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We propose a simple scheme for decomposition of molecular functions into single-center
components. The problem of three-dimensional integration in molecular systems thus reduces
to a sum of one-center, atomic-like integrations which are treated using standard numerical
techniques in spherical polar coordinates. The resulting method is tested on representative
diatomic and polyatomic systems for which we obtain five- or six-figure accuracy using a few

thousand integration points per atom.

{. INTRODUCTION

For many decades now, quantum chemists have relied
on finite basis-set expansions as their primary computational
tool. LCAO (linear combination of atomic orbitals) is cur-
rently the only viable general approach to ab initio computa-
tional chemistry. This dependence on finite basis sets has,
however, undesirable consequences. A major part of virtual-
ly every quantum chemical publication is devoted to analysis
of the basis sets employed in the calculations, reflecting the
nagging and ever-present specter of basis-set incomplete-
ness. Moreover, the inevitable discussion of basis-set details
is, at least from a fundamental point of view, rather uninter-
esting.

Attempts have been made in recent years to escape from
the conventional LCAO framework. In the special case of
diatomic molecules, completely numerical, non-basis-set
calculations are now possible on discrete two-dimensional
meshes in prolate spheroidal coordinates. The first calcula-
tions of this numerical type were carried out in 1981 by the
present author (see Ref. 1) on first-row diatomic systems in
the Hartree—Fock—Slater or Xa approximation.? Since then,
our method has evolved significantly and has recently been
applied to dimers as heavy as Cr, using various contempo-
rary density functional theories.>* A similar method has also
been developed by Pyykkd and co-workers® with applica-
tions to a great variety of quantum chemical formalisms
such as Hartree-Fock, Xa, MCSCF, and Dirac-Slater.®
Completely numerical diatomic calculations are admittedly
costly, but by now essentially routine. Note, however, that
numerical computations are perfectly suited for vector and
parallel processing. As parallel computing technology ad-
vances, therefore, discrete numerical techniques will become
increasingly attractive.

It is our desire to develop a completely numerical, non-
basis-set scheme for quantum chemical calculations on po-
lyatomic molecules, in general. No such scheme currently
exists (at least in rea! space, but see Ref. 7 for a proposed
method in momentum space). In the present work, we take
an initial step in this direction. Considered here is the funda-
mental problem of discrete numerical integration in multi-
center systems.

Even if the ultimate objective of completely basis-set-
free quantum chemistry is not soon realized, the ability to
carry out numerical integrations in polyatomic molecules is
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itself of immediate value. This is due to the increasing impor-
tance in quantum chemistry of so-called density functional
theories, in which exchange and/or correlation energies of
many-electron systems are approximated by three-dimen-
sional integrals of local exchange-correlation densities de-
rived from electron gas theory. The power of density func-
tional methods has been aptly demonstrated in recent
applications to diatomic, organometallic, and transition
metal binuclear complexes in Refs. 4, 8, and 9, respectively,
and the interested reader will find general reviews of the
theoretical framework in Ref. 10. The reader should appre-
ciate that the exchange-correlation integrals of density func-
tional theories cannot be evaluated analytically, even in an
LCAO context, and therein lies the importance of numerical
integration algorithms.

In Sec. II, then, we outline the basic philosophy of the
present integration scheme, and also discuss its extension to
problems beyond the integration problem. Then, in Secs. III
and IV, the method is described in detail. In Sec. V, the
scheme is tested on the diatomic systems H,, N, and P,, and
on seven representative polyatomic systems of various geo-
metries using integrands of density functional type. Diatom-
ic systems are included for testing purposes because “exact”
results for arbitrary integrands are obtainable from our ex-
isting numerical diatomic program.' Finally, we offer con-
cluding remarks in Sec. VI. We include, also, an Appendix in
which the reader will find certain details of secondary impor-
tance.

