
Chapter 26

Gravitational Waves and

Experimental Tests of General

Relativity

Version 0426.1.pdf, 18 May 2005.
Please send comments, suggestions, and errata via email to kip@tapir.caltech.edu or on paper
to Kip Thorne, 130-33 Caltech, Pasadena CA 91125

26.1 Introduction

In 1915, when Einstein formulated general relativity, human technology was incapable of
providing definitive experimental tests of his theory. Only a half century later did technology
begin to catch up. In the remaining 35 years of the century, experiments improved from
accuracies of a few tens of per cent to a part in 1000 or even 10,000; and general relativity
passed the tests with flying colors. In Sec. 26.2 we shall describe some of these tests, derive
general relativity’s predictions for them, and discuss the experimental results.

In the early twenty-first century, observations of gravitational waves will radically change
the character of research on general relativity. They will produce, for the first time, tests of
general relativity in strong-gravity situations. They will permit us to study relativistic effects
in neutron-star and black-hole binaries with exquisite accuracies. They will enable us to map
the spacetime geometries of black holes with high precision, and study observationally the
large-amplitude, highly nonlinear vibrations of curved spacetime that occur when two black
holes collide and merge. And (as we shall see in Chap. 27), they may enable us to probe
the singularity in which the universe was born and the universe’s evolution in its first tiny
fraction of a second.

In this chapter we shall develop the theory of gravitational waves in much detail and
shall describe the efforts to detect the waves and the sources that may be seen. More specif-
ically, in Sec. 26.3 we shall develop the mathematical description of gravitational waves,
both classically and quantum mechanically (in the language of gravitons), and shall study
their propagation through flat spacetime and also, via the tools of geometric optics, through
curved spacetime. Then in Sec. 26.4 we shall develop the simplest approximate method for
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computing the generation of gravitational waves, the “quadrupole-moment formalism”; and
we shall describe and present a few details of other, more sophisticated and accurate meth-
ods based on multipolar expansions, post-Newtonian techniques, and numerical simulations
on supercomputers (“numerical relativity”). In Sec. 26.5, we shall turn to gravitational-
wave detection, focusing especially on detectors such as LIGO and LISA that rely on laser
interferometry.

26.2 Experimental Tests of General Relativity

In this section we shall describe briefly some of the most important experimental tests of
general relativity. For greater detail, see Will (1993, 2001, 2005)

26.2.1 Equivalence Principle, Gravitational redshift, and Global

Positioning System

A key aspect of the equivalence principle is the prediction that all objects, whose size is
extremely small compared to the radius of curvature of spacetime and on which no non-
gravitational forces act, should move on geodesics. This means, in particular, that their
trajectories through spacetime should be independent of their chemical composition. This is
called the weak equivalence principle or the universality of free fall. Efforts to test the univer-
sality of free fall date back to Galileo’s (perhaps apocryphal) experiment of dropping objects
from the leaning tower of Pisa. In the twentieth century a sequence of ever-improving exper-
iments led by Roland von Eötvös (1920), Robert Dicke (1964), Vladimir Braginsky (1972),
and Eric Adelberger (1994) have led to an accuracy ∆a/a < 5 × 10−13 for the difference of
gravitational acceleration toward the Sun for earth-bound bodies with very different chem-
ical composition. A proposed space experiment called STEP has the prospect to increase
this accuracy to the phenomenal level of ∆a/a . 1 × 10−18.

General relativity predicts that bodies with significant self gravity (even black holes)
should also fall, in a nearly homogeneous external gravitational field, with the same accel-
eration as a body with negligible self gravity. This prediction has been tested by comparing
the gravitational accelerations of the Earth and Moon toward the Sun. Their fractional
difference of acceleration [as determined by tracking the relative motions of the Moon and
Earth using laser beams fired from Earth, reflected off mirrors that astronauts and cosmo-
nauts have placed on the moon, and received back at earth] has been measured by the LURE
Project to be ∆a/a . 3 × 10−13. Since the Earth and Moon have (gravitational potential
energy)/(rest-mass energy) ' −5 × 10−10 and ' −2 × 10−10 respectively, this verifies that
gravitational energy falls with the same acceleration as other forms of energy to within about
a part in 1000. For references and for discussions of a variety of other tests of the Equivalence
Principle, see Will (1993, 2001, 2005).

From the equivalence principle, one can deduce that, for an emitter and absorber at rest
in a Newtonian gravitational field Φ, light (or other electromagnetic waves) must be gravi-
tationally redshifted by an amount ∆λ/λ = ∆Φ, where ∆Φ is the difference in Newtonian
potential between the locations of the emitter and receiver. (See Ex. 25.5 for a general



3

relativistic derivation when the field is that of a nonspinning, spherical central body with
the emitter on the body’s surface and the receiver far from the body.) Relativistic effects
will produce a correction to this shift with magnitude ∼ (∆Φ)2 [cf. Eq. (25.54)], but for
experiments performed in the solar system, the currently available precision is too poor to
see this correction; so such experiments test the equivalence principle and not the details of
general relativity.

The highest precision test of this gravitational redshift thus far was NASA’s 1976 Gravity-
Probe-B Project (led by Robert Vessot), in which several atomic clocks were flown to a height
of about 10,000 km above the earth, and were compared with atomic clocks on the earth via
radio signals transmitted downward. After correcting for special relativistic effects due to
the relative motions of the rocket’s clocks and the earth clocks, the measured gravitational
redshift agreed with the prediction to within the experimental accuracy of about 2 parts in
10,000.

The Global Positioning System (GPS), by which one can determine one’s location on
Earth to within an accuracy of about 10 meters, is based on signals transmitted from a set
of earth-orbiting satellites. Each satellite’s position is encoded on its transmitted signals,
together with the time of transmission as measured by atomic clocks onboard the satellite. A
person’s GPS receiver contains a high-accuracy clock and a computer. It measures the signal
arrival time and compares with the encoded transmission time to determine the distance from
satellite to receiver; and it uses that distance, for several satellites, together with the encoded
satellite positions, to determine (by triangulation) the receiver’s location on earth.

The transmission times encoded on the signals are corrected for the gravitational redshift
before transmission. Without this redshift correction, the satellite clocks would quickly get
out of synchronization with all the clocks on the ground, thereby eroding the GPS accuracy;
see Ex. 26.1. Thus, a good understanding of general relativity was crucial to the design of
the GPS!1

26.2.2 Perihelion advance of Mercury

It was known at the end of the 19’th century that the point in Mercury’s orbit closest to the
Sun, known as its perihelion, advances at a rate of about 575′′ per century with respect to
the fixed stars, of which about 532′′ can be accounted for by Newtonian perturbations of the
other planets. The remaining ∼ 43′′ per century was a mystery until Einstein showed that
it can be accounted for quantitatively by the general theory of relativity.

More specifically (as is demonstrated in Ex. 26.2), if we idealize the Sun as nonrotating
and spherical so its external gravitational field is Schwarzschild, and we ignore the presence
of the other planets, and we note that the radius of Mercury’s orbit is very large compared
to the Sun’s mass (in geometrized units), then Mercury’s orbit will be very nearly an ellipse;
and the ellipse’s perihelion will advance, from one orbit to the next, by an angle

∆φ = 6πM/p+ O(M 2/p2) radians. (26.1)

Here M is the Sun’s mass and p is the ellipse’s semi latus rectum, which is related to its
semimajor axis a (half its major diameter) and its eccentricity e by p = a(1 − e2). For the

1For further details of the GPS see http://www.BeyondDiscovery.org
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parameters of Mercury’s orbit (M = M� ' 1.4766 km, a = 5.79089×107 km, e = 0.205628),
this advance is 0.10352′′ per orbit. Since the orbital period is 0.24085 Earth years, this shift
corresponds to 42.98 arc seconds per century.

Although the Sun is not precisely spherical, its tiny gravitational oblateness (as inferred
from measurements of its spectrum of pulsations; Fig. 15.2) has been shown to contribute
negligibly to this perihelion shift; and the frame dragging due to the Sun’s rotational angular
momentum is also (sadly!) negligible compared to the experimental accuracy; so 42.98′′ per
century would be the shift if the Sun and Mercury were the only objects in the solar system.
The gravitational fields of the other planets, however, tug on Mercury’s orbit, producing—
according to Newtonian theory—the large additional shift of about 532′′ per century. The
weakness of gravity in the solar system guarantees that relativistic corrections to this ad-
ditional shift are negligible, and that this shift can be added linearly to the Schwarzschild
prediction of 42.98′′, to within the accuracy of the measurements. When this is done and
comparison is made with experiment, the 42.98′′ prediction agrees with the observations to
within the data’s accuracy of about 1 part in 1000.

26.2.3 Gravitational deflection of light, Fermat’s Principle and

Gravitational Lenses

Einstein not only explained the anomalous perihelion shift of Mercury. He also predicted
[Ex. 26.3] that the null rays along which starlight propagates will be deflected, when passing
through the curved spacetime near the Sun, by an angle

∆φ = 4M/b+ O(M 2/b2) , (26.2)

relative to their trajectories if spacetime were flat. Here M is the Sun’s mass and b is the ray’s
impact parameter (distance of closest approach to the Sun’s center). For comparison, theo-
ries that incorporated a Newtonian-like gravitational field into special relativity (Sec. 24.1)
predicted half this deflection. The deflection was measured to an accuracy ∼ 20 per cent cent
during the 1919 solar eclipse and agreed with general relativity rather than the competing
theories—a triumph that helped make Einstein world famous. Modern experiments, based
on the deflection of radio waves from distant quasars, as measured using Very Long Baseline
Interferometry (interfering the waves arriving at radio telescopes with transcontinental or
transworld separations; Sec. 8.3), have achieved accuracies of about 1 part in 10,000, and
they agree completely with general relativity. Similar accuracies are now achievable using
optical interferometers in space, and may soon be achievable via optical interferometry on
the ground.

These accuracies are so great that, when astronomers make maps of the sky using either
radio interferometers or optical interferometers, they must now correct for gravitational
deflection of the rays not only when the rays pass near the sun, but for rays coming in from
nearly all directions. This correction is not quite as easy as Eq. (26.2) suggests, since that
equation if valid only when the telescope is much farther from the Sun than the impact
parameter. In the more general case, the correction is more complicated, and must include
aberration due to the telescope motion as well as the effects of spacetime curvature.
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As we discussed in Sec. 6.6, the gravitational deflection of light rays (or radio rays)
passing through or near a cluster of galaxies can produce a spectacular array of distorted
images of the light source. In Chap. 6 we deduced the details of this gravitational lens effect
using a model in which we treated spacetime as flat, but endowed with a refractive index
n(x) = 1−2Φ(x), where Φ(x) is the Newtonian gravitational potential of the lensing system.
This model can also be used to compute light deflection in the solar system. We shall now
derive this model from general relativity:

The foundation for this model is the following general relativistic version of Fermat’s
Principle [see Eq. (6.42) for the Newtonian version]: Consider any static spacetime geometry,
i.e. one for which one can introduce a coordinate system in which ∂gαβ/∂t = 0 and gjt = 0;
so the only nonzero metric coefficients are g00(x

j) and g0i(x
j). In such a spacetime the

time coordinate t is very special, since it is tied to the spacetime’s temporal symmetry. An
example is Schwarzschild spacetime and the Schwarzschild time coordinate t. Now, consider
a light ray emitted from a spatial point xj = aj in the static spacetime and received at a
spatial point xj = bj. Assuming the spatial path along which the ray travels is xj(η) where
η is any parameter with xj(0) = aj, xj(1) = bj, then the total coordinate time ∆t required
for the light’s trip from aj to bj (as computed from the fact that the ray must be null so
ds2 = g00dt

2 + gijdx
idxj = 0) is

∆t =

∫ 1

0

√

γjk
dxj

dη

dxk

dη
dη , where γjk ≡

gjk
−g00

. (26.3)

Fermat’s principle says that the actual spatial trajectory of the light path is the one that
extremizes this coordinate time lapse.

