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The calculation of molecular bond energies is a sensitive test of exchange-correlation
approximations in density functional theory. The well known local density approximation
(LDA) gives excellent bond lengths and vibrational frequencies, but seriously overestimates
dissociation energies. Therefore, we have investigated the effect on bond energies of nonlocal
corrections to the LDA exchange-correlation functional. We consider the nonlocal correction
term of Langreth and Mehl, and also a new semiempirical exchange energy correction. Significant
improvements over the LDA dissociation energies are obtained in calculations on first-, second-,

and third-row homonuclear diatomic systems.

I. INTRODUCTION

The calculation of molecular bond energies is a particu-
larly interesting application of density functional methods.
Even though ab initio quantum chemical techniques are able
to provide reliable dissociation energies for small molecular
systems, the complexity of ab initio calculations escalates
rapidly with increasing molecular size or in systems contain-
ing very heavy atoms. Density functional calculations, on
the other hand, do not share these difficulties. In fact, den-
sity functional computations have recently been performed
on transition metal dimers such as Cr, and Mo, with encour-
aging results.'~> At the same time, the calculation of molecu-
lar bond energies is an extremely sensitive test of density
functional theories, and, in particular, of local exchange-cor-
relation approximations.

In this communication, we discuss an extensive series of
density functional bond energy calculations for the first- and
second-row dimers H, through Cl, and also Cr,. These cal-
culations have been carried out using a completely numeri-
cal computational scheme (i.e., no LCAQ basis sets) devel-
oped by us for diatomic systems several years ago.*> The
purpose of this work is to assess the local density approxima-
tion (LDA) for exchange-correlation energy and the effect
of various nonlocal gradient-type corrections.

Section II contains a brief outline of the density func-
tional formalism of Hohenberg, Kohn, and Sham®’ and the
local density exchange-correlation approximation. This is
followed in Sec. III by a review of our computational proce-
dure and a discussion of the resulting LDA bond energies for
15 selected dimers. We shall see that the LDA results leave
much room for improvement, and therefore the nonlocal
exchange-correlation correction of Langreth and Mehi® is
examined in Sec. IV. The Langreth-Mehl bond energies are
significantly better than the LDA values, but the discrepan-
cies with experiment are still large enough that further re-
finements are necessary.

Unfortunately, the theory of nonlocal correction terms
for the exchange-correlation energy of an inhomogeneous
electron gas is rather difficult, and we wonder, therefore, if a
semiempirical approach might be useful. To this end, we an-
alyze separately the exchange and correlation energy com-
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ponents of typical atomic systems in Sec. V. We find that the
LDA most poorly represents the exchange energy compo-
nent, and a semiempirical attempt to rectify the problem is
then discussed in Sec. VI. The resulting semiempirical ex-
change-correlation functional provides excellent bond ener-
gies for the 15 molecules of this study, and we present these
in Sec. VIL Finally, we offer concluding remarks in Sec.
VIII.

Before proceeding, however, we note that the following
equations and data are given in atomic units
(fi=e =m, = 1) unless otherwise indicated.

Il. BASIC THEORY

We assume that the total electronic energy of an atomic
or molecular system containing N electrons is given by the
following expression:

E=1 3 [10Pae+ [phudn

i=1
+%fj____/’(”f’(2) d’rd’r, + Exc(ptpd), (1)

where the ¢, are integrally occupied orthonormal single-
particle orbitals, p is the total electron density,

p= 3l @

V.« is the external potential due to the atomic nuclei, and
E ¢ is called the exchange-correlation energy. It can be
shown® that E 4 is, in fact, a unique functional of the spin
densities p1 and p.