JI. GENERAL PHILOSOPHY

We are concerned with three-dimensional molecular in-
tegrals of the type

I=JF(r)d3r, (1

where F(r) is an arbitrary integrand. These may be approxi-
mated by discrete numerical summations of the form

I1=Y AF(,), (2)

where the r; and A, are discrete integration points and their
respective integration weights whose optimum distribution
is the subject of the present work.

In molecules, of course, the integrand F(r) is dominated
by cusps at atomic nuclei. Obviously, then, a straightforward
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discrete integration in Cartesian coordinates is not recom-
mended, though a marginally successful such scheme has
nevertheless been proposed.!’ Alternatively, standard or-
thogonal curvilinear coordinates exist for the special case of
two-center systems'?and these have been fully exploited in
the previously-cited work of Becke' and Pyykko et al.> on
diatomic molecules. For systems containing three or more
centers, however, standard multicenter coordinates do not
exist, and we therefore face a difficult problem.

An obvious and popular solution to this multicenter in-
tegration problem involves partitioning of molecular space
into discrete regions or “cells” of simple geometry commen-
surate with the positions of the nuclei, such that straightfor-
ward numerical integration may be carried out within each
region. This cellular approach has been developed to a high
degree of sophistication in the recent work of Boerrigter, te
Velde, and Baerends.'® Cellular methods require, however,
considerable intuition and input regarding the disposition of
the various regions. A scheme requiring knowledge only of
the positions (and perhaps charges) of the atomic nuclei,
such as proposed in the present communication, would be
somewhat more convenient.

In the context of cellular methods, the work of Bader
and co-workers (see, e.g., Ref. 14 and references therein) is
also relevant. Bader has defined atomic fragments in molec-
ular systems on the basis of the topology of the total electron
density. These atomic fragments have fascinating theoretical
significance and ingenious numerical techniques have been
devised for integrating within them.'® Though the primary
applications of Bader’s formalism are theoretical and inter-
pretative, some of the associated numerical techniques could
conceivably be adopted for general-purpose molecular inte-
gration as well.

We should also acknowledge the method of Ellis and
Painter'® which has played such an important role in the
development of the Hartree-Fock—Slater molecular struc-
ture program of Baerends and co-workers (see Ref. 17 and
references therein). The method of Ellis and Painter, based
on Diophantine theory,'® behaves rather poorly as the num-
ber of integration points increases, however, and is therefore
unsuitable for integration of high accuracy. The reader is
referred, e.g., to a comparison with the method of Boerrigter
et al. in Ref. 13.

The approach of the present work is based on a very
simple philosophy. We assume that a relative weight func-
tion w, (r) can be assigned to each nucleus 7 in the system
such that, for all r,

3 w,(r) =1 3)

and such that each w, (r) has value unity in the vicinity of its
own nucleus, but vanishes in a continuous and well-behaved
manner near any other nucleus. In a sense, then, the system is
divided not into conventional discrete cells, but into fuzzy,
overlapping, analytically continuous cells instead. This image
of a “fuzzy” cellular partitioning is not intended merely as a
visual aid, but will, in fact, be implemented quite literally in
Sec. I11.

An arbitrary molecular function F(r) may thus be de-

composed into single-center components F,, (r) as follows:

F(r) =ZF,.(I‘), 4)
where
F,(r) =w,(r)F(r) (5)

and the multicenter integration of Eq. (1) therefore reduces
to a sum of single-center integrations I, over each of the
nuclei in the system:

I= 2 I, (6)
where
I =fF,,(r) dr. %

If the weight functions w, (r) are sufficiently well behaved,
as defined more precisely in Sec. III, then each atomic subin-
tegration /, may be carried out using standard single-center
numerical techniques in spherical polar coordinates.

This philosophy is not, in a general sense, particularly
new. A conceptually similar approach has also been de-
scribed by Boys and Rajagopal.'® The present work, how-
ever, and particularly the present decomposition scheme,
differs considerably in detail.