To prove this version of Fermat’s principle, notice that the action (26.3) is the same as
that [Eq. (24.30)] for a geodesic in a 3-dimensional space with metric γjk and with t playing
the role of proper distance traveled. Therefore, the Euler-Lagrange equation for Fermat’s
action principle δ∆t = 0 is the geodesic equation in that space [Eq. (24.26)] with t the affine
parameter, which [using Eq. (23.37) for the connection coefficients] can be written in the
form

γjk
d2xk

dt2
+

1

2
(γjk,l + γjl,k − γkl,j)

dxk

dt

dxj

dt
= 0 . (26.4)

Next, take the geodesic equation (24.26) for the light ray in the real spacetime, with spacetime
affine parameter ζ, and change parameters to t, thereby obtaining

gjk
d2xk

dt2
+ Γjkl

dxk

dt

dxl

dt
− Γj00

gkl
g00

dxk

dt

dxl

dt
+

d2tdζ2

(dt/dζ)2
gjk

dxk

dt
= 0 ,

d2t/dζ2

(dt/dζ)2
+ 2Γ0k0

dxk/dt

g00
= 0 . (26.5)

Insert the second of these equations into the first and write the connection coefficients in
terms of derivatives of the spacetime metric. Then with a little algebra you can bring
the result into the form (26.4) of the Fermat-principle Euler equation. Therefore, the null
geodesics of spacetime, when viewed as trajectories through the 3-space of constant t, are
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precisely the Fermat-principle paths, i.e. geodesics in a 3-space with metric γjk and proper-
distance affine parameter t. QED

The index-of-refraction formalism used to study gravitational lenses in Chap. 6 is easily
deduced as a special case of this Fermat Principle: In a nearly Newtonian situation, the
linearized-theory, Lorentz-gauge, trace-reversed metric perturbation has the form (24.107)
with only the time-time component being significantly large: h̄00 = −4Φ, h̄0j ' 0, h̄jk ' 0.
Correspondingly, the metric perturbation [obtained by inverting Eq. (24.101)] is h00 = −2Φ,
hjk = −δjkΦ, and the full spacetime metric gµν = ηµν + hµν is

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)δjkdx
jdxk . (26.6)

This is the standard spacetime metric (24.95) in the Newtonian limit, with a special choice of
spatial coordinates, those of linearized-theory Lorentz gauge. The Newtonian limit includes
the slow-motion constraint that time derivatives of the metric are small compared to spatial
derivatives [Eq. (24.88)], so on the timescale for light to travel through a lensing system, the
Newtonian potential can be regarded as static, Φ = Φ(xj). Therefore the Newtonian-limit
metric (26.6) is static, and the coordinate time lapse along a trajectory between two spatial
points, Eq. (26.3), reduces to

∆t =

∫ 1

0

(1 − 2Φ)d` , (26.7)

where d` =
√

δjkdxjdxk is distance traveled treating the coordinates as though they were
Cartesian, in flat space. This is precisely the action for the Newtonian version of Fermat’s
Principle, Eq. (6.42), with index of refraction

n(xj) = 1 − 2Φ(xj) . (26.8)

Therefore, the spatial trajectories of the light rays can be computed via the Newtonian
Fermat Principle, with the index of refraction (26.8). QED

Although this index-of-refraction model involves treating a special (Lorentz-gauge) co-
ordinate system as though the spatial coordinates were Cartesian and space were flat (so
d`2 = δjkdx

jdxk)— which does not correspond to reality—, nevertheless, this model predicts
the correct gravitational lens images. The reason is that it predicts the correct rays through
the Lorentz-gauge coordinates, and when the light reaches Earth, the cumulative lensing
has become so great that the fact that the coordinates here are slightly different from truly
Cartesian has negligible influence on the images one sees.

26.2.4 Shapiro time delay

In 1964 Irwin Shapiro proposed a new experiment to test general relativity: Monitor the
round-trip travel time for radio waves transmitted from earth and bounced off Venus or some
other planet, or transponded by a spacecraft. As the line-of-sight between the Earth and
the planet or spacecraft gradually moves nearer then farther from the Sun, the waves’ rays
will pass through regions of greater or smaller spacetime curvature, and this will influence
the round-trip travel time by greater or smaller amounts. From the time evolution of the
round-trip time, one can deduce the changing influence of the Sun’s spacetime curvature.
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One can compute the round-trip travel time with the aid of Fermat’s Principle. The
round-trip proper time, as measured on Earth (neglecting, for simplicity, the Earth’s orbital
motion; i.e., pretending the Earth is at rest relative to the Sun while the light goes out and
back) is ∆τ⊕ =

√

1 − 2M/r⊕ ∆t ' (1 −M/r⊕)∆t, where M is the Sun’s mass, r⊕ is the
Earth’s distance from the Sun’s center, ∆t is the round-trip coordinate time in the static
solar-system coordinates, and we have used g00 = 1 − 2M/r⊕. Because ∆t obeys Fermat’s
Principle, it is stationary under small perturbations of the the light’s spatial trajectory. This
allows us to compute it using a straight-line trajectory through the spatial coordinate system.
Letting b be the impact parameter (the ray’s closest coordinate distance to the Sun) and
x be coordinate distance along the straight-line trajectory and neglecting the gravitational
fields of the planets, we have Φ = −M/

√
x2 + b2, so the coordinate time lapse out and back

is

∆t = 2

∫

√
r2
refl

−b2

−
√
r2
⊕
−b2

(

1 +
2M√
x2 + b2

)

dx . (26.9)

Here rrefl is the radius of the location at which the light gets reflected (or transponded) back
to Earth. Performing the integral and multiplying by

√
g00 ' 1 −M/r⊕, we obtain for the

round-trip travel time measured on Earth

∆τ⊕ = 2 (a⊕ + arefl)

(

1 − M

r⊕

)

+ 4M ln

[

(a⊕ + r⊕)(arefl + rrefl)

b2

]

, (26.10)

where a⊕ =
√

r2
⊕ − b2 and arefl =

√

r2
⊕ − b2.

As the Earth and the reflecting planet or transponding spacecraft move along their orbits,
only one term in this round-trip time varies sharply: the term

4M ln(1/b2) = 8M ln b ' 40µs(b/R�) . (26.11)

When the planet or spacecraft passes nearly behind the Sun, as seen from Earth, b plunges
to a minimum (on a timescale of hours or days) then rises back up, and correspondingly
the time delay shows a sharp blip. By comparing the observed blip with the theory in a
measurement with the Cassini spacecraft, this Shapiro time delay has been verified to the
remarkable precision of about 1 part in 100,000 (Bertotti, Iess and Tortora 2003).

26.2.5 Frame dragging and Gravity Probe B

As we have discussed in Secs. 24.9.3 and 25.5, the rotational angular momentum J of a
gravitating body places its imprint on the body’s asymptotic spacetime metric:

ds2 = −
(

1 − 2M

r

)

dt2 − 4εjkmJ
kxm

r3
dtdxj +

(

1 +
2M

r

)

δjkdx
jdxk . (26.12)

Here, for definiteness, we are using Lorentz gauge, and M is the body’s mass; cf. Eq. (24.112).
The angular-momentum term drags inertial frames into rotation about the body (Sec. 25.2).
One manifestation of this frame dragging is a precession of inertial-guidance gyroscopes near
the body. Far from the body, a gyroscope’s spin axis will remain fixed relative to distant
galaxies and quasars, but near the body it will precess.
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It is easy to deduce the precession in the simple case of a gyroscope whose center of mass
is at rest in the coordinate system of Eq. (26.12), i.e. at rest relative to the body. The

transport law for the gyroscope’s spin is ∇~u
~S = ~u(~a · ~S) [Eq. (23.90) boosted from special

relativity to general relativity via the equivalence principle]. Here ~u is the gyroscope’s 4-
velocity (so uj = 0, u0 = 1/

√

1 − 2M/r ' 1 + M/r ' 1) and ~a its 4-acceleration. The
spatial components of this transport law are

Sj,tu
0 ' Sj,t = −Γjk0S

ku0 ' −Γjk0S
k ' −Γjk0S

k ' 1

2
(g0k,j − g0j,k)S

k . (26.13)

Here each ' means “is equal, up to fractional corrections of order M/r”. By inserting gj0
from the line element (26.12) and performing some manipulations with Levi-Civita tensors,
we can bring Eq. (26.13) into the form

∂S

∂t
= Ωprec × S , where Ωprec =

1

r3
[−J + 3(J · n)n] . (26.14)

Here n = ehatr is the unit radial vector pointing away from the gravitating body. Equation
(26.14) says that the gyroscope’s spin angular momentum rotates (precesses) with angular
velocity Ωprec in the coordinate system (which is attached to distant inertial frames, i.e. to
the distant galaxies and quasars). This is sometimes called a “gravitomagnetic precession”
because the off-diagonal term gj0 in the metric, when thought of as a 3-vector, is −4J×n/r2,
which has the same form as the vector potential of a magnetic dipole; and the gyroscopic
precession is similar to that of a magnetized spinning body interacting with that magnetic
dipole.

In magnitude, the precessional angular velocity (26.14) in the vicinity of the Earth is
roughly one arcsec per century, so measuring it is a tough experimental challenge. A
team led by Francis Everitt has designed and constructed a set of superconducting gyro-
scopes that are currently (2005) flying in an Earth-orbiting satellite called Gravity Probe
B, with the goal of measuring this precession to a precision of about 1 part in 100 (see
http://einstein.stanford.edu/ ).

26.2.6 Binary Pulsar

Gravity in the solar system is very weak. Even at Mercury’s orbit, the gravitational potential
of the Sun is only |Φ| ∼ 3 × 10−8. Therefore, when one expands the spacetime metric in
powers of Φ, current experiments with their fractional accuracies ∼ 10−4 or worse are able
to see only the first-order terms beyond Newtonian theory; i.e. terms of first post-Newtonian
order. To move on to second post-Newtonian order, O(Φ2) beyond Newton, will require
major advances in technology, or observations of astronomical systems in which Φ is far
larger than 3 × 10−8.

Radio observations of binary pulsars (this subsection) provide one opportunity for such
observations; gravitational-wave observations of neutron-star and black-hole binaries (Sec.
26.5) provide another.