In the local density approximation (LDA) the ex-
change-correlation energy is estimated as follows:

;L(‘é“—fpfxc (ptpl)d>r, 3)

where e is the exchange-correlation energy per particle of
a uniform electron gas with “‘up” and “down” electron spin
densities given by the local values of pt and pl, respectively.
The quantity €xc can be calculated by a variety of many-
body theoretical techniques such as the random phase ap-
proximation, Monte Carlo methods, etc. In the present
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work, we use for exc (p1,01) the Monte Carlo data of Ceper-
ley and Alder® as parametrized by Vosko, Wilk, and Nusair
(VWN).10

The single-particle orbitals ¢; are determined by apply-
ing the variational principle to the total energy of expression
(1). One obtains the following Schrodinger-like equation for

¥
1
"EVZ'/’:' + (Ve + Va + Vi)V = €9, 4)

where ¥V, is the Coulomb potential arising from the total
electron density,

V,,(l):sz)-di*‘r2 ()
‘ T

and V% is the exchange-correlation potential given by the
functional derivative of E y:

[ Ap—
XCc —

(6)

P
In the local density approximation, this functional deriva-
tive is simply

- a
%c (LDA) = 3

[pexc (ptpl)], (7

an explicit VWN-based expression for which may be found
in Ref. 11. Notice, also, that the exchange-correlation poten-
tial is spin dependent and is therefore given the spin label 0.
This formulation of the inhomogeneous many-electron
problem is due to Hohenberg, Kohn, and Sham,%’ and hence
the single-particle equation (4) is often referred to as the
Kohn-Sham equation.

lli. LDA BOND ENERGIES

In the present work, the Kohn—-Sham orbitals are com-
puted using a discrete numerical method previously devel-
oped by us for calculations on diatomic systems.**> We use
no LCAO, muffin-tin, or cellular approximations of any
kind. Instead, all functions are defined on a discrete, two-
dimensional mesh in prolate spheroidal coordinates, which
are related to the elliptical coordinate system familiar to
chemists. Integration and partial differentiation are per-
formed on this mesh using 2D cubic spline analysis. Interest-
ed readers are referred to Ref. 4 for a detailed description of
our procedure.

The dissociation energy D, of a diatomic molecule AB is
given by the difference

D, =E,py —E, —Epg, (8)

whereE ,5,E 5 ,and E g arethetotal energies of the molecule
AB and the separated constituent atoms A and B, respective-
ly. In our calculations, the free atomic energies £, and E g
are computed using exactly the same code and the same dis-
crete mesh as used for the computation of £ , ;. We do thisin
order to take advantage of cancellation of numerical errors
that occurs in the energy difference (8). In this regard,
though, it should be noted that the atomic density functional
energies have a slight dependence on M, , the Z component
of total angular momentum. This is due to the fact that, for a
given L, the complex spherical harmonic functions Y, ,,
(6.,¢) do not have equivalent densities for all possible values

of M (see the Appendix of Ref. 12 for a discussion of this
point). In the present work, then, we have assumed that
M; = 0in all of our atomic calculations.

It should also be noted that these calculations are com-
pletely spin unrestricted (i.e., we use different exchange-cor-
relation potentials for spin-up and spin-down orbitals in the
case of a spin-polarized system). This is important here, as
we deal with spin-polarized separated atoms, and a few mo-
lecular triplet states as well. Furthermore, our Cr, calcula-
tion assumes an “antiferromagnetic’” ground state wave
function as described in several recent publications!™ to
which we refer the reader for details.

In Table 1, we present LDA bond energies, calculated
for the experimental ground state symmetry and at the ex-
perimental internuclear separation, for a selection of 15
first-, second-, and third-row homonuclear diatomic sys-
tems. The numerical accuracy of these results is 0.1 eV (0.01
eV for Be,), based on their convergence as a function of the
number of mesh points used in the calculations. Also in Ta-
ble I, we compare the LDA bond energies with experiment.

It is clear that the LDA results tend to overestimate the
exact bond energies by as much as several electron volts in
the worst cases. For the 15 molecules in the table, the rms
deviation from experiment is 1.2 eV, certainly very much
larger than we would like. In the following sections, there-
fore, we examine the effect on these dissociation energies of
nonlocal correction terms to the local density approxima-
tion.

IV. LANGRETH-MEHL BOND ENERGIES

A comprehensive study by Langreth, Perdew, and Mehl
of nonlocal corrections to the LDA in inhomogeneous sys-
tems has culminated recently in the work of Langreth and
Mehl (see Ref. 8 and references therein). These authors
have deduced a gradient-type correction term for the LDA
exchange-correlation energy which offers substantial im-
provements over the LDA in applications to various atomic

TABLE 1. Dissociation energies (V).