Also, we wish to point out that the present decomposi-
tion scheme extends naturally to the problem of solving Pois-
son’s equation:

V3,4 (r) = —4mp(r) (8)

for the Coulomb potential V,, (r) due to an electron density
distribution p(r). Fully numerical solution of Poisson’s
equation, though tractable in diatomic systems as a result of
the work of Becke' and Pyykko et al.,’ is not yet feasible
generally. If, however, the proposed atomic decomposition
scheme is applied to the density distribution p(r), then Eq.
(8), being linear, reduces to a set of independent one-center
equations, each of which may then be solved using standard
single-center techniques such as spherical harmonic analy-
sis, etc. Fully numerical solution of Poisson’s equation, in
combination with a good numerical integration scheme
(such as the scheme proposed here), would allow basis-set-
free computation of molecular Coulomb interaction energies
and matrix elements. We are currently pursuing this prob-
lem and hope to discuss it further in later publications.

lil. NUCLEAR WEIGHT FUNCTIONS

We now describe a novel procedure for generating the
nuclear weight functions w, (r) introduced in Sec. II. We
begin by considering a conventional cellular partitioning of
molecular space into so-called Voronoi polyhedra. Then, we
“soften”” the boundaries of the resulting polyhedra to create
the “fuzzy cells” to which we alluded above.

Given an arbitrary distribution of atomic centers in
three-dimensional space, a unique polyhedron may be asso-
ciated with each nucleus by a relatively simple prescription.
Consider, e.g., nucleus / as reference, and construct for every
other nucleus j#i the perpendicular bisecting plane of the
vector joining i to j. Clearly, the minimum volume enclosed
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by all these bisecting planes is a polyhedron containing all
points nearer to nucleus / than to any other. These unique
polyhedra, one for each i, perfectly fill the space of the mole-
cule and are called Voronoi polyhedra (or Voronoi cells). In
the special case of a periodic atomic lattice, these are some-
what better known as Wigner-Seitz cells.

Efficient algorithms for the automatic construction of
Voronoi polyhedra have been published (see, e.g., Ref. 20
and references therein), but we shall introduce a rather un-
conventional scheme which is uniquely appropriate for the
present purposes.

Our scheme involves the popular two-center coordinate
system known as confocal elliptical coordinates (A,u,¢).
The coordinate ¢ denotes angle about the internuclear axis,
and coordinates A and u are defined by

/{=r1+r2, =r1—"'2, 9
R, TR, )
where 7,, r,, and R,, denote distance to nucleus 1, distance
to nucleus 2, and the internuclear separation, respectively.
The coordinate A labels ellipsoids of revolution with foci at
the positions of the nuclei, and x similarly labels hyperbo-
loids. Their ranges are indicated below:

0<¢<2m,
1< < 0,
—I<u< + 1

Notice that the surface 4 = 0 corresponds to the perpendic-
ular bisector of the internuclear axis, just as required in the
construction of Voronoi polyhedra. Also, we note that
= — 1 corresponds to a semi-infinite ray extending from
center 1 along the nuclear axis to infinity, and thatu = + 1
corresponds to a similar ray from center 2 to infinity.
Elliptical coordinates furnish a natural and convenient
definition of Voronoi polyhedra in an interesting analytical
sense. With center / as reference, consider in turn each of the
other centers j#i and establish elliptical coordinates 4, 15,
and #; on the foci/ and j. Of special interest is the coordinate

(10)

(1D

R,

where 7; and r; denote distances to nuclei / and j, respective-
ly, and R;; is the internuclear separation. With this hyperbo-
loidal coordinate as argument, consider the step function

s L) =
7= o, o<py<+1

and then, recalling that the surface u; = Ois the perpendicu-
lar bisector of R;;, observe that the Voronoi polyhedron on
nucleus / is defined by the following simple product:

(12)

Pi(r) =[] sCuy). (13)
j#i

This product, which will hereafter be called a “cell func-

tion,” has value unity if r lies inside the cell, and vanishes if r

lies outside.