The best binary pulsar for tests of general relativity is PSR1913+16, discovered by Russell
Hulse and Joseph Taylor in 1974. This system consists of two neutron stars in a mutual
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elliptical orbit with period P ∼ 8 hr and eccentricity e ∼ 0.6. One of the stars emits pulses
at a regular rate. These are received at earth with time delays due to crossing the binary
orbit and other relativistic effects. We do not know a priori the orbital inclination or the
neutron-star masses. However, we obtain one relation between these three quantities by
analyzing the Newtonian orbit. A second relation comes from measuring the consequences
of the combined second order Doppler shift and gravitational redshift as the pulsar moves
in and out of its companion’s gravitational field. A third relation comes from measuring the
relativistic precession of the orbit’s periastron (analog of the perihelion shift of Mercury).
(The precession rate is far larger than for Mercury: about 4◦ per year!) From these three
relations one can solve for the stars’ masses and the orbital inclination, and as a check
can verify that the Shapiro time delay comes out correctly. One can then use the system’s
parameters to predict the rate of orbital inspiral due to gravitational-radiation reaction—a
phenomenon with magnitude ∼ |Φ|2.5 beyond Newton, i.e. 2.5 post-Newtonian order (Sec.
26.4.2 below). The prediction agrees with the measurements to accuracy ∼ 0.1 per cent
(Weissberg and Taylor 2004) —a major triumph for general relativity!

****************************

EXERCISES

Exercise 26.1 Practice: Gravitational Redshift for Global Positioning System
The GPS satellites are in circular orbits at a height of 18,000 km above the Earth’s surface.
If the ticking rates of the clocks on the satellites were not corrected for the gravitational
redshift, roughly how long would it take them to accumulate a time shift, relative to clocks
on the earth, large enough to degrade the GPS position accuracy by 10 meters? by 1
kilometer?

Exercise 26.2 Example: Perihelion Shift
Consider a small satellite in non-circular orbit about a spherical body with much larger
mass M , for which the external gravitational field is Schwarzschild. The satellite will follow
a timelike geodesic. Orient the Schwarzschild coordinates so the satellite’s orbit is in the
equatorial plane, θ = π/2.

(a) Because the metric coefficients are independent of t and φ, the quantities Ẽ = −pt and
L̃ = pφ must be constants of the satellite’s motion [cf. Ex. 24.4]. Show that

Ẽ =

(

1 − 2M

r

)

dt

dτ
,

L̃ = r2dφ

dτ
. (26.15)

Explain why Ẽ has the physical interpretation of the satellite’s orbital energy per unit
mass (including rest-mass energy) and why L̃ is its angular momentum per unit mass.
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(b) Introduce the coordinate u = r−1 and use the normalization of the 4-velocity to derive
the following differential equation for the orbit:

(

du

dφ

)2

=
Ẽ2

L̃2
−

(

u2 +
1

L̃2

)

(1 − 2Mu) . (26.16)

(c) Differentiate this equation with respect to φ to obtain a second order differential equa-
tion

d2u

dφ2
+ u− M

L̃2
= 3Mu2. (26.17)

By reinstating the constants G, c, and comparing with the Newtonian orbital equation,
argue that the right-hand side represents a relativistic perturbation to the Newtonian
equation of motion.

(e) Assume, henceforth in this exercise, that r �M (i.e. u� 1/M), and solve the orbital
equation (26.17) by perturbation theory. More specifically: At zero order (i.e., setting
the right side to zero), show that the Kepler ellipse

uK =

(

M

L̃2

)

(1 + e cosφ), (26.18)

is a solution. Here e (a constant of integration) is the ellipse’s eccentricity and L̃2/M
is the ellipse’s semi latus rectum. The orbit has its minimum radius at φ = 0.

(f) By substituting uK into the right hand side of the relativistic equation of motion
(26.17), show (at first-order in the relativistic perturbation) that in one orbit the angle
φ at which the satellite is closest to the mass advances by ∆φ ' 6πM 2/L̃2. (Hint: Try
to write the differential equation in the form d2u/dφ2 + (1 + ε)2u ' . . . , where ε� 1.)

(g) For the planet Mercury, the orbital period is P = 0.241 yr and the eccentricity is
e = 0.206. Deduce that the relativistic contribution to the rate of advance of the
perihelion (point of closest approach to the Sun) is 43′′ per century.

Exercise 26.3 Example: Gravitational Deflection of Light.
Repeat the previous exercise for a photon following a null geodesic.

(a) Show that the trajectory obeys the differential equation

d2u

dφ2
+ u = 3Mu2 . (26.19)

(b) Obtain the zero’th order solution by ignoring the right hand side,

u =
sinφ

b
. (26.20)

where b is an integration constant. Show that, in the asymptotically flat region far
from the body, this is just a straight line and b is the impact parameter (distance of
closest approach to the body).
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(c) Substitute this solution into the right hand side and show that the perturbed trajectory
satisfies

u =
sinφ

b
+
M

b2
(1 − cos φ)2 . (26.21)

(d) Hence show that a ray with impact parameter b � M will be deflected through an
angle

α =
4M

b
; (26.22)

cf. Eq. (6.77) and associated discussion.

****************************

26.3 Gravitational Waves and their Propagation2

26.3.1 The gravitational wave equation

Gravitational waves are ripples in the curvature of spacetime that are emitted by violent
astrophysical events, and that propagate out from their sources with the speed of light. It
was clear to Einstein and others, even before general relativity was fully formulated, that his
theory would have to predict gravitational waves; and within months after completing the
theory, Einstein (1916, 1918) worked out the basic properties of those waves.

It turns out that, after they have been emitted, gravitational waves propagate through
matter with near impunity, i.e., they propagate as though in vacuum, even when other matter
and fields are present. (For a proof and discussion see, e.g., Sec. 2.4.3 of Thorne, 1983). This
justifies simplifying our analysis to vacuum propagation. By contrast with most texts on
gravitational waves, we shall not further simplify to propagation through a spacetime that
is flat, aside from the waves, because it is almost as easy to analyze propagation through a
curved background spacetime as a flat one.

The key to the analysis is the same two-lengthscale expansion as underlies geometric
optics for any kind of wave propagating through any kind of medium (Sec. 6.3): We presume
that the waves’ reduced wavelength λ̄ (wavelength/2π) as measured in some relevant local
Lorentz frame is very short compared to the radius of curvature of spacetime R ∼ 1/

√

Rα̂β̂γ̂δ̂

and the lengthscale L on which the background curvature changes (e.g., the radius of the
Earth when the waves are near Earth):

λ̄� {R,L} (26.23)

cf. Eq. (6.16). Then the Riemann curvature tensor can be split into two pieces: The back-
ground curvature RB

αβγδ , which is the average of Riemann over a few wavelengths, plus the
waves’ curvature RGW

αβγδ , which is the remaining, oscillatory piece:

Rαβγδ = RB
αβγδ +RGW

αβγδ , RB
αβγδ ≡ 〈Rαβγδ〉 . (26.24)

2MTW, Sec. 18.2 and Chap. 35, 36, 37; Thorne (1983, 1987).
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This is the same kind of split as we used in developing the quasilinear theory of plasma
waves (Sec. 22.2.1). Similarly, we can split the spacetime metric into a sum of a smooth
background part plus a gravitational-wave perturbation, denoted hαβ

gαβ = gB
αβ + hαβ ; where gB

αβ = 〈gαβ〉 . (26.25)

Obviously, the smooth background Riemann tensor RB
αβγδ can be computed in the usual

manner from the smooth background metric gB
αβ.

Because the waves are generally very weak, we can regard their metric perturbation hαβ
and Riemann tensor RGW

αβγδ as linearized fields that live in the smooth, curved background
spacetime. When we do so, we can replace gradients (subscript “;”) based on the full physical
metric gαβ by gradients (subscript “|”) based on the background metric so, e.g., RGW

αβγδ;µ =
RGW
αβγδ|µ. This linearization implies that the waves’ Riemann tensor can be computed from

their metric perturbation via

RGW
αβγδ =

1

2
(hαδ|βγ + hβγ|αδ − hαγ|βδ − hβδ|αγ) , (26.26)

as one can see from the fact that this formula reduces to the right result, Eq. (24.96), in
a local Lorentz frame of the background metric. We shall use the waves’ Riemann tensor
RGW
αβγδ as our primary entity for describing the waves, and shall use the metric perturbation

only as a computational tool—mostly when analyzing wave generation.
Notice that the combination of indices that appears on the right side of Eq. (26.26) is

carefully designed to produce an entity with the symmetries of Riemann

Rαβγδ = −Rβαγδ , Rαβγδ = −Rαβδγ , Rαβγδ = Rγδαβ . (26.27)

[Eq. (24.52)]. This combination of indices is encountered frequently in gravitational-wave
theory, so it is useful to introduce the following short-hand notation for it:

S{αβγδ} ≡ Sαδβγ + Sβγαδ − Sαγβδ − Sβδαγ . (26.28)

In terms of this notation, expression (26.26) reads

RGW
αβγδ =

1

2
h{αβ|γδ} . (26.29)

One benefit of the two-lengthscale condition λ̄� R is the fact that the double gradient of
the gravitational waves’ Riemann tensor is far larger than the product of the waves’ Riemann
with the background Riemann

RGW
αβγδ|µν ∼

RGW
αβγδ

λ̄2 �
RGW
αβγδ

R2
∼ RGW

αβγδR
B
µνρσ . (26.30)

Since the commutator of the double gradient is a sum of products of the wave Riemann with
the background Riemann [generalization of Eq. (24.39) with pα replaced by RGW

αβγδ ], gradients
of RGW

αβγδ commute to high accuracy :

RGW
αβγδ|µν = RGW

αβγδ|νµ . (26.31)
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We shall use this fact in deriving the wave equation for RGW
αβγδ.

Our derivation of the wave equation will be based on a combination of the Riemann
curvature’s Bianchi identity

Rα
βγδ;ε +Rα

βδε;γ +Rα
βεγ;δ = 0 (26.32)

[Eq. (26.32)] and the vacuum Einstein field equation Gαβ ≡ Rαβ− 1
2
Rgαβ = 0. By contracting

the vacuum field equation on its two slots, we find that the scalar curvature R vanishes, and
by inserting this back into the vacuum field equation we find that the Ricci tensor vanishes:

Rαβ ≡ Rµ
αµβ = 0 in vacuum. (26.33)

By then contracting the Bianchi identity (26.32) on its first and fifth slots and invok-
ing (26.33) we find that the Riemann tensor is divergence-free:

Rµ
βγδ;µ = 0 in vacuum. (26.34)

The symmetries (26.27) guarantee that Riemann is divergence-free not only on its first slot,
but in fact, on each of its four slots. By next taking the divergence of the Bianchi iden-
tity (26.32) on its last slot, we obtain

Rαβγδ;µ
µ = −Rαβδµ;γ

µ − Rαβµγ;δ
µ . (26.35)

We now split this equation into its rapidly oscillating (wave) piece and its background piece,
and for the wave piece we approximate the full-spacetime gradients “;” by background-
spacetime gradients “|”, we commute the gradient indices on the right-hand side [Eq. (26.31)],
and we use the vanishing of the divergence [Eq. (26.34)] to obtain

RGW
αβγδ|µ

µ
= 0 . (26.36)

This is the wave equation for gravitational waves propagating through the curved, background
spacetime. It is a perfect analog of the vacuum wave equation Aα;µ

µ = 0 [Eq. (24.71)] for
electromagnetic waves. Both wave equations dictate that their waves propagate at the speed
of light (c = 1 in our geometrized units).

