus, be explained quite simply.

Rule B is a little more subtle. If a group of basis
functions span two different orbital spaces as do, for
example, the s functions of oxygen, then some primitives
may contribute substantially to both spaces. If this is
the case, then we find that the weight of these functions
relative to the others in the set changes considerably
from orbital to orbital. Functions such as these must be
allowed to vary freely in either an atomic or a molecular
environment. This freedom is particularly important
because these basis functions are concentrated in regions
of space which are energetically important. Thus, in
general, splittings dictated by Rule B take precendent
over those of Rule 4, e.g., the optimum splitting of the
oxygen s functions in the [3s] set is (6/1/2) not
(7/1/1).

An example of this latter type of basis function in the
present case is afforded by the oxygen s function with
an orbital exponent of { =9.5322. Examining Huzinaga’s
atomic results,’® we note at once that this function not
only contributes heavily to the 1s atomic orbital, but it
also makes a substantial contribution to the 2s orbital.
The coefficient of this function should, thus, be allowed
to vary freely. Note that the primitive with an ex-
ponent of {=3.4136, even though it is more extended
in space, contributes little to the atomic 2s orbital.
Therefore, this function is best grouped with the other
Is-type primitives.

Because of the physical, rather than mathematical,
nature of the results presented here, it is expected that
the optimum splittings will directly apply to the other
first-row atoms from boron through neon in a wide
variety of molecular environments. For the convenience
of the reader, the various contracted Gaussian basis sets
for the first-row atoms, boron through fluorine, are given
in Appendix A.

In Appendix B we give the energies for various states
of the atoms boron through fluorine obtained with the
contracted basis sets from Appendix A. In addition, for
the [4s2p] and [4s3p] sets we give the orbital energies
and expansion coefficients for the ground states of these
atoms,
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Iv. DISCUSSION

An important concept which has arisen from these
calculations is that a given primitive basis has an opti-
mum contracted size beyond which a further increase in
flexibility of the basis set results in negligible improve-
ments in the molecular wavefunctions and below which
further contraction results in excessive loss of accuracy.
For the (9s55p) Gaussian basis set considered here for the
first-row atoms, the optimum contracted set is seen to
be the [4s3p] set. That little is gained upon going from
the [4s] to the [[5s7] set can be understood by noting
that the (9s) primitive set contains only two valence s
functions, both of which are uncontracted in the [4s]
set. In addition, the core functions can be conveniently
partitioned into two groups, the functions of which
enter the 1s and 2s orbitals in approximately the same
way. Thus, increasing the flexibility of this contracted
set merely corresponds to allowing additional freedom
in the core which is of little importance in molecules.

Comparison of Huzinaga’s (9s) set® to Whitten’s
(10s) set® (see Sec. II.A) shows that it is somewhat
better to determine the exponents and coefficients from
an atomic calculation with uncontrated basis functions
and then determine the best way to contract these
functions for use in molecular calculations. In using this
procedure, however, the rules outlined in Sec. ITI
should be kept in mind. Thus, while the (9s) set
contracts satisfactorily to a [4s] set, the same cannot be
said for Huzinaga’s (10s) set®® which requires at least
5-6 functions. In doing the atomic calculation we must
keep in mind the use to which the results are to be put
and choose sets which will optimally contract to the
desired size.

While the [4s3p] basis sets discussed here will yield
molecular wavefunctions of relatively high accuracy,
larger, more flexible basis sets will be required to reach
the Hartree-Fock limit (including, of course, the
addition of polarization functions). However, such basis
sets cannot be obtained from the (9s5p) primitive sets.
Work is in progress on the contraction of (10s6p) ¥ and
(11s7p) 4% primitive sets.2

VI. COMPUTER PROGRAMS

All of the Gaussian calculations were performed with
a version of the Gaussian SCF system MOSES, written
by Geller and Sachs,® modified to make use of some
spatial symmetry. The one-electron properties for the
Gaussian wavefunctions were calculated with a revised
IBM 7094 version of a program originally written by
Neumann? for the CDC 6600.