The above definition of Voronoi cells suggests an ob-
vious generalization. Let us replace the step function of Eq.
(12) with an appropriate continuous analog, resembling,
e.g., the finite-temperature Fermi function of statistical me-

2549

chanics. In other words, let us soften or “smooth out” the
step discontinuity at u; = 0. The cell functions of Eq. (13)
will now, as a consequence, represent analytically contin-
uous, mutually overlapping regions, and we thereby create
the fuzzy Voronoi polyhedra visualized earlier.

Having thus expanded its original definition to include
continuous analogs, we will hereafter refer to s( H;)asa
“cutoff function” or a “cutoff profile.” Possible cutoff pro-
files are not, of course, unique, but we shall impose the fol-
lowing minimum requirements:

s(—1)=1,

s(+1)=0, (14)
ds ds

—(=1)=— 1) =0. 1
d,u( ) d,u(+ ) (15)

The derivative constraints of Eq. (15) ensure that s( Hy)
does not have nuclear cusps. After considerable experimen-
tation with a variety of possible functional forms, including
rational, exponential, and trigonometric forms, we have
found a particularly useful representation involving simple
polynomials only. We describe this representation below.

Consider, first of all, the related problem of finding an
odd function f( ) in the interval — 1<u< + 1 with the
properties

A+ =+1, (16)
df df

Yi—n=LL(+1=0 1
d,u( ) d,u(+) (17)

from which the cutoff function s( u) is obtained by the
transformation

s(u) =4[1-f(w)]. (18)

The simplest possible f{ u) satisfying the above constraints
is a two-term polynomial:

p(p)=3u—ip’ (19)
This simple polynomial varies smoothly between the end-
points — 1 and + 1, but, for reasons discussed momentar-
ily, is not “sharp” enough (i.e., not “step function-like”
enough) for our purposes. If, however, we iterate as follows:

Lilp) =p(p),
LHlu) =plp(w)],

L) =plplp()1}, ..., (20)
then successively sharper functions may be generated with
increasing iteration order k. For extremely large k, in fact, a
step function is ultimately evolved.

A useful sequence of cutoff profiles s, ( 1) is thus gener-
ated from the above sequence of f, ( ) by Eq. (18):

sc(p) =4[1-fe ()] (21)
We face, however, the problem of determining the optimum
value of k. It is here that the stipulation “sufficiently well
behaved,” invoked somewhat vaguely in Sec. II, must be
satisfied. If k is too small, then s, ( ;) will not sufficiently
extinguish the nuclear cusp on center j. If & is too large, on
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the other hand, the step function of Eq. (12) is recovered
and we revert, therefore, to conventional discrete cells. Our
sequence of cutoff profiles is illustrated in Fig. 1 for values of
k from 1 to 5. We have found, on the basis of our experience
thus far, that the value k = 3 is appropriate for general appli-
cations. This particular choice has therefore been used in all
calculations of the present work, and is convincingly sup-
ported by the quality of our results in Sec. V.

The above polynomial cutoff profiles strictly satisfy the
constraints of Eq. (14). Therefore, the ith cell function
P,(r), in accordance with the definition of Eq. (13), has
value unity at nucleus i, but vanishes at all other nuclei j#i
and also on each semi-infinite ray extending fromj to infinity
along the Jj axis. These cell functions are obvious candidates
for the nuclear weights w, (r). In order to satisfy Eq. (3),
however, we use the following definition:

1, (1) = P, (1)/3 P (1), (22)

where the summation over m in the denominator includes all
nuclei in the system (i.e., m = n as well).