To get insight into the waves, we pick a region of spacetime far from the source, where
the wavefronts are nearly flat, and in that region we introduce a local Lorentz frame of the
background spacetime. This frame must be small compared to the background radius of
curvature R; but since λ̄ � R, the frame can still be big compared to λ̄. For example, for
waves passing near and through Earth, in the frequency band f ∼ 100 Hz of Earth-based
detectors, R is about 109 km and λ̄ is about 500 km, so the local Lorentz frame could be
given a size ∼ 105 km (∼ 10 times larger than the Earth), which is huge compared to λ̄ but
small compared to R.

In this local Lorentz frame, by virtue of Eqs. (24.28) and (26.30), the wave equation
(26.36) becomes

(

− ∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

RGW
αβγδ = 0 , (26.37)
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For simplicity, we orient the spatial axes of the local Lorentz frame so the waves propagate
in the z-direction, and we neglect the curvature of the phase fronts (i.e., we treat the waves
as planar). Then the solution to (26.37) is an arbitrary function of t− z:

RGW
αβγδ = RGW

αβγδ(t− z) . (26.38)

This shows explicitly that the waves propagate with the speed of light.

26.3.2 The waves’ two polarizations: + and ×
In this subsection we shall explore the properties of gravitational waves. Throughout the
discussion we shall confine attention to the background’s local Lorentz frame, far from the
source, in which the waves are nearly planar and have the form (26.38).

Only two of the 20 independent components of RGW
αβγδ are independent functions of t− z;

the other eighteen are determined in terms of those two by the following considerations:
(i) The Bianchi identity (26.32), when applied to the specific functional form (26.38) and
then integrated in time (with the integration constant dropped because we are studying
waves that fluctuate in time), implies

RGW
αβxy = 0 , RGW

αβxz = −RGW
αβx0 , RGW

αβyz = −RGW
αβy0 . (26.39)

(ii) This, together with Riemann’s symmetries (26.27), implies that all components can be
expressed in terms of RGW

j0k0 (which is general relativity’s analog of the Newtonian tidal tensor
Ejk). (iii) The vacuum Einstein equation (26.33) then implies that

RGW
z0z0 = RGW

z0x0 = RGW
x0z0 = RGW

z0y0 = RGW
y0z0 = 0 , (26.40)

and

RGW
x0x0 = −RGW

y0y0 ≡ − 1

2
ḧ+(t− z) , RGW

x0y0 = RGW
y0x0 ≡ − 1

2
ḧ×(t− z) . (26.41)

Here the two independent components have been expressed in terms of dimensionless func-
tions h+(t − z) and h×(t − z). The double time derivatives, denoted by double dots
(ḧ+ ≡ ∂2h+/∂t

2), are required by dimensionality: Riemann has dimensions of 1/length2

or equivalently 1/time2; so if h+ and h× are to be dimensionless, they must be differentiated
twice in (26.41). The factors of 1

2
are relics of the past history of general relativity research.

Equation (26.40) says that for a gravitational wave the space-time-space-time part of
Riemann is transverse; i.e., it has no spatial components along the propagation direction (z-
direction). This is completely analogous to the fact that the electric and magnetic fields of an
electromagnetic wave are transverse to the propagation direction. The first of Eqs. (26.41)
says that the nonvanishing, transverse-transverse part of Riemann is traceless. These two
properties are often summarized by saying that gravitational waves are “transverse and
traceless,” or “TT.”

The two independent functions h+ and h× are called the “gravitational-wave fields” for
the “+ (plus) polarization state” and for the “× (cross) polarization state.”
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We can reconstruct all the components of the waves’ Riemann tensor from these two
gravitational-wave fields as follows: First define the polarization tensors

e
+ ≡ (~ex ⊗ ~ex − ~ey ⊗ ~ey) , e

× ≡ (~ex ⊗ ~ey + ~ey ⊗ ~ex) , (26.42)

and a second-rank gravitational-wave field

hTT
αβ = h+e

+
αβ + h×e

×
αβ ; or equivalently

hTT
xx = −hTT

yy = h+ , hTT
xy = hTT

yx = h+ , all other hTT
αβ vanish. (26.43)

[The notation “TT” indicates that this field is transverse to the propagation direction (z-
direction) and traceless. The relationship between this hTT

αβ and the metric perturbation hαβ
will be explained in Sec. 26.3.7 below.] Then the waves’ Riemann tensor is

RGW
αβγδ =

1

2
hTT
{αβ|γδ} ; and in particular RGW

0j0k = −1

2
ḧTT
jk . (26.44)

We shall seek physical insight into h+ and h× by studying the following idealized problem:
Consider a cloud of test particles that floats freely in space and is static and spherical before
the waves pass. We shall study the wave-induced deformations of the cloud as viewed in the
nearest thing there is to a rigid, orthonormal coordinate system: the local Lorentz frame
(in the physical spacetime) of a “fiducial particle” that sits at the cloud’s center. In that
frame the displacement vector ξj between the fiducial particle and some other particle has
components ξj = xj+δxj, where xj is the other particle’s spatial coordinate before the waves
pass, and δxj is its coordinate displacement, as produced by the waves. By inserting this
into the local-Lorentz-frame variant of the equation of geodesic deviation, Eq. (24.42), and
neglecting the tiny δxk compared to xk on the right side, we obtain

d2δxj

dt2
= −RGW

j0k0x
k =

1

2
ḧTT
jk x

k , (26.45)

which can be integrated twice to give

δxj =
1

2
hTT
jk x

k . (26.46)

The middle expression in Eq. (26.45) is the gravitational-wave tidal acceleration that moves
the particles back and forth relative to each other. It is completely analogous to the New-
tonian tidal acceleration −Rj0k0x

k = −(∂2Φ/∂xj∂xk)xk by which the moon raises tides on
the earth’s oceans [Sec. 24.5.1].

Specialize, now, to a wave with + polarization (for which h× = 0). By inserting expression
(26.43) into (26.46), we obtain

δx =
1

2
h+x , δy = − 1

2
h+y , δz = 0 . (26.47)

This displacement is shown in Fig. 26.1(a,b). Notice that, as the gravitational-wave field h+

oscillates at the cloud’s location, the cloud is left undisturbed in the z-direction (propagation
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Fig. 26.1: Physical manifestations, in a particle’s local Lorentz frame, of h+ gravitational waves.
(a) Transverse deformation of an initially spherical cloud of test particles at a phase of the wave when
h+ > 0. (b) Deformation of the cloud when h+ < 0. (c) Field lines representing the acceleration
field which produces the cloud’s deformation, at a phase when ḧ+ > 0. (d) Acceleration field lines
when ḧ+ < 0.

direction), and in transverse planes it gets deformed into an ellipse elongated first along the
x-axis (when h+ > 0), then along the y-axis (when h+ < 0). Because Rx0x0 = −Ry0y0, i.e.,
because Rj0k0 is traceless, the ellipse is squashed along one axis by the same amount as it is
stretched along the other, i.e., the area of the ellipse is preserved during the oscillations.

The effects of the h+ polarization state can also be described in terms of the tidal accel-
eration field that it produces in the central particle’s local Lorentz frame:

d2

dt2
δx =

1

2
ḧ+(xex − yey) , (26.48)

where ḧ+ ≡ ∂2h+/∂t
2. Notice that this acceleration field is divergence free. Because it

is divergence-free, it can be represented by lines of force, analogous to electric field lines,
which point along the field and have a density of lines proportional to the magnitude of
the field; and when this is done, the field lines will never end. Figure 26.1(c,d) shows this
acceleration field at the phases of oscillation when ḧ+ is positive and when it is negative.
Notice that the field is quadrupolar in shape, with a field strength (density of lines) that
increases linearly with distance from the origin of the local Lorentz frame. The elliptical
deformations of the sphere of test particles shown in Fig. 26.1(a,b) are the responses of that
sphere to this quadrupolar acceleration field. The polarization state which produces these
accelerations and deformations is called the + state because of the orientation of the axes of
the quadrupolar acceleration field [Fig. 26.1(c,d)].

Turn, next, to the × polarization state. In this state the deformations of the initially
circular ring are described by

δx =
1

2
h×y , δy =

1

2
h×x , δz = 0 . (26.49)

These deformations, like those for the + state, are purely transverse; they are depicted in
Fig. 26.2(a,b). The acceleration field that produces these deformations is

d2

dt2
δx =

1

2
ḧ×(yex + xey) . (26.50)
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Fig. 26.2: Physical manifestations, in a particle’s local Lorentz frame, of h× gravitational waves.
(a) Deformation of an initially circular sphere of test particles at a phase of the wave when h× > 0.
(b) Deformation of the sphere when h× < 0. (c) Field lines representing the acceleration field which
produces the sphere’s deformation, at a phase of the wave when ḧ× > 0. (d) Acceleration field
lines when ḧ× < 0.

This acceleration field, like the one for the + polarization state, is divergence free and
quadrupolar; the field lines describing it are depicted in Fig. 26.2(c,d). The name “× po-
larization state” comes from the orientation of the axes of this quadrupolar acceleration
field.

In defining the gravitational-wave fields h+ and h×, we have relied on a choice of (local
Lorentz) reference frame, i.e. a choice of local Lorentz basis vectors ~eα. Exercise 26.4 explores
how these fields change when the basis is changed. The conclusions are simple: (i) When one
rotates the transverse basis vectors ~ex and ~ey through an angle ψ, then h+ and h× “rotate”
through 2ψ in the sense that:

(h+ + ih×)new = (h+ + ih×)olde
2iψ , when (~ex + i~ey)new = (~ex + i~ey)e

iψ . (26.51)

(ii) When one boosts from an old frame to a new one moving at some other speed, but
chooses the old and new spatial bases such that (a) the waves propagate in the z direction
in both frames and (b) the plane spanned by ~ex and ~κ ≡ ~e0 + ~ez =(propagation direction in
spacetime) is the same in both frames, then h+ and h× are the same in the two frames—i.e.,
they are scalars under such a boost!

26.3.3 Gravitons and their spin

Most of the above features of gravitational waves (though not expressed in this language) were
clear to Einstein in 1918. Two decades later, as part of the effort to understand quantum
fields, M. Fierz and Wolfgang Pauli (1939) at the Eidgenössische Technische Hochschule
(ETH) in Zurich, Switzerland formulated a classical theory of linear fields of arbitrary spin
so designed that the fields would be quantizable by canonical methods. Remarkably, their
canonical theory for a field of spin two is identical to general relativity with nonlinear effects
removed, and the plane waves of that spin-two theory are identical to the waves described
above. When quantized by canonical techniques, these waves are carried by zero-rest-mass,
spin-two gravitons.
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One can see by the following simple argument that the gravitons which carry gravita-
tional waves must have spin two: Consider any plane-wave field (neutrino, electromagnetic,
gravitational, . . .) that propagates at the speed of light in the z-direction of a (local) Lorentz
frame. At any moment of time examine any physical manifestation of that field, e.g., the
acceleration field it produces on test particles. Rotate that manifestation of the field around
the z axis, and ask what is the minimum angle of rotation required to bring the field back to
its original configuration. Call that minimum angle, θret, the waves’ return angle. The spin
S of the particles that carry the wave will necessarily be related to that return angle by

S =
360 degrees

θret
. (26.52)

This simple formula corresponds to the elegant mathematical statement that “the waves
generate an irreducible representation of order S = 360 degrees/θret of that subgroup of the
Lorentz group which leaves their propagation vector unchanged (the ‘Little group’ of the
rotation vector).” For electromagnetic waves a physical manifestation is the electric field,
which is described by a vector lying in the x–y plane; if one rotates that vector about the
z-axis (propagation axis), it returns to its original orientation after a return angle θret =
360 degrees. Correspondingly, the spin of the particle which carries the electromagnetic
wave (the photon) is one. For neutrinos the return angle is θret = 720 degrees; and corre-
spondingly the spin of a neutrino is 1

2
. For gravitational waves the physical manifestations

include the deformation of a sphere of test particles [Figs. 26.1(a,b) and 26.2(a,b)] and the
acceleration fields [Figs. 26.1(c,d) and 26.2(c,d)]. Both the deformed, ellipsoidal spheres and
the quadrupolar lines of force return to their original orientations after rotation through
θret = 180 degrees; and correspondingly, the graviton must have spin two.