Expt* LDA® LM® SE¢
H, 4.8 49 5.0 5.1
Li, 1.1 1.0 0.6 1.0
B, 3.0 39 33 2.6
c 63 7.3 6.1 5.5
N, 9.9 11.6 102 10.1
0, 52 7.6 6.4 5.4
F, 1.7 3.4 2.4 1.7
Na, 0.8 0.9 0.3 0.9
Al, 1.8 2.0 1.7 1.1
Si, 3.1 40 35 31
P, 5.1 6.2 5.3 49
S, 4.4 5.9 5.2 42
cl, 2.5 3.6 3.0 2.1
Cr, 1.6 3.0 0.9 1.7
Be, 0.10 0.56 0.36 0.17

2 Reference 26, Ref. 27 for Cr,, Ref. 28 for Be,.
® LDA.: local density approximation.

¢LM: Langreth~Mehl.

4SE: present semiempirical approximation.
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and solid-state problems. For a non-spin-polarized system,
the Langreth-Meh! (LM) exchange-correlation energy is

given by
2
(VP) .(e—F_ L)d3l', 9
P 18

EM=ER*RPA) +a

4/3

where

F=51% (10)
L

and “a@” and “b » are constants to be specified later. The LDA
term is necessarily expressed in the random phase approxi-
mation for which we use the RPA parametrization of Vosko,
Wilk, and Nusair.'°

Of course, a spin-polarized version of the LM theory is
required for the calculation of molecular bond energies. The
necessary spin-dependent generalization has very recently
been provided by Hu and Langreth,'® and appears as fol-
lows:

LM __ LDA P 3
ExE =Exc*(RPA) + 4 P

5/31—-172 2
()]

p

7 [ (Vp1)? | (Vpl)?
- _1? pT4/3 pl4/3 d’r, (an

where

F=B_|ZP_| (12)

776
P

and the constants A and B are given by

T

B = (9m) V. (14)

The parameter f'in the last equation is discussed at length in
the papers of Langreth and Mehl,®' and in these calcula-
tions we use their theoretical estimate f = 1/6.

The dissociation energies of our 15 test molecules have
been recalculated using the spin-dependent LM exchange-
correlation functional (11) and the results are presented in
the third column of Table I. We consider these to be prelimi-
nary values, as they have been calculated using LDA orbi-
tals. Previous experience with gradient-corrected potentials
indicates that this approximation has a negligible effect on
the resulting bond energies (less than 0.1 eV). At any rate,
calculations utilizing the full nonlocal exchange-correlation
potential will be undertaken at a future time.

We see that the LM bond energies agree significantly
better with experiment than do the LDA results. The rms
deviation is only 0.5 eV, compared to 1.2 eV for the LDA.
Roughly speaking, then, the Langreth—Mehl nonlocal cor-
rection removes about one-half of the discrepancy with ex-
periment. Nevertheless, 0.5 eV is still a rather large error and
further refinements of the theory are clearly necessary.

However, given the complexity of the theory of nonlocal
exchange-correlation approximations, we suggest that a se-
miempirical approach to the problem might provide useful
information. We develop such an approach in the following
sections.

TABLE II. Atomic exchange energies (a.u.).

Exact LDA* XoBy”

H -0.313 —0.268 —0.310
He — 1.026 - 0.884 — 1.027
Li —1.781 - 1.538 — 1.780
Be — 2.667 —2.312 — 2.669
B —3.744 —3272 —3.744
C — 5.045 —4.459 - 5.050
N — 6.596 - 5.893 — 6.608
(o} —8.174 - 7.342 — 8.192
F —10.00 —9.052 — 10.04
Ne —-12.11 —11.03 —12.16
Na — 14.02 - 12,79 — 14.06
Mg —15.99 — 14.61 —16.03
Al — 18.07 —16.53 —18.10
Si - 20.28 — 18.59 - 20.30
P —22.64 —20.79 —22.65
S —25.00 —23.00 - 25.01
Cl - 21751 —25.35 —27.52
Ar —30.19 —27.86 —30.18
Kr —93.89 — 88.62 —93.82
Xe - 179.2 - 170.6 —178.9

*Equation (15).
bEquation (20), with @ = 2/3, 8 = 0.0036, and ¥ = 0.004.