Our description of the atomic decomposition scheme is
now essentially complete, insofar, at least, as homonuclear
systems (i.e., atoms of one kind only) are concerned. In Ae-
teronuclear systems, though, the scheme would obviously
benefit from an ability to accommodate varying atomic sizes.
Atomic size adjustments are indeed possible, and have, in
fact, been incorporated. We wish to proceed at this time,
however, to a description of the single-center atomic subinte-
grations, and therefore, we defer discussion of atomic size
adjustments to the Appendix.

IV. SINGLE-CENTER SUBINTEGRATIONS

Having discussed the atomic decomposition scheme, we
now describe our numerical procedure for computing the
single-center integrals 7, of Eq. (7). The following descrip-
tion applies independently to each nucleus in the molecule.

If we establish a spherical polar coordinate system
(r,9,¢) on nucleus n, then the volume integral of the single-
center component F, (r) is given by the familiar expression

I, = J-f F,(r,8,4)r sin 9 drdd dé. 23)
1.0
0.8 =N\
__ 08
3
<%
® 041
0.2
0.0 Y -+ v Y
-1.0 -0.8 -0.2 0.2 0.6 1.0
m

FIG. 1. Cutoff profiles s, ( ) of Eq. (21) fork=1to 5.
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This three-dimensional integration may be carried out by
treating each of the #, 4}, and ¢ coordinates independently.
There exists, however, a small but impressive literature on
Gauss-type quadrature formulas for direct two-dimensional
integration on the surface of the unit sphere (see Refs. 21 to
28) and we therefore write

I, =”Fn(r,mr2drdn, (24)

where € denotes solid angle. Integration on the surface of
the unit sphere and integration over solid angle are, of
course, equivalent. In subsequent paragraphs, then, we con-
sider first of all the indicated solid-angle integration and
then we discuss the radial part.

Numerical integration on the surface of the unit sphere
is a problem of fundamental interest. Following the impor-
tant early work of McLaren,?! Stroud,*? and Sobolev,?* qua-
drature formulas of remarkably high order (up to / = 35,
where all spherical harmonics of order / or less are integrated
exactly) have been published by Lebedev?*?” and by Kon-
yaev.?® We have coded Lebedev’s quadratures of orders 11,
17, and 23 containing 50, 110, and 194 integration points,
respectively (Refs. 24 and 25) for the investigations of the
present work. The resulting point distributions are invariant
with respect to the octahedral group. The point distributions
of Konyaev,® on the other hand, have icosahedral symme-
try.

The reader may wonder if such large angular meshes are
really necessary, or, indeed, if they need be even larger. Ex-
cessively large meshes as implied by the integration of off-
center nuclear cusps are clearly not required. Nevertheless,
our cutoff profiles s( ;) display significant step-function-
like features in internuclear regions, and, as a consequence,
moderately large angular meshes are indeed necessary. Our
experience thus far indicates that something in the order of
100 or 200 angular points is appropriate for five- or six-figure
integration accuracy (see Sec. V).

The radial integrations are performed using standard
Gauss—-Chebyshev quadrature of the second kind.?® We pre-
fer Gauss—Chebyshev to the much more popular Gauss-Le-
gendre quadrature because Chebyshev points and weights
are given by simple analytical formulas. First, however, the
standard  Gauss—Chebyshev  integration  interval

— 1<x< + 1 must be mapped into the semi-infinite radial
interval 0<r < «. This is accomplished by the following co-
ordinate transformation:

r=r, (I+x)
(1—-x)

where r,, is a parameter corresponding to the midpoint of
the integration interval at x = 0. This parameter allows ad-
justment of the radial point distribution to a suitable phys-
ical scale. In the present work, r,, is chosen as half of the
Bragg-Slater radius of the respective atom (see Ref. 30 and
also the Appendix), except for hydrogen in which case the
factor 1/2 is not applied.