Although Fierz and Pauli (1939) showed us how to quantize linearized general relativity,
the quantization of full, nonlinear general relativity remains a difficult subject of current
research, to which we shall return briefly in the next chapter.

26.3.4 Energy and Momentum in Gravitational Waves

In 1968 Richard Isaacson discovered a beautiful and powerful method to define a stress-energy
tensor for a gravitational wave. This method is similar to the one by which we analyzed the
back-action of a plasma wave on the plasma’s background particle distribution [Eq. (22.4)].
Here, as there, we take our exact dynamical equation (the Einstein field equation here, the
Vlasov equation there) and expand it to quadratic order in the wave:

Gαβ = GB
αβ +G

(1)
αβ +G

(2)
αβ = 0 . (26.53)

In this equation Gαβ is the Einstein tensor for the full spacetime metric gµν = gB
µν +hµν , G

B
αβ

is the Einstein tensor for the background metric gB
αβ, G

(1)
αβ is the part linear in hµν , and G

(2)
αβ is

the part quadratic in hµν . This is the analog of the quadratically expanded Vlasov equation
(22.3). Here, as in the plasma case, we next split our dynamical equation into two parts,
its spatial average (which is smooth on the scale λ̄) and its remaining, fluctuating piece. In
the plasma case the fluctuating piece is the linear wave equation for the plasma waves; in
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the gravitational case it is a variant of the gravitational wave equation RGW
αβγδ|µ

µ
= 0. In the

plasma case the averaged piece is Eq. (22.4) by which the waves at quadratic order in their
amplitude act back on the unperturbed particle distribution. In the gravitational case, it is
the equation

GB
αβ = −〈G(2)

αβ〉 , (26.54)

by which the waves at quadratic order produce background spacetime curvature.
Equation (26.54) can be brought into the standard form for Einstein’s equation in the

background spacetime,
GB
αβ = 8πTGW

αβ , (26.55)

by attributing to the waves a stress-energy tensor defined by

TGW
αβ = − 1

8π
〈G(2)

αβ〉 . (26.56)

Because this stress-energy tensor involves an average over a few wavelengths, its energy
density, momentum density, energy flux, and momentum flux are not defined on lengthscales
shorter than a wavelength. One cannot say how much energy or momentum resides in the
troughs of the waves and how much in the crests. One can only say how much total energy
there is in a region containing a few wavelengths. However, once one has reconciled oneself to
this amount of nonlocality, one finds that TGW

αβ has all the other properties that one expects
of any good stress-energy tensor. Most especially, in the absence of coupling of the waves to
matter (the situation we are treating), it obeys the standard conservation law

TGW αβ
|β = 0 . (26.57)

This law is a direct consequence of the averaged field equation (26.56) and the contracted
Bianchi identity for the background spacetime GBαβ

|β = 0.
By grinding out the second-order perturbation of the Einstein tensor and inserting it

into Eq. (26.56), performing several integrations by parts in the average 〈. . .〉, and invoking
results to be derived in Sec. 26.3.7, one arrives at the following simple expression for T GW

αβ

in terms of the wave fields h+ and h×:

TGW
αβ =

1

16π
〈h+,αh+,β + h×,αh×,β〉 . (26.58)

[For details of the derivation, see Isaacson (1968) or Secs. 35.13 and 35.15 of MTW.]
Let us examine this stress-energy tensor in the background spacetime’s local Lorentz

frame, which we used above when exploring the properties of gravitational waves. Because
h+ = h+(t− z) and h× = h×(t− z), the only nonzero components of Eq. (26.58) are

TGW 00 = TGW 0z = TGW z0 = TGW zz =
1

16π
〈ḣ2

+ + ḣ2
×〉κακβ . (26.59)

This has the same form as the stress-energy tensor for a plane electromagnetic wave prop-
agating in the z direction, and the same form as the stress-energy tensor for any collection
of zero-rest-mass particles moving in the z-direction [cf. Eq. (2.46)], as it must since the



20

gravitational waves are carried by zero-rest-mass gravitons just as electromagnetic waves are
carried by zero-rest-mass photons.

Suppose that the waves have frequency ∼ f and that the amplitudes of oscillation of h+

and h× are ∼ hamp Then by inserting factors of G and c into Eq. (26.59) [i.e., by switching
from geometrized units to conventional units] and by setting 〈(∂h+/∂t)

2〉 ' 1/2(2πfhamp)
2

and similarly for h×, we obtain the following approximate expression for the energy flux in
the waves:

TGW 0z ' π

4

c3

G2
f 2h2

amp ' 300
ergs

cm2 sec

(

f

1 kHz

)2 (

hamp

10−21

)2

. (26.60)

The numbers in this equation correspond to a strongly emitting, highly asymmetric super-
nova in the Virgo cluster of galaxies. Contrast this huge gravity-wave energy flux with the
peak electromagnetic flux at the height of the supernova, ∼ 10−9 erg cm−2 sec−1; but note
that the gravity waves should last for only a few milliseconds, while the strong electromag-
netic output lasts for weeks.

Corresponding to the huge energy flux (26.60) in an astrophysically interesting gravita-
tional wave is a huge mean occupation number for the quantum states of the gravitational-
wave field, i.e., a huge value for the number of spin-2, zero-rest-mass gravitons in each
quantum state. To compute that occupation number, we shall evaluate the volume in phase
space occupied by the waves from a supernova and then divide by the volume occupied by
each quantum state [cf. Sec. 2.3]. At a time when the waves have reached a distance r from
the source, they occupy a spherical shell of area 4πr2 and thickness of order 10λ̄, where
λ̄ = 1/(2πf) is their reduced wavelength, so their volume in physical space is Vx ∼ 100r2λ̄.
As seen by observers whom the waves are passing, they come from a solid angle ∆Ω ∼ (2λ̄/r)2

centered on the source, and they have a spread of angular frequencies ranging from ω ∼ 1
2
c/λ̄

to ω ∼ 2c/λ̄. Since each graviton carries an energy ~ω = ~c/λ̄ and a momentum ~ω/c = ~/λ̄,
the volume that they occupy in momentum space is Vp ∼ (2~/λ̄)3∆Ω, i.e., Vp ∼ 10~

3/(λr2) .
The gravitons’ volume in phase space, then, is

VxVp ∼ 1000~
3 ∼ 4(2π~)3 . (26.61)

Since each quantum state for a zero rest-mass particle occupies a volume (2π~)3 in phase
space [Eq. (2.22)], this means that the total number of quantum states occupied by the
gravitons is of order unity! Correspondingly, the mean occupation number of each occupied
state is of order the total number of gravitons emitted, which (since the total energy radiated
in an extremely strong supernova is of order 10−2M�c

2 ∼ 1052 ergs, and each graviton carries
an energy ~c/λ̄ ∼ 10−23 erg), is

η̄ ∼ 1075 . (26.62)

This enormous occupation number means that the waves behave exceedingly classically;
quantum-mechanical corrections to the classical theory have fractional magnitude 1/

√
η̄ ∼

10−37.

26.3.5 Wave propagation in a source’s local asymptotic rest frame

Consider a source of gravitational waves somewhere far out in the universe. In the vicinity
of the source but some wavelengths away from it (so the waves are well defined), introduce
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a local Lorentz reference frame in which the source is at rest: the source’s local asymptotic
rest frame. In that frame construct spherical polar coordinates (t, r, θ, φ) centered on the
source so the background metric is

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) . (26.63)

The wave gravitational wave equation Rαβγδ|µ
µ = 0 can be solved fairly easily in this coordi-

nate system. The solution has the form that one would expect from experience with scalar
waves and electromagnetic waves in spherical coordinates, plus the description of plane grav-
itational waves in Sec. 26.3.2: The waves propagate radially with the speed of light, so their
wave fields h+ and h× are rapidly varying functions of retarded time

τr ≡ t− r , (26.64)

and slowly varying functions of angle (θ, φ), and they die out as 1/r:

h+ =
Q+(τr; θ, φ)

r
, h× =

Q×(τr; θ, φ)

r
. (26.65)

These propagation equations can be thought of as saying that Q+ and Q× are constant along
radial null rays, i.e. curves of constant τr = t− r, θ and φ; and h+ and h× are equal to these
constantly-propagated Q’s, modified by a 1/r falloff.

Notice that the null tangent vector to the radial rays is

~k = ~et + ~er = −∇τr . (26.66)

By a computation in the coordinate basis, one can show that the radius factor r, which
appears in the 1/r falloff law, evolves along the rays in accord with the equation

∇~kr = r,αk
α =

1

2
(~∇ · ~k)r , (26.67)

This may look like a complicated way to describe r, but its virtue is that, when the waves
have left the source’s vicinity and are traveling through the real, lumpy universe, the wave
fields will continue to have the form (26.65), with r evolving in accord with (26.67)! [Sec.
26.3.6 below].

The wave fields are not fully meaningful until we have specified their associated polariza-
tion tensors. Those tensors can be defined along each ray using two transverse, orthonormal
polarization vectors, ~a [the analog of ~ex in Eq. (26.42)] and ~b [the analog of ~ey]:

e
+ = (~a⊗ ~a−~b⊗~b) , e

× = (~a⊗~b +~b⊗ ~a) . (26.68)

The vectors ~a and ~b must be held constant along each ray, or equivalently must be parallel
transported along the rays:

∇~k~a = ∇~k
~b = 0 . (26.69)

It is conventional, in the source’s local asymptotic rest frame, to choose

~a = ~eθ̂ ,
~b = ~eφ̂ , (26.70)



22

so the axes for the + polarization are in the θ and φ directions, and those for the × polar-
ization are rotated 45 degrees to ~eθ̂ and ~eφ̂.

Once the polarization tensors have been constructed, and the wave fields (26.65) are
known, then the waves’ TT gravitational-wave field can be computed from the standard
equation

hTT
αβ = h+e

+
αβ + h×e

×
αβ (26.71)

[Eq. (26.43)], and the waves’ Riemann tensor can be computed from the obvious generaliza-
tion of Eq. (26.44):

RGW
αβγδ '

1

2
hTT
{αβ|γδ} =

1

2

∂2hTT
{αβ

∂τ 2
r

∂τr
∂xγ

∂τr
∂xδ}

=
1

2

∂2hTT
{αβ

∂τ 2
r

kγkδ} . (26.72)

Here the derivative with respect to retarded time τr is taken holding (θ, φ, r) fixed, and the
{. . .} on the indices has the meaning of Eq. (26.28). As an important special case, if the
the basis vectors are chosen in the θ and φ directions [Eq. (26.70)], then the tide-producing
space-time-space-time part of Riemann [Eq. (26.72)] takes form

RGW
θ̂0̂θ̂0̂

= −RGW
φ̂0̂φ̂0̂

=
1

2
h+,τrτr , RGW

θ̂0̂φ̂0̂
= RGW

φ̂0̂θ̂0̂
=

1

2
h×,τrτr , (26.73)

which is the obvious generalization of Eq. (26.41) to radially propagating waves.
We shall demonstrate at the end of the next section that the Riemann tensor (26.72)

constructed by the above procedure is, indeed, a solution of the gravitational wave equation.