The calculations on the nitrogen molecule in a
(4s3p) Slater basis were done using the McL-Yosh
Linear Molecule program (QCPE 104), written by
McLean and Yoshimine,?® which is available from the
Quantum Chemistry Program Exchange (Department
of Chemistry, Indiana University).
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The Gaussian atomic Hartree-Fock program was TasLE II.A. Contracted Gaussian basissets fora (9s5p)

kindly supplied to the author by E. Clementi. It was carbon primitive basis set.

modified for use with contracted basis sets by W. [.

Hunt. Carbon s sets
ACKNOWLEDGMENTS Exponents [3s] [4s] [55]

I would like to thank Professor W. A. Goddard, IIT 4232 .6100 0.002029 0.002029 0.006228
for many helpful discussions related to the topics ’ ' B ' c ' -
presented in this paper and for his detajled comments on 634.8820  0.015535 0.015535 0.047676
the manuscript. I would also like to thank Dr. Nicholas 146.0970  0.075411 0.075411 0.231439

W. Winter for his comments during the preparation of 42.4974  0.257121  0.257121  0.789108

the manuscript and Mr. William J. Hunt for his help 14.1892  0.596553 0.596555 0.791751

with the atomic calculations presented in Appendix B. 1.9666  0.242517 0.242517 0.321870

Some of the calculations on the nitrogen molecule were -

carried out in collaboration with gDr. Donald G. 5. 1477 1 '(_)OOOOO 1. 000000 1.000000

Truhlar. 0.4962  0.542048  1.000000  1.000000
1.000000 1.000000

0.1533  0.517121

APPENDIX A: RECOMMENDED CONTRACTED
SETS FOR THE FIRST-ROW ATOMS, BORON
THROUGH FLUORINE, AND HYDROGEN Exponents [25] [3p]

In Tables I.A~V.A the [3s], [4s], [5s], [2p], and

Carbon p sets

18.1537 0.018534 (.039196

3 y [I'd re 1 1 : 1 -
[3p] contracted basis functions are given for the first 3. 0864 0. 115442 0. 244144
1.1429 0.386200 0. 816775
TasLe I.A. Contracted Gaussian basis sets for a (9s5p) 0.3594 0.640089 1.000000
boron primitive basis set. 0.1146 1.000009 1.000000

Boron s sets . . .
TaBLE III.A. Contracted Gaussian basis sets for a

Exponents [3s] [4s] [55] (9s5p) mitrogen primitive basis set.

Nitrogen s sets
2788.4100  0.002122 0.002122 0.006340

419.0390  0.016171  0.016171  0.048310 Exponents [3s] [4s] [5s]
96.4683  0.078356  0.078356  0.234078
28.06904  0.263250  0.263250  0.786421

9.3760  0.596729 0.596729 0.801018
1.3057  0.230397 0.230397 0.309273

5909.4400  0.002004 0.002004 0.006240
887.4510  0.015310 0.015310 0.047669
204.7490  0.074293 0.074293 0.231317

59.8376  0.253364 0.253364 0.788869

3.4062  1.000000  1.000000  1.000000 19.9981  0.600576  0.600576  0.792912
0.3245  0.526887 1.000000  1.000000 2.6860  0.245111  0.245111  0.323609
0.1022  0.530557  1.000000  1.000000 7.1527 1.000000  1.000000  1.000000
0.7000  0.552334  1.000000  1.000000
Boron p sets 0.2133  0.508031  1.000000  1.000000
Nit 't
Exponents [2p] [3p] - itrogen p scts
R “* Exponents [2¢] [37]
11.3413 0.017987 0.038707 -
2.4360 0.110339 0.237448 26.7860 0.018257 0.038244
0.6836 0.383111 0.824446 5.9564 0.116407 0.243846
- - 1.7074 0.390111 0.817193
.2134 0.647860 1.000000 2020079
0 i U. 647860 0.5314 0.637221 1.000000
0.0701 1000000 1000000 0.1654 1000000 1.000000
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TasLE IV.A. Contracted Gaussian basis sets for a
(9s5p) oxygen primitive bais set.