The number of radial points on each center is difficult to
assign uniquely and depends, of course, on desired precision
and on the particular atom in question. Nevertheless, the
following empirical rule of thumb appears to provide a rela-

(25)
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tive integration accuracy in the order of 10 ~°. The hydrogen
atom receives an initial quota of 20 radial points, and, there-
after, an additional 5 points are assigned for each additional
atomic shell. This rule of thumb assigns, e.g., 25 radial points
to the first-row atoms Li to Ne, and 30 points to the second-
row atoms Na to Ar, etc. Greater or fewer points are appro-
priate, of course, if relative integration accuracy greater or
less than 10~ ° is required.

The above single-center procedure is repeated for every
nucleus in the system. The overall scheme is extremely sim-
plein principle and in practice. In Sec. V it is tested on repre-
sentative diatomic and polyatomic molecules.

V. DIATOMIC AND POLYATOMIC TESTS

The tests reported here are not exhaustive. We simply
wish to demonstrate the viability of the present method and
to assess the sort of accuracy obtainable. Our first series of
tests is performed on diatomic systems in order that various
integrals of the density functional type may be compared
with exact results from our existing numerical diatomic pro-
gram.'

We consider specifically the diatomic systems H,, N,,
and P, at their equilibrium internuclear separations. Fur-
thermore, we choose as test integrands the functionals

F(l’) =p p4/3’ P5/3’ Velp’ and Vnuclp’ (26)

where p is the total electron density, ¥, is the corresponding
Coulomb potential, and ¥V, is the potential due to the
atomic nuclei. The second and third of the above integrands,
p*? and p*”3, are well-known density functional approxima-
tions for exchange and kinetic energy densities, respectively,
while the final integrands V,,p and ¥, p are components of
the potential energy. In the above selection of integrands,
therefore, all major components of the total energy of a
many-electron system are represented.

For convenience, however, we model the total density p
simply as a sum of free atomic densities obtained from the
Hartree-Fock orbitals of Clementi and Roetti.>! This ap-
proximation simplifies the present tests tremendously, but is
not expected to bias our ultimate assessment in any way.
Within this model, the value of the potential ¥, at each of
the integration mesh points is calculated analytically.

In diatomic systems, of course, axial symmetry reduces
our problem from three dimensions to only two. Full solid-
angle integration as described in Sec. IV is therefore unnec-
essary. We wish, nevertheless, to estimate the potential accu-
racy of the present integration scheme in general polyatomic
situations, and therefore we ignore axial symmetry in these
diatomic tests. In Tables I to III, numerical integrals of the
five functionals of Eq. (26) are presented for 50-point and
for 110-point angular meshes. The associated radial meshes
are the same in both cases, with the number of radial points
given by the rules of Sec. IV. We observe that an overall
accuracy in the order of five or six significant figures is ob-
tained, and that all five integrands, despite their qualitative
differences, are equally well treated.

Further results are presented in Table IV for the nu-
merical integration of the total electronic charge in seven
polyatomic systems representing a wide variety of typical

TABLE I. Numerical integration in H,.

Angular mesh points
Integrand Exact 50 110
P 2.000 00 1.999 98 2.000 00
p? 0.660 758 0.660 746 0.660 751
P 0.257 193 0.257 190 0.257 190
Vap 2.25704 2.25700 2.25702
W awarPl 3.22008 3.22005 3.22007

molecular geometries. Again we assume, for convenience
only, that the total molecular charge density is just a sum of
atomic Hartree-Fock densities. However, the disposition of
the single-center subintegration meshes in polyatomic sys-
tems is slightly more complicated than for the previous
dimers. This is due to the fact that somewhat finer meshes
are required for central atoms in polyatomic molecules than
for ligand atoms or atoms in linear coordination. We there-
fore assign roughly twice as many angular points to the cen-
tral atoms in the molecules of Table IV (except for C in
linear CO, ) than are assigned to the ligand atoms. Also,
each central atom is assigned ten additional radial points as
well. These ad hoc rules for assigning mesh points are noth-
ing more than rough guides in determining efficient point
distributions. They are not rigorously based, nor should they
be viewed as corrupting the fundamental simplicity of the
present integration scheme.