26.3.6 Wave propagation via geometric optics

The two-lengthscale conditions (26.23), which underlie the definition of gravitational waves,
permit us to solve the gravitational wave equation RGW

αβγδ|µ

µ
= 0 by means of geometric optics.

We developed the concepts of geometric optics for rather general types of waves in Sec.
6.3. When those techniques are applied to the gravitational wave equation, they reveal that,
as the waves travel through our lumpy, bumpy universe, with its stars, galaxies, and black
holes, they continue to propagate along null geodesics, just as they did in the local asymptotic
rest frame where they originated. Classically the null geodesics are the waves’ rays; quan-
tum mechanically they are the world lines of the waves’ gravitons. Because electromagnetic
waves also propagate along null-geodesic rays (photon world lines), gravitational waves must
exhibit all the same null-ray-induced phenomena as electromagnetic waves: doppler shifts,
cosmological redshifts, gravitational redshifts, gravitational deflection of rays, and gravita-
tional lensing.

Each ray starts out traveling radially through the local asymptotic rest frame, so it can
be identified by three parameters: the direction (θ, φ) in which it was emitted, and the
retarded time τr of its emission. The rays carry these three labels out through spacetime
with themselves, and in particular they lay down the scalar field τr(P). As in the source’s
local asymptotic rest frame, so also throughout spacetime, the vector

~k ≡ −~∇τr (26.74)



23

continues to be tangent to the null rays (so ~k · ~k = 0), and continues to satisfy the null
geodesic equation

∇~k
~k = 0 , (26.75)

as one can see by the following index manipulations:

kα|µk
µ = −τe|αµkµ = −τe|µαkµ = kµ|αk

µ =
1

2
(~k · ~k)|α = 0 . (26.76)

[Here the second expression follows from the definition (26.74) of ~k, the third follows from
the fact that double gradients of scalars (by contrast with vectors) commute, the fourth
follows from (26.74) again, the fifth from the rule for differentiating products (and the fact

that the gradient of the metric vanishes), and the sixth from the fact that ~k · ~k = 0.] Thus,
~k ≡ −~∇τr continues to be the null-geodesic tangent vector.

As in the source’s local asymptotic rest frame, so throughout spacetime: (i) the Q func-
tions Q+ and Q× continue to be constant along each ray, (ii) the radius function r continues
to evolve via the propagation law

∇~kr = r,αk
α =

1

2
(~∇ · ~k)r , (26.77)

[Eq. (26.67)], (iii) the polarization vectors continue to be parallel transported along the rays

∇~k~a = ∇~k
~b = 0 , (26.78)

[Eq. (26.69)], and continue to be used to build the polarization tensors via

e
+ = (~a⊗ ~a−~b⊗~b) , e

× = (~a⊗~b +~b⊗ ~a) . (26.79)

[Eq. (26.68)], (iv) the gravitational-wave fields continue to be constructed via the equations

h+ =
Q+(τr; θ, φ)

r
, h× =

Q×(τr; θ, φ)

r
, (26.80)

hTT
αβ = h+e

+
αβ + h×e

×
αβ (26.81)

[Eqs. (26.65) and (26.71)] and the Riemann tensor continues to be constructed via

RGW
αβγδ =

1

2

∂2hTT
{αβ

∂τ 2
r

kγkδ} =
1

2

∂2hTT
{αβ

∂τ 2
r

∂τr
∂xγ

∂τr
∂xδ}

' 1

2
hTT
{αβ|γδ} (26.82)

[Eq. (26.72)].
We shall now sketch a proof that this geometric-optics Riemann tensor does, indeed,

satisfy the gravitational wave equation. The foundation for the proof is the geometric-optics
condition that h+, h×, and thence RGW

αβγδ are rapidly varying functions of retarded time τr
and slowly varying functions of (θ, φ, r). To take advantage of this, we shall use a prime to
denote derivatives at fixed τr, so

RGW
αβγδ|µ = RGW

αβγδ,τr

∂τr
∂xµ

+RGW
αβγδ|µ′ = −RGW

αβγδ,τrkµ +RGW
αβγδ|µ′ . (26.83)
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Taking the divergence of this on the µ index we obtain

RGW
αβγδ|µ

µ
= RGW

αβγδ,τrτrkµk
µ − 2RGW

αβγδ,τr |µ′k
µ − RGW

αβγδ,τrkµ
|µ +RGW

αβγδ|µ′
µ′

. (26.84)

In the limit as the waves’ wavelength goes to zero, the first term á priori scales as 1/λ̄2, the
second and third as 1/λ̄, and the fourth as 1/λ̄0 = 1. In the spirit of geometric optics (Sec.

6.3), we neglect the tiny third term. The leading-order, first term vanishes because ~k is null,
so Eq. (26.84) reduces to

RGW
αβγδ|µ

µ
= −2RGW

αβγδ,τr |µ′k
µ − RGW

αβγδ,τrkµ
|µ (26.85)

The second term is the directional derivative of −2RGW
αβγδ,τr

along ~k, i.e. along a ray. Since

each ray has constant (θ, φ, τe), and since the vectors ~a, ~b, and ~k that appear in Eqs. (26.80)–

(26.82) for RGW
αβγδ all are parallel transported along ~k, the only piece of RGW

αβγδ that can vary

along ~k is the factor 1/r. Correspondingly,

RGW
αβγδ,τr |µ′k

µ = RGW
αβγδ,τrr∇~k

(

1

r

)

. (26.86)

Inserting this into Eq. (26.85) and invoking the propagation law (26.77) for r, we obtain

RGW
αβγδ|µ

µ
= 0 . (26.87)

Thus, our geometric-optics formulae for RGW
αβγδ do, indeed, produce a solution to the grav-

itational wave equation. Moreover, since, in the source’s local asymptotic rest frame, this
solution reduces to the one developed in Sec. 26.3.5, the formulae for RGW

αβγδ also satisfy the
gravitational wave equation.

26.3.7 Metric perturbation; TT gauge

Although the properties of gravitational waves and their propagation are best described in
terms of the waves’ Riemann tensor RGW

αβγδ , their generation is best described in terms of
the waves’ metric perturbation hµν [cf. the linearized-theory analysis in Sec. 24.9.2]. As in
linearized theory, so also here, there is gauge freedom in the waves’ metric perturbation,
which results from introducing a tiny, rippled displacement ~ξ of the coordinate lines. In a
local Lorentz frame of the smooth background, the gauge change has the linearized-theory
form δhµν = −ξµ,ν−ξν,µ [Eq. (24.104)], so in an arbitrary coordinate system of the background
spacetime it must be

hnew
µν = hold

µν − ξµ|ν − ξν|µ . (26.88)

By choosing the background coordinates to be local Lorentz and carefully adjusting the
waves’ gauge, we can ensure that the waves’ metric perturbation is equal to the transverse-
traceless gravitational-wave field (26.43), which we originally defined in terms of the Riemann
tensor; i.e., we can ensure that

hαβ = hTT
αβ , or equivalently,

hxx = −hyy = h+(t− z) , hxy = hyx = h×(t− z) , all other hαβ vanish.(26.89)
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To see that this is possible, we need only verify that this metric perturbation produces the
correct components of Riemann, Eq. (5.12a); indeed it does, as we can see by inserting Eqs.
(26.89) into expression (26.26) for the Riemann tensor. For an alternative proof see Ex.
26.6. The gauge in which the waves’ metric perturbation takes the simple TT form (26.89)
is called transverse-traceless gauge, or TT gauge, and the coordinates in which the metric
perturbation takes this form are called TT coordinates.

TT gauge is not the only one in which the waves’ metric perturbation has the plane-
wave form hαβ = hαβ(t − z) There are many other such gauges; cf. Ex. 26.6. In any local
Lorentz frame of the background spacetime and any gauge for which hαβ = hαβ(t− z), the
transverse components of the waves’ Riemann curvature tensor take the form [derivable from
Eq. (24.51) or (24.96)]

RGW
j0k0 = −1

2

∂2hjk
∂t2

for j = x , y and k = x , y . (26.90)

By comparing with Eq. (26.41) we see that in such a gauge, the transverse part of the waves’
metric perturbation must be equal to the TT gravitational-wave field:

hTT
jk = (hjk)

T . (26.91)

Here the T on the right-hand side means “throw away all components except those which
are spatial and are transverse to the waves’ propagation direction”. Since hTT

jk is trace-free as
well as transverse, we are guaranteed that the transverse part of the metric perturbation hjk
will be trace-free; i.e. hxx+hyy = 1. To emphasize this trace-free property it is conventional
to write Eq. (26.91) in the form

hTT
jk = (hjk)

TT , (26.92)

where the second T on the right-hand side means “remove the trace, if the trace is not
already zero”. To repeat, Eq. (26.92) is true in any gauge where the waves’ contribution to
the metric has the “speed-of-light-propagation” form hαβ = hαβ(t− z).

If we rotate the spatial axes so the waves propagate along the unit spatial vector n instead
of along ~ez, then the “speed-of-light-propagation” form of the metric becomes

hαβ = hαβ(t− n · x) , (26.93)

and the extraction of the spatial, transverse-traceless part of this metric perturbation can
be achieved with the aid of the projection tensor

P jk ≡ δjk − nj nk . (26.94)

Specifically,

hTT
jk = (hjk)

TT = Pj
lPk

mhlm − 1

2
PjkP

lmhlm . (26.95)

Here the notation is that of Cartesian coordinates with Pj
k = P jk = Pjk.

When analyzing gravitational wave generation, the quantity most easily computed is
often the trace-reversed metric perturbation, in a gauge with speed-of-light propagation, so
h̄αβ = h̄αβ(t − n · x). Because the projection process (26.95) removes the trace (i.e., the
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result is insensitive to the trace), and h̄jk and hjk differ only in their trace, we can compute
the gravitational-wave field by direct TT projection of h̄jk without bothering to evaluate hjk
first:

hTT
jk = (h̄jk)

TT = Pj
lPk

mh̄lm − 1

2
PjkP

lmh̄lm . (26.96)

****************************

EXERCISES

Exercise 26.4 Derivation: Behavior of h+ and h× under rotations and boosts

(a) Derive the behavior (26.51) of h+ and h× under rotations in the transverse plane.
[Hint: show that e

+ + ie× rotates through 2ψ, and then write hGW
αβ [Eq. (26.43)] in

terms of h+ + ih× and e
+ − ie×.]

(b) Show that, with the orientations of spatial basis vectors described after Eq. (26.51),
h+ and h× are unchanged by boosts.