V. ATOMIC EXCHANGE AND CORRELATION
ENERGIES

In this section, we analyze separately the exchange and
correlation energy components of typical atomic systems.
The reason for this will be evident by the end of the section.
For an excellent discussion of the meaning of exchange and
correlation energy components in the context of density
functional theory, the reader is referred to the article of Lan-
greth and Mehl?, and references therein.

In Tables II and II1, the ground state exchange and cor-
relation energies, respectively, of some typical atomic sys-
tems are tabulated. The exchange energies are computed us-

TABLE III. Atomic correlation energies (a.u.).

Exact® LDA® Stoll®
H 0.0 —0.022 0.0
He —0.042 —0.113 —0.059
Li —0.045 —0.151 —0.072
Be —0.094 —0.225 —0.116
B —0.124 —0.291 —0.148
C —0.155 —0.360 —-0.177
N —0.186 —0.430 —0.204
(o) - 0.254 —0.539 —0.272
F —0.316 —0.644 -0.331
Ne - 0.381 —0.746 —0.386
Na —0.386 — 0.805 —0.410
Mg —0.428 —0.892 —0.461
Al —0.459 — 0.966 —0.497
Si —0.494 —1.042 —0.530
P —0.521 —1.119 —0.562
S —0.595 —1.227 —0.627
Cl —0.667 —1.330 - 0.685
Ar —0.732 — 1431 - 0.738

2 Reference 16 (without radiative corrections).
® Equation (16).
°Equation (17).
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ing the Hartree-Fock orbitals of Clementi and Roetti,'* and
the correlation energies are taken from the work of Veillard
and Clementi'® (without radiative corrections). Also, we
show the corresponding exchange and correlation energy
components calculated in the local density approximation:

3 3 1/3
EPh = _Y(F) J(pr“’3+pl‘”3)d3f» (15)

EEDA=Jpec (ptypl)d’r, (16)
where €. is the correlation energy per particle of a uniform
electron gas for which we employ, as usual, the VWN para-
metrization!® (in this case, the parametrization of Ceperley
and Alder data®). The Hartree—Fock densities of Clementi
and Roetti'® are also used for the LDA calculations.

Notice that the LDA typically underestimates atomic
exchange energies by something in the order of 109%, and
overestimates atomic correlation energies by a factor of
roughly 2. This latter discrepancy is rather alarming, but
insightful interpretations of the problem have been offered
by Langreth and Mehl® and by Stoll ez al.!”'® We believe that
the LM and the Stoll interpretations are essentially equiva-
lent, the former being based on momentum-space arguments
and the latter on a coordinate-space point of view. We shall
pursue the Stoll interpretation here, however, because it re-
tains the simplicity of the local density approximation.

Stoll argues that in finite systems such as atoms and
molecules the correlation energy of the like-spin electron
pairs is very small compared to the correlation energy of the
opposite-spin pairs. This is not the case in a homogeneous
system, where the like-spin components account for about
one-half of the total correlation energy. In finite systems,
therefore, the usual LDA functional must be corrected by
explicitly subtracting out the like-spin correlation energy
components:

E%‘ou = EIéDA _ prGC (pf’o)d3r

—fplec(Opl)d3r. (17)
In the last column of Table III we show that this opposite-
spins-only functional does, in fact, give atomic correlation
energies in very good agreement with the exact values. The
original factor of 2 discrepancy has certainly been eliminat-
ed. Although there are many other approaches to the prob-
lem of correlation energy approximations in the literature,
we will not consider them here. A good review of the subject
has been provided by Stoll and Savin.'?

Notice that, if we use Stoll’s approximation, then the
absolute errors in the atomic correlation energies of Table
IIT are very much smaller than the absolute errors in the
LDA exchange energies of Table II, by at least an order of
magnitude. For the time being, then, we shall ignore nonlo-
cal correlation energy corrections and concentrate entirely
on nonlocal corrections for the exchange energy. The situa-
tion is rather fortunate, because exchange energy has a tri-
vial ¢ dependence (i.e., simply proportional to €%, where e is
the electronic charge) and also a trivial spin dependence.
Consequently, exchange energy functionals can be studied

4527

empirically, using dimensional analysis as a guide in choos-
ing appropriate functional forms. On the other hand, purely
empirical studies of correlation energy are not possible.