Results are given in Table IV for two classes of integra-
tion meshes, coarse meshes containing 50-point angular
components (110 for central atoms) and somewhat finer
meshes containing 110-point angular parts (194 for central
atoms). The same radial meshes are used in either case, in
accordance with the rules of Sec. IV and the ad hoc addition
of ten radial points for central atoms. The resulting charge
integrals display a relative accuracy in the order of 10~* in
the case of the coarse meshes, and 10~ in the case of the
finer meshes. In view of the previous diatomic results, we
infer that similar precision would be obtained as well for the
other integrands in the list of Eq. (26).

The recent cellular method of Boerrigter et al.'® is of
high accuracy also, but the great simplicity of the present
scheme and its relatively straightforward extension to solu-
tion of Poisson’s equation (see Sec. II) are strong advan-
tages. Still higher accuracy may, of course, be achieved by
increasing the number of quadrature points even further.

TABLE II. Numerical integration in N,.

Angular mesh points

Integrand Exact 50 110
p 14.0001 14.0003 14.0000
p*? 15.9961 15.9963 15.9961
P 34.3728 34.3733 34.3729
Vap 148.988 148.990 148.988
| Vsl 303.106 303.115 303.109
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TABLE III. Numerical integration in P,

Angular mesh points

Integrand Exact 50 110
p 30.0001 29.9993 30.0001
P 56.3134 56.3143 56.3135
P 220.002 220.004 220.001
Vap 737.814 737.818 737.814
| Vauar 1749.64 1749.74 1749.73

Note, however, that extremely high precision is not, in fact,
required in calculating most quantities of chemical interest.
Chemically interesting quantities, such as dissociation ener-
gies, can normally be expressed as differences between mo-
lecular and atomic data. If, therefore, molecular and atomic
reference calculations are performed consistently, then can-
cellation of numerical errors obviates the need for results of
high absolute precision. Cancellation of numerical errors
has been very useful in our earlier diatomic work' and will no
doubt assist our future efforts as well.

VI. CONCLUSIONS

In the present communication, we have addressed the
problem of numerical integration in molecular systems by
decomposing the integrand into single-center terms, each of
which may then be integrated by standard single-center nu-
merical techniques. Our basic decomposition scheme may
also be applied to solution of Poisson’s equation (work in
progress) and eventually, we hope, to the computation of
numerical molecular orbitals. This work is only the first step
in the development of a comprehensive program system for
nonbasis-set quantum chemical calculations. Alternatively,
the present scheme may be usefully incorporated into exist-
ing density functional LCAO programs such as those of
Baerends et al.,'”” Dunlap et al.,*? etc., all of which rely to
some degree on numerical integration techniques.

The tests of Sec. V demonstrate that the present scheme
is both accurate and practical. Results of high precision (five
or six figures) are obtained with a few thousand integration
points per atom. Notice, also, that the necessary number of
points may be reduced dramatically in molecules of appro-

TABLE IV. Charge integration in polyatomic systems.

Angular mesh points

Molecule Exact 50° 110°
CO, 22.0001 22.0004 21.9995
H,0 10.0000 10.0006 10.0001
BF; 31.9999 32.0003 32.0003
NH, 10.0000 10.0013 10.0001
CH, 10.0000 10.0020 10.0002
PF; 59.9998 60.0029 59.9986
SF, 69.9997 70.0051 69.9995

2110 for central atoms, plus 10 additional radial points.
® 194 for central atoms, plus 10 additional radial points.

A. D. Becke: Multicenter numerical integration scheme

priate geometries if the respective octahedral and icosahe-
dral symmetries of Lebedev’s***’ and Konyaev’s®® angular
point distributions are exploited.