Exercise 26.5 Problem: Energy-Momentum Conservation in Geometric Optics Limit
Near the end of Sec. 26.3.6, we proved that our geometric-optics formulae for RGW

αβγδ satisfy
the gravitational wave equation. Use these same techniques to show that the gravitational
stress-energy tensor (26.58), with h+ and h× given by the geometric-optics formulae (26.80),

has vanishing divergence, ~∇ ·TGW = 0.

Exercise 26.6 Example: Transformation to TT Gauge
Consider a plane gravitational wave propagating in the z-direction through a local Lorentz
frame of the smooth background spacetime. Such a wave can be described by Linearized
Theory. In Sec. 24.9.2 and Ex. 24.13 we showed that, by a careful choice of the four gauge-
generating functions ξα(P), one can bring the trace-reversed metric perturbation into Lorentz
gauge, so it satisfies the gauge condition h̄αβ,

β = 0 and the wave equation h̄αβ,µ
µ = 0, and

thence has the form h̄αβ = hαβ(t − z). In general there are 10 independent components of
h̄αβ, since it is a symmetric second-rank tensor, but the 4 gauge conditions reduce this from
10 to 6. Thus, in general, the Lorentz-gauge metric perturbation for a plane gravitational
wave contains six independent functions of t−z. Only two of these six can represent physical
degrees of freedom of the wave; the other four must be pure-gauge functions and must be
removable by a further specialization of the gauge. This exercise explores that further gauge
freedom.

(a) Consider any trace-reversed metric perturbation that is in Lorentz gauge. Show that
a further gauge change whose generators satisfy the wave equation ξα,µ

µ = 0 leaves
h̄αβ still in Lorentz gauge. Show that such a gauge change, in general, involves four
free functions of three of the spacetime coordinates, by contrast with general gauge
transformations which entail four free functions of all four spacetime coordinates.
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(b) Consider the plane gravitational wave described in the first paragraph of this problem.
Exhibit gauge-change generators ξα that satisfy the wave equation and that remove
four of the six independent functions from h̄αβ, bringing it into TT gauge, so the
components of hαβ are given by Eqs. (26.89).

(c) Show by an explicit calculation that the gauge change of part (b) can be achieved by
throwing away all pieces of hαβ except the transverse ones (those that lie in the x-y
plane) and by then removing the trace — i.e. by the transverse-traceless projection of
Eq. (26.92).

****************************

26.4 The Generation of Gravitational Waves

26.4.1 Multipole-moment expansion

The electromagnetic waves emitted by a dynamical charge distribution are usually expressed
as a sum over the source’s multipole moments. There are two families of moments: the
electric moments (moments of the electric charge distribution) and the magnetic moments
(moments of the electric current distribution).

Similarly, the gravitational waves emitted by a dynamical distribution of mass-energy and
momentum can be expressed as a sum over multipole moments. Again there are two families
of moments: the mass moments (moments of the mass-energy distribution) and the current
moments (moments of the mass-current distribution, i.e. the momentum distribution). The
multipolar expansion of gravitational waves is presented in great detail in Thorne (1980). In
this section we shall sketch and explain its qualitative and order-of-magnitude features.

In the source’s weak-gravity near zone (if it has one), the mass moments show up in the
time-time part of the metric in a form familiar from Newtonian theory

g00 = −(1 + 2Φ) = −1&
I0

r
&
I1

r2
&
I2

r3
& . . . . (26.97)

[cf. Eq. (24.95)]. Here r is radius, I` is the moment of order `, and “&” means “plus terms
with the form”. The mass monopole moment I0 is the source’s mass, and the mass dipole
moment I1 can be made to vanish by placing the origin of coordinates at the center of mass.

Similarly, in the source’s weak-gravity near zone, its current moments S` show up in the
space-time part of the metric

g0j =
S1

r2
&
S2

r3
& . . . . (26.98)

Just as there is no magnetic monopole moment in classical electromagnetic theory, so there
is no current monopole moment in general relativity. The current dipole moment S1 is the
source’s angular momentum, so the leading-order term in the expansion (26.98) has the form
(24.112), which we have used to deduce the angular momenta of gravitating bodies.
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If the source has mass M , size L and internal velocities ∼ v, then the magnitudes of its
moments are

I` ∼ML` , S` ∼MvL` (26.99)

These formulae guarantee that the near-zone fields g00 and g0j, as given by Eqs. (26.97) and
(26.98), are dimensionless.

As the source’s moments oscillate dynamically, they produce gravitational waves. Mass-
energy conservation [Eq. (24.114)] prevents the mass monopole moment I0 = M from oscil-
lating; angular-momentum conservation [Eq. (24.115)] prevents the current dipole moment
S1 = (angular momentum) from oscillating; and because the time derivative of the mass
dipole moment I1 is the source’s linear momentum, momentum conservation [Eq. (24.118)]
prevents the mass dipole moment from oscillating. Therefore, the lowest-order moments that
can contribute to the waves are the quadrupolar ones. The wave fields h+ and h× in the
source’s local asymptotic rest frame must (i) be dimensionless, (ii) die out as 1/r, and (iii) be
expressed as a sum over derivatives of the multipole moments. These conditions guarantee
that the waves will have the following form:

h+ ∼ h× ∼ ∂2I2/∂t
2

r
&
∂3I3/∂t

3

r
& . . .&

∂2S2/∂t
2

r
&
∂3S3/∂t

3

r
& . . . . (26.100)

The timescale on which the moments oscillate is T ∼ L/v, so each time derivative pro-
duces a factor v/L. Correspondingly, the `-pole contributions to the waves have magnitudes

∂`I`/∂t`
r

∼ M

r
v` ,

∂`S`/∂t`
r

∼ M

r
v(`+1) . (26.101)

This means that, for a “slow-motion source” (one with internal velocities v small compared
to light so the reduced wavelength λ̄ ∼ L/v is large compared to the source size L), the
mass quadrupole moment I2 will produce the strongest waves. The mass octupole waves
and current quadrupole waves will be weaker by ∼ v ∼ L/λ̄; the mass 4-pole and current
octupole waves will be weaker by ∼ v2 ∼ λ̄2/L2, etc. This is analogous to the electromagnetic
case, where the electric dipole waves are the strongest, the electric quadrupole and magnetic
dipole are smaller by ∼ λ̄/L, etc.

In the next section we shall develop the theory of mass-quadrupole gravitational waves.
For the corresponding theory of higher-order multipoles, see, e.g., Sec. VIII of Thorne (1980).

26.4.2 Quadrupole-moment formalism

Consider a weakly gravitating, nearly Newtonian system, e.g. a binary star system, and write
its Newtonian potential in the usual way

Φ(x) = −
∫

ρ(x′)

|x − x′|dVx′ . (26.102)

By using Cartesian coordinates, placing the origin of coordinates at the center of mass, and
expanding

1

|x − x′| =
1

r
+
xjxj

′

r3
+
xjxk(3xj

′

xk
′ − r′2δjk)

2r5
+ . . . , (26.103)
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we obtain the multipolar expansion of the Newtonian potential

Φ(x) = −M
r

− 3Ijkxjxk
2r5

+ . . . . (26.104)

Here

M =

∫

ρdVx , Ijk =

∫

ρ

(

xjxk − 1

3
r2δjk

)

dVx (26.105)

are the system’s mass and mass quadrupole moment. Note that the mass quadrupole moment
is equal to the second moment of the mass distribution, with its trace removed.

As we have discussed, dynamical oscillations of the quadrupole moment produce grav-
itational waves. Those waves must be describable by an outgoing-wave solution to the
Lorentz-gauge, linearized Einstein equations

h̄µν,
ν = 0 , h̄µν,α

α = 0 (26.106)

[Eqs. (24.105) and (24.106)] that has the near-zone Newtonian limit

1

2
(h̄00 + h̄xx + h̄yy + h̄zz) = h00 =

3Ijkxjxk
r

(26.107)

[cf. Eq. (24.101)].
The desired solution can be written in the form

h̄00 = 2

[Ijk(t− r)

r

]

,jk

, h̄0j = 2

[

İjk(t− r)

r

]

,k

, h̄jk = 2
Ïjk(t− r)

r
, (26.108)

where the coordinates are Cartesian, r ≡
√

δjkxjxk, and the dots denote time derivatives.
To verify that this is the desired solution: (i) Compute its divergence h̄αβ,

β and obtain zero
almost trivially. (ii) Notice that each Lorentz-frame component of h̄αβ has the form f(t−r)/r
aside from some derivatives that commute with the wave operator, which implies that it
satisfies the wave equation. (iii) Notice that in the near zone, the slow-motion assumption
inherent in the Newtonian limit makes the time derivatives negligible, so h̄jk ' 0 and h̄00 is
twice the right-hand side of Eq. (26.107), as desired.

Because the trace-reversed metric perturbation (26.108) in the wave zone has the speed-
of-light-propagation form, aside from its very slow decay as 1/r, we can compute the
gravitational-wave field hTT

jk from it by transverse-traceless projection, Eq. (26.96) with
n = er:

hTT
jk = 2

[

Ïjk(t− r)

r

]TT

. (26.109)

This is called the quadrupole-moment formula for gravitational-wave generation. Our deriva-
tion shows that it is valid for any nearly Newtonian source. Looking back more carefully at
the derivation, one can see that, in fact, it relied only on the linearized Einstein equations
and the Newtonian potential in the source’s local asymptotic rest frame. Therefore, this
quadrupole formula is also valid for slow-motion sources that have strong internal gravity
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(e.g., slowly spinning neutron stars), so long as we read the quadrupole moment Ijk(t − r)
off the source’s near-zone Newtonian potential (26.104) and don’t try to compute it via the
Newtonian volume integral (26.105).

When the source is nearly Newtonian, so the volume integral (26.105) can be used to
compute the quadrupole moment, the computation of the waves is simplified by computing
instead the second moment of the mass distribution

Ijk =

∫

ρxjxkdVx , (26.110)

which differs from the quadrupole moment solely in its trace. Then, because the TT projec-
tion is insensitive to the trace, the wave field (26.109) can be computed as

hTT
jk = 2

[

Ïjk(t− r)

r

]TT

. (26.111)

To get an order of magnitude feeling for the strength of the gravitational waves, notice
that the second time derivative of the quadrupole moment, in order of magnitude, is the
nonspherical part of the source’s internal kinetic energy, Ens

kin, so

h+ ∼ h× ∼ Ens
kin

r
= G

Ens
kin

c4r
, (26.112)

where the second expression is written in conventional units. Although this estimate is based
on the slow-motion assumption of source size small compared to reduced wavelength, L� λ̄,
it remains valid in order of magnitude when extrapolated into the realm of the strongest of
all realistic astrophysical sources, which have L ∼ λ̄. For sources in the “high-frequency”
band of ground-based detectors (as we shall see below), the largest value of Ens

kin that is likely
to occur is roughly Ens

kin ∼M� ∼ 1 km, where M� is the mass of the Sun The collision of two
smallish black holes (masses of several solar masses) will have such an Ens

kin. Such a source
at the center of our galaxy would produce h+ ∼ 10−17; at the center of the Virgo cluster of
galaxies it would produce h+ ∼ 10−20, and at the Hubble distance (edge of the observable
universe) it would produce h+ ∼ 10−23. This sets the sensitivity goals of ground-based
detectors, Sec. 26.5.