Oxygen s sets

Exponents [3s] [4s] [5s]
7816.5400  0.002031 0.002031 0.006436
1175.8200 0.015436 0.015436 0.048924
273.1880 0.073711 0.073771 0.233819
81.1696  0.247606 0.247606 9.784798
27.1836  0.611832 0.611832 0.803381
3.4136  0.241205 0.241205 0.316720
9.5322 1.000000 1.000000 1.000000
0.9398 0.563459 1.000000 1.000000
0.2846  0.497338 1.000000 1.000000
Oxygen p sets
Exponents [2p] [3p]
35.1832 0.019580 0.040023
7.9040 0.124189 0.253849
2.3051 0.394727 0.806842
0.7171 0.627375 1.000000
0.2137 1.000000 1.000000

TaBLE V.A. Contracted Gaussian basis sets for a (9s3p)
Auorine primitive basis set.

Fluorine s sets

Exponents [3s] [4s] [3s]
9994.7900  0.002017 0.002017 0.006431
1506.0300 0.015295 0.015295 0.048757
350.2690 0.073110 0.073110 0.233063
104.0530 0.246420 0.246420 0.785549
34.8432 0.612593 0.612593 0.802728
4.3688 0.242489 0.242489 0.317752
12.2164 1.000000 1.000000 1.000000
1.2078 0.572817 1.000000 1.000000
0.3634 0.488416 1.000000 1.000000
Fluorine p sets
Exponents [2p] [2p]
44,3555 0.020868 0.042011
10.0820 0.130092 0.261899
2.9959 0.396219 0.797662
0.9383 0.620368 1.000000
0.2733 1.000000 1.000000
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TaBLE VI.A. Contracted Gaussian basis
sets for the (4s) hydrogen primitive set.
Scale factor is unity.

Hydrogen s sets

Exponents® [2s5] [3s]
13.3615 0.032828 0.130844
2.0133 0.231208 0.921539
0.4538 0.817238 1.000000
0.1233 1.000000 1.000000

# Exponents for the scale factor of 1.2 used in this work are (19.2406,
2.8992, 0.6534, 0.1776); the basis functions are actually normalized for
Fe=1.2.

row atoms, boron through fluorine. The primitive basis
sets are the (9s5p) basis sets of Huzinaga.® Table VI.A
contains the [2s] and [3s] contracted functions for
hydrogen with the exponents appropriate for a Slater
orbital of exponent 1.0. To adjust the Gaussian ex-
ponents to fit a Slater orbital of exponent ¢, just
multiply each of the Gaussian exponents by {2, the
contraction coefficients need not be changed. All of the
basis functions have been normalized. The contracted
functions are separated by lines.

APPENDIX B: ATOMIC HARTREE-FOCK CALCU-
LATIONS ON THE ATOMS BORON THROUGH
FLUORINE USING THE CONTRACTED
GAUSSIAN BASIS SETS

In order to facilitate the calculation of dissociation
energies, potential energy curves, etc., Table I.B gives
the atomic Hartree-Fock energies for those states of the
atoms boron through fluorine which arise from the
1522522pN ) N=1, .-+ 5, configuration. Even though
they were optimized for the ground state, we see that
the [4s2p] and [4s3p] Gaussian sets also provide
adequate represenations of all of the states arising from
the 1522522p" configuration. Considering the similarity
of these states, this is, of course, not unexpected. Com-
paring the energies for the uncontracted set®® with those
for the [4s3p] set, we see that little is lost upon con-
tracting the atomic sets: B(0.0007), C(0.0007),
N(0.0009), 0(0.0014), and ¥(0.0022), all in atomic
units.

Tables I1.B and 11I.B contain the orbital energies and
expansion coefficients from the atomic Hartree-Fock
calculations on the ground states of the atoms boron
through fluorine. Only the results for the [4s2p] and
[4s3p] basis sets have been given. Such information for
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TasLE I.B. Hartree-Fock energies and virial ratios (—V/T) for the first-row atoms boron through fluorine
obtained using the contracted Gaussian basis sets given in Appendix A.