VI. SEMIEMPIRICAL GRADIENT-CORRECTED
EXCHANGE ENERGY FUNCTIONALS

Empirical studies of approximate exchange energy
functionals have a history beginning with the well known X
approximation of Slater (see Ref. 20 for a good review):

9 173
EXa=‘T"( ) f (p1*? +p1**)d%.  (18)

The form of this functional is fixed by dimensional analysis
alone, and a is a parameter empirically chosen to give agree-
ment with exact atomic exchange energies. Its value is in the
range 0.7-0.8 for typical atomic systems, and is exactly
a = 2/3 for the uniform electron gas. The Xa approxima-
tion has been extremely useful in applications to numerous
atomic, molecular, and solid-state problems. Nevertheless,
the parameter « has a strong Z dependence, and this is an
undesirable aspect of the theory.

In an attempt to improve on the Xa approximation,
Herman et al.2"? introduced on the basis of dimensional
arguments a gradient-corrected exchange energy functional
of the form

2 2
Exop = Ex, — BH (V’f,a) + (Vf:‘,z ]d r, (19)

where £ is a new parameter, and the value of a is fixed at
a = 2/3 in order to obtain the proper homogeneous gas lim-
it. The empirical value for 8 is typically in the order of 0.003
in atomic systems.?

The gradient correction term of the Xaf functional was
derived, at about the same time, by Sham?* on the basis of
density functional theory, and more recently by several oth-
er authors as well (see Ref. 25 and references therein). Un-
fortunately, the density functional value of Bis less than one-
half the empirical atomic value, and this discrepancy has
troubled the Xaf theory for many years. Langreth and
Mehl, however, have recently explained the origin of this
discrepancy® and we are therefore confident that the empiri-
cal atomic B is meaningful.

Unfortunately, the Xaf8 exchange potential [i.e., the
functional derivative of expression (19)] diverges asymp-
totically in the exponential tails of atomic and molecular
charge distributions,?*? as does the Langreth-Mehl poten-
tial.® Therefore, it is necessary in atomic and molecular ap-
plications to cut off the Xaf3 and the LM potentials in some
appropriate manner. Divergences occur at nuclear cusps
also, but these are not a serious problem.

A further difficulty with the Xaf approximation is its
lack of universality. Just as the o parameter of the Xa func-
tional has a strong Z dependence, the 8 parameter of the
Xapf functional is also strongly Z dependent. In order to
illustrate this, we present in Table IV empirical B parameters
for some typical atomic systems (i.e., the value of 8 which,
for a given atom, gives perfect agreement between Ey g,
with @ = 2/3, and the exact exchange energy). These em-
pirical B’s show a strong Z dependence, ranging from
0.0022 for light atoms to something in the order of 0.0035 for
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TABLE 1V. Empirical 8 parameters (a.u.).

Xaf® Xapy®
H 0.0023 0.0038
He 0.0022 0.0036
Li 0.0023 0.0036
Be 0.0025 0.0036
B 0.0026 0.0036
C 0.0026 0.0036
N 0.0026 0.0035
(o] 0.0027 0.0035
F 0.0027 0.0035
Ne 0.0027 0.0034
Na 0.0028 0.0035
Mg 0.0029 0.0035
Al 0.0030 0.0035
Si 0.0030 0.0036
P 0.0030 0.0036
S 0.0030 0.0036
Cl 0.0030 0.0036
Ar 0.0031 0.0036
Kr 0.0033 0.0036
Xe 0.0034 0.0037

*Equation (19), witha = 2/3.
*Equation (20), with @ = 2/3 and y = 0.004.

very heavy atoms. Clearly, the Xaf approximation is no
more universal than the Xa approximation.