The present results are very encouraging. Further inves-
tigations and applications of this novel polyatomic integra-
tion scheme will be reported in future communications.
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APPENDIX: ATOMIC SIZE ADJUSTMENTS

To simplify the following discussion, the terminology
cell “face” or cell “boundary” will be used somewhat
loosely. Our fuzzy cells do not, of course, have discrete faces.
We shall, however, use these terms to denote the surfaces on
which the cutoff functions s( u ;) take the intermediate val-
ue 1/2.

The faces of the Voronoi polyhedra described in Sec. I11
bisect the internuclear axes exactly. In heteronuclear sys-
tems, however, variations in atomic size do not necessarily
favor such a “democratic” partitioning. We desire, there-
fore, to shift our cell boundaries away from the internuclear
midpoints in heteronuclear molecules.

First of all, we adopt as a definition of atomic size the
empirical atomic radii of Bragg and Slater.*® Bragg-Slater
radii are derived from the observation that interatomic bond
lengths in solids and molecules, whether ionic or covalent,
are approximately equal to pairwise sums of unique atomic
radii. This observation may be rationalized by the further
observation that these unique atomic radii correlate remark-
ably well with the positions of valence-shell probability-den-
sity maxima obtained independently from theoretical calcu-
lations on free atoms. In the present work, Bragg-Slater
radii as tabulated in Ref. 30 are therefore used as guides in
the adjustment of cell boundaries (and also the adjustment
of the radial integration parameters r,, of Sec. IV). For hy-
drogen, however, we prefer a radius of 0.35 A, somewhat
larger than Slater’s value of 0.25 A. Details of the boundary
adjustment procedure are now outlined.

A cell boundary is defined by the surface on which the
cutoff function s( i) has value 1/2, or, equivalently, the
surface on which its argument u; has value 0. As empha-
sized in Sec. III, the surfaces 2, = 0 are perpendicular bisec-
tors of internuclear axes, and thus the faces of the cells dis-
cussed so far lie exactly at internuclear midpoints. Our cell
boundaries can be shifted off center, however, by a simple
transformation of coordinates from u; to a new coordinate
v;- In other words, a heteronuclear cutoff profile sy, ( ;)
can be defined in the following manner:

shet(/u'ij) =S(Vij)’ (Al)
where the new argument v; is related, in the present work, to
the old argument p; by
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and where g; is a parameter with value in the range
la; <1 (A3)

to ensure monotonicity. We thus transform our cell boun-
daries from bisecting planes to hyperboloidal surfaces v;
= 0, towards center / or towards center j depending on the
sign of a;. Though other transformations are also conceiv-
able, Eq. (A2) is particularly simple.

The above transformation is easily incorporated into the
cell-construction algorithm of Sec. III. We simply require
for each nuclear pair / and j, with respective Bragg-Slater
radii R; and R; and internuclear separation R, a value for
parameter a;. In order to specify a;, consider the point at
which the internuclear ij axis intersects the shifted boundary
surface v; = 0, and let us assume that the ratio of 7, tor; (the
distances to the respective nuclei) is equal to the ratio of the
Bragg-Slater radii:

¥; R;

_—— ——EX.
r R
Parameter a; is then determined by the condition v; =0 as

follows:

(A4)

=% (A5)

a;
I ’
u; —1

where u; is related to the ratio y of the Bragg—Slater radii by

uij=r,.—-rj _n-r =X"1-
R; r+r xy+1

Should, however, the resulting a; fall outside the range al-
lowed by Eq. (A3), then we simply assign the appropriate
endpoint value + 1/2. This occurs if the Bragg—Slater radii
R; and R; differ by a factor greater than roughly 2.4. The
transformation of Eq. (A2) does not, therefore, provide un-
limited freedom in shifting cell boundaries, but the available
flexibility is apparently quite adequate.

The adjusted partitioning scheme described in this sec-
tion gives significantly better results than obtained from
“homonuclear” decompositions. All of the polyatomic inte-
grals discussed in Sec. V have therefore been calculated us-
ing shifted cell boundaries.
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