Contracted
Uncontracted
Atom State (9s5p) [3s2p] [4s2p] [4s3p] [5s3p]

Boron p —24.527130 —24.526230 —24.526415 —24.526415 —24.526549
1.997390 1.999023 1.999029 1.998954
Carbon 3p —37.685247 —37.684406 —37.684508 —37.684508 —37.684856
1.998448 1.999490 1.999493 1.999365

D —37.627015 —37.627102

1.999767 1.999486

LS —37.544018 —37.544661

2.000035 1.999338
Nitrogen 45 —54.395336 —54.394359 —54.394392 —54.394392 —54.395111
1.999415 1.999865 1.999862 1.999726

D —54.289264 —54.289405

2.000260 1.999867

:p —54.220590 —54.221001

2.000484 1.999835
Oxygen 3p —74.800289 —74.798819 —74.798837 —74.798837 —74.800140
2.000355 2.000172 2.000166 2.000011

D —74.718442 —74.718496

2.000413 2.000164

ER) —74.599381 —74.599720

2.000742 2.000132
Fluorine 2p —99.395586 —99,393249 —99,393300 —99,393300 —99,395311
2.000897 2.000435 2.000422 2.000249

TasrLE IL.B. Orbital energies and expansion coefficients for the Hartree-Fock wavefunctions for the ground states
of the atoms boron through fluorine. Basis set: [4s2p].

Atom (state) B(®P) Cc@epP) N({4S) O(¢P) F(zpP)
Orbital 1s 1s 1s 1s 1s
€ —7.69285 —11.32398 —15.62888 —20.66878 —26.38296
1s 0.60784 0.60141 0.59375 0.58112 0.57995
15’ 0.43331 0.43795 0.44610 0.46138 0.46224
2s 0.00117 0.00201 0.00127 —0.00061 —0.00038
2s' 0.00034 0.00040 0.00081 0.00140 0.00144
Orbital 2s 2s 2s 2s 2s
€ —0.49451 —0.70505 —0.94411 —1.24137 —1.56729
1s —0.13480 —0.14114 —0.14444 —0.14584 —0.14865
1s’ —{.18638 —0.19174 —0.19608 —0.20262 —0.20428
2s 0.53464 0.55973 0.57730 0.59550 0.61014
25 0.57509 0.53505 0.54103 0.52589 0.51298
Orbital 2p 2p 2p 2p 2p
€ —0.30969 —0.43286 —0.56663 —0.62959 —0.72591
2p 0.79742 0.79252 0.79529 0.78716 0.78418
2y 0.30620 0.31747 0.31774 0.33588 0.34398
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TaBirE IT1.B. Orbital energies and expansion coefficients for the Hartree-Fock wavefunctions for the ground states
of the atoms boron through fluorine. Basis set: [4s3p].

Atom (state) B(®P) C(3P) N@®S) OGP F(2P)
Orbital 1s 1s 1s 1s 1s
€; —7.69290 —11.32400 —15.62886 —20.66872 —26.38282
1is 0.60785 0.60141 0.59375 0.58112 0.57995
15 0.43331 0.43795 0.44610 0.46138 0.46224
2s 0.00116 0.00201 0.00127 —0.00061 —0.00038
2s 0.00034 0.00040 0.00081 0.00140 0.00144
Orbital 2s 2s 2s 2s 2s
€ —0.49452 —0.70705 —0.94411 —1.24137 —1.56730
1s —0.13480 —0.14114 —0.14444 —0.14584 —0.14865
1s’ —0.18638 —0.19174 —0.19608 —0.20262 —0.20428
2s 0.53465 0.55973 0.57729 0.59549 0.61013
2s’ 0.57507 0.55504 0.54103 0.52590 0.51299
Orbital 2p 2p 2p 2p 2p
€ —0.30969 —0.43286 —0.56663 —0.62959 —0.72592
2p 0.37034 0.37468 0.37968 0.38514 0.38960
2 0.51697 0.50737 0.50673 0.49377 0.48635
2p” 0.30596 0.31741 0.31777 0.33593 0.34407

t he other states and/or
request.

basis sets is available upon

* National Science Foundation Predoctoral Fellow 1966-1969.
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