Regarding the first of these difficulties, we feel that the
asymptotic divergence problem is more than just a numeri-
cal inconvenience. It is a fundamental failure of the theory.
One can imagine slightly pathological density distributions
(step functions, for example) for which the Xaf3 exchange
energy itself, let alone its functional derivative, will diverge.
Obviously, the gradient correction term must be suitably cut
offin cases where the density gradient becomes too large. We
are therefore motivated to introduce the following modified
gradient-corrected exchange energy functional:

(Vpt)? (Vp1)? 11
EXaBr_’ Xa _'BJ’ 4/3 [l+yp_f8/—3)_]

2
(Vpl) [ 4y

4/3

(Vpi)?*

-1
ls/a ] (200

where a = 2/3, and we now have two parameters 2 and .
This functional contains the Xaf expression as a special case
(i.e., ¥ = 0 or density gradients very small) but assumes a
p*? integrand in the case of large 7, large density gradients,
or in the exponential tails of atomic and molecular charge
distributions. Hence, this XaBy functional is divergence
free. In our opinion, this is the simplest conceivable dimen-
sionally consistent expression having all of these desirable
properties.

The parameters S and y have been empirically deter-
mined by a least squares fit to the Hartree—Fock exchange
energies of the 20 atomic systems H through Ar, Kr, and Xe
(using the Hartree~Fock orbitals and densities of Clementi
and Roetti'®). We find that a suitable value for parameter
is 0.004, with a corresponding best-fit 3 of 0.0036. It hap-
pens that the least squares error of this fit is surprisingly
small. In fact, the XaBy functional fits the exact atomic ex-
change energies almost an order of magnitude better than

A. D. Becke: Molecular bond energies

does the XafB functional, and we feel that this is a very signifi-
cant improvement.

In order to demonstrate the quality of the Xafy fit, we
present in Table IV the associated empirical 8’s, defined in
the usual manner, for a = 2/3 and y = 0.004. It is obvious
that the empirical 3 is virtually independent of Z. In other
words, the XafBy functional is not only divergence free,
but is also universal (at least in finite systems). These
results strongly support the functional form introduced in
expression (20).

Vil. SEMIEMPIRICAL BOND ENERGIES

In the last column of Table II, atomic Xafy exchange
energies are presented and compared with the exact results.
Notice that, in absolute terms, the error in the Xafy ex-
change energy is of the same order as the error in the Stoll
correlation energy approximation (see Table IIT). This is a
logical stage, then, at which to pause and recalculate our
dissociation energies.

Let us consider the following exchange-correlation ap-
proximation:

ESE =Exep, + ES en

Since the parameters of the Xafy exchange functional have
been determined empirically, we shall call this a semiempiri-
cal (SE) exchange-correlation approximation. A third set of
molecular bond energies have been calculated using this SE
approximation and the results are presented in the last col-
umn of Table 1. As with our LM calculation, we have used
LDA orbitals to compute the new bond energies, but this is
not expected to affect our results by more than 0.1 eV or so.

The agreement between the SE bond energies and exper-
iment for our entire range of dimers is very good, typically in
the order of a few tenths of an electron volt. The rms devi-
ation from the experimental values is only 0.3 eV, compared
to 0.5 eV for the LM theory and 1.2 eV for the LDA. The
improvement in the semiempirical bond energies over the
LDA and even the LM results is substantial.

VIil. CONCLUSIONS

Several important conclusions can be drawn as a result
of these calculations. First of all, it appears that nonlocal
exchange-correlation corrections of the gradient-type are
very useful in calculating molecular bond energies, though
much more work is required on their theoretical aspects. In
particular, refinements of the Langreth-Mehl theory® would
be welcome, not only in its spin dependence, but also in its
basic functional form. The present work indicates that spe-
cial emphasis on the exchange part of the total exchange-
correlation energy is essential and that the large-gradient
behavior of existing density functionals must be carefully
considered.

These calculations also demonstrate the value of a se-
miempirical approach to the density functional theory of
molecular binding energies. Our philosophy is quite simple:
use atomic systems to help us find (empirically or other-
wise) universal exchange-correlation parameters, and then
apply these without further adjustment to the calculation of
molecular properties. This approach has produced in the
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present work an exchange-correlation approximation which
gives excellent dissociation energies. Our results are very en-
couraging, as severe overbinding of molecular systems is
currently an outstanding problem in density functional the-
ory.

We are now attempting to implement the full gradient-
corrected LM and SE potentials in our 2D numerical code.
This is not an easy task, however, as the numerical computa-
tion of the necessary higher-order derivatives is extremely
difficult. When this has been accomplished, we shall under-
take bond length and vibrational frequency calculations for
the molecules of the present study. Results will be published
as soon as possible.
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