Because the gravitational stress-energy tensor TGW
µν produces background curvature via

the Einstein equation GB
µν = 8πTGW

µν , just like nongravitational stress-energy tensors, it must
contribute to the rate of change of the source’s mass M , linear momentum Pj and angular
momentum Sj [Eqs. (24.114)–(24.118)] just like other stress-energies. When one inserts the
quadrupolar TB

µν into Eqs. (24.114)–(24.118) and integrates over a sphere in the wave zone
of the source’s local asymptotic rest frame, one finds that

dM

dt
= −1

5

〈

∂3Ijk
∂t3

∂3Ijk
∂t3

〉

, (26.113)

dSi
dt

= −2

5
εijk

〈

∂2Ijm
∂t2

∂3Ikm
∂t3

〉

, (26.114)
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and dPj/dt = 0. It turns out [cf. Sec. IV of Thorne (1980)] that the dominant linear-
momentum change (i.e., the dominant radiation-reaction “kick”) arises from a beating of
the mass quadrupole moment against the mass octupole moment, and mass quadrupole
against current quadrupole.

The back reaction of the emitted waves on their source shows up not only in changes of
the source’s mass, momentum, and angular momentum, but also in accompanying changes of
the source’s internal structure. These structure changes can be deduced fully, in many cases,
from dM/dt, dSj/dt and dPj/dt. A nearly Newtonian binary system is an example (Sec.
26.4.3 below). However, in other cases (e.g., a compact body orbiting near the horizon of a
black hole), the only way to compute the structure changes is via a gravitational-radiation-
reaction force that acts back on the system.

The simplest example of such a force is one derived by William Burke (1971) for quadrupole
waves emitted by a nearly Newtonian system. Burke’s quadrupolar radiation-reaction force
can be incorporated into Newtonian gravitation theory by simply augmenting the system’s
near-zone Newtonian potential by a radiation-reaction term, computed from the fifth time
derivative of the system’s quadrupole moment:

Φreact =
1

5

∂5Ijk
∂t5

xjxk . (26.115)

This potential satisfies the vacuum Newtonian field equation ∇2Φ ≡ δjkΦ,jk = 0 because Ijk
is trace free.

This augmentation onto the Newtonian potential arises as a result of general relativity’s
outgoing-wave condition. If one were to switch to an ingoing-wave condition, Φreact would
change sign, and if the system’s oscillating quadrupole moment were joined onto standing
gravitational waves, Φreact would go away. In Ex. 26.9, it is shown that the radiation reaction
force density −ρ∇Φreact saps energy from the system at the same rate as the gravitational
waves carry it away.

Burke’s gravitational radiation-reaction potential Φreact and force density −ρ∇Φreact are
close analogs of the radiation reaction potential [last term in Eq. (15.92)] and acceleration
[right side of Eq. (15.95)] that act on an oscillating ball which emits sound waves into
a surrounding fluid. Moreover, Burke’s derivation of his gravitational radiation-reaction
potential is conceptually the same as the derivation, in Chap. 15, of the sound-wave reaction
potential.

26.4.3 Gravitational waves from a binary star system

A very important application of the quadrupole formalism is to wave emission by a nearly
Newtonian binary star system. Denote the stars by indices A and B and their masses by of
the binary’s two stars be MA and MB, so their total and reduced mass are (as usual)

M = MA +MB , µ =
MAMB

M
; (26.116)

and let the binary’s orbit be circular, for simplicy, with separation a between the stars’
centers of mass. Then Newtonian force balance dictates that the orbital angular velocity Ω
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is given by Kepler’s law,
Ω =

√

M/a3 . (26.117)

and the orbits of the two stars are

xA =
MB

M
a cos Ωt , yA =

MB

M
a sin Ωt , xB = −MA

M
a cos Ωt , yB = −MA

M
a sin Ωt .

(26.118)
The second moment of the mass distribution, Eq. (26.110), is Ijk = MAx

j
Ax

k
A + MBx

j
Bx

k
B.

Inserting the stars’ time-dependent positions (26.118), we obtain as the only nonzero com-
ponents

Ixx = µa2 cos2 Ωt , Iyy = µa2 sin2 Ωt , Ixy = Iyx = µa2 cos Ωt sin Ωt . (26.119)

Noting that cos2 Ωt = 1
2
(1 + cos 2Ωt), sin2 Ωt = 1

2
(1 − cos 2Ωt) and cos Ωt sin Ωt = 1

2
sin 2Ωt,

and evaluating the double time derivative, we obtain

Ïxx = −2µ(MΩ)2/3 cos 2Ωt , Ïyy = 2µ(MΩ)2/3 cos 2Ωt ,

Ïxy = Ïyx = −2µ(MΩ)2/3 sin 2Ωt . (26.120)

We express this in terms of Ω rather than a because Ω is a direct gravitational-wave observ-
able: the waves’ angular frequency is 2Ω.

To compute the gravitational-wave field (26.109), we must project out the transverse
part of this. The projection is best performed in an orthonormal spherical basis, since there
the transverse part is just the projection into the plane spanned by ~eθ̂ and ~eφ̂, and the
transverse-traceless part just has components

(Ïθ̂θ̂)
TT = −(Ïφ̂φ̂)

TT =
1

2
(Ïθ̂θ̂ − Ïφ̂φ̂) , (Ïθ̂φ̂)

TT = Ïθ̂φ̂ . (26.121)

Now, a little thought will save us much work: We need only compute these quantities at φ = 0
(i.e., in the x-z plane), since their circular motion guarantees that their dependence on t and
φ must be solely through the quantity Ωt− φ. At φ = 0, ~eθ̂ = ~ex cos θ−~ez sin θ and ~eφ̂ = ~ey,
so the only nonzero components of the transformation matrices from the Cartesian basis to
the transverse part of the spherical basis are Lxθ̂ = cos θ, Lzθ̂ = − sin θ, Lyφ̂ = 1. Using

this transformation matrix, we obtain, at φ = 0, Ïθ̂θ̂ = Ïxx cos2 θ, Ïφ̂φ̂ = Ïyy, Ïθ̂φ̂ = Ïxy cos θ.
Inserting these and expressions (26.120) into Eq. (26.124), and setting Ωt→ Ωt−φ to make
the formulae valid away from φ = 0, we obtain

(Ïθ̂θ̂)
TT = −(Ïφ̂)

TT = −(1 + cos2 θ) µ(MΩ)2/3 cos[2(Ωt− φ)] .

(Ïθ̂φ̂)
TT = +(Ïφ̂θ̂)

TT = −2 cos θ µ(MΩ)2/3 sin[2(Ωt− φ)] . (26.122)

The gravitational-wave field (26.109) is 2/r times this quantity evaluated at the retarded
time t− r.

We shall make the conventional choice for the polarization tensors:

e
+ = (~eθ̂ ⊗ ~eθ̂ − ~eφ̂ ⊗ ~eφ̂) , e

× = (~eθ̂ ⊗ ~eφ̂ + ~eφ̂ ⊗ ~eθ̂) . (26.123)
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Then the two scalar gravitational-wave fields are

h+ = hTT
θ̂θ̂

=
2

r
[Ïθ̂θ̂(t− r)]TT = −2(1 + cos2 θ)

µ(MΩ)2/3

r
cos[2(Ωt− Ωr − φ)] ,

h× = hTT
θ̂φ̂

=
2

r
[Ïθ̂φ̂(t− r)]TT = −4 cos θ

µ(MΩ)2/3

r
sin[2(Ωt− Ωr − φ)] . (26.124)

We have expressed the ampitudes of these waves in terms of the dimensionless quantity
(MΩ)2/3 = M/a = v2, where v is the relative velocity of the two stars.

Notice that, as viewed from the polar axis θ = 0, h+ and h× are identical except for
a π/2 phase delay, which means that the net stretch-squeeze ellipse (the combination of
those in Figs. 26.1 and 26.2) rotates with angular velocity Ω. This is the gravitational-wave
variant of circular polarization and arises because the binary motion as viewed from the
polar axis looks circular. By contrast, as viewed by an observer in the equatorial plane
θ = π/2, h× vanishes, so the net stretch-sqeeze ellipse just oscillates along the + axes and
the waves have linear polarization. This is natural, since the orbital motion as viewed by an
equatorial observer is just a linear, horizontal, back-and-forth oscillation. Notice also that it
the gravitational-wave frequency is twice the orbital frequency, i.e.

f = 2
Ω

2π
=

Ω

π
. (26.125)

To compute, via Eqs. (26.113) and (26.114), the rate at which energy and angular mo-
mentum are lost from the binary, we need to know the double and triple time derivatives
of its quadrupole moment Ijk. The double time derivative is just Ïjk with its trace re-
moved, but Eq. (26.119) shows that Ïjk is already trace free so Ïjk = Ïjk. Inserting Eq.
(26.119) for this quantity into Eqs. (26.113) and (26.114) and performing the average over a
gravitational-wave period, we find that

dM

dt
= −32

π

µ2

M2
(MΩ)10/3 ,

dSz
dt

= − 1

Ω

dM

dt
,

dSx
dt

=
dSy
dt

= 0 . (26.126)

This loss of energy and angular momentum causes the binary to spiral inward, decreasing
the stars’ separation a and increasing the orbital angular velocity Ω. By comparing Eqs.
(26.126) with the standard equations for the binary’s orbital energy and angular momentum,
M − (sum of rest masses of stars) = E = − 1

2
µM/a = −1

2
µ(MΩ)2/3, and Sz = µa2Ω =

µ(MΩ)2/3/Ω, we obtain an equation for dΩ/dt which we can integrate to give

Ω = πf =

(

5

256

1

µM2/3

1

to − t

)3/8

. (26.127)

Here to (an integration constant) is the time remaining until the two stars merge, if the stars
are thought of as point masses so their surfaces do not collide sooner. This equation can be
inverted to read off the time until merger as a function of gravitational-wave frequency.

These results for a binary’s waves and radiation-reaction-induced inspiral are of great
importance for gravitational-wave detection; see, e.g., Cutler and Thorne (2002).

As the stars spiral inward, (MΩ)2/3 = M/a = v2 grows larger, h+ and h× grow larger, and
relavistic corrections to our Newtonian, quadrupole analysis grow larger. Those relativistic
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corrections (including current-quadrupole waves, mass-octupole waves, etc.) can be com-
puted using a post-Newtonian expansion of the Einstein field equations, i.e. an expansion in
M/a ∼ v2. The expected accuracies of the LIGO/VIRGO network require that, for neutron-
star binaries, the expansion be carried to order v6 beyond our Newtonian, quadrupole anal-
ysis!

At the end of the inspiral, the binary’s stars (or black holes) come crashing together. To
compute the waves from this final merger, with an accuracy comparable to the expected ob-
servations, it is necessary to solve the Einstein field equation on a computer. The techniques
for this are called numerical relativity. Numerical relativity is currently in its infancy, but
has great promise for producing new insights into general relativity.

****************************

EXERCISES

Exercise 26.7 Example: Quadrupolar wave generation in linearized theory
Derive the quadrupolar wave-generation formula (26.111) for a slow-motion, weak-gravity
source in linearized theory, in Lorenz gauge, beginning with the retarded-integral formula

h̄µν(t,x) =

∫

4Tµν(t− |x − x′|,x′])

|x − x′| dVx′ (26.128)

[Eq. (24.107)]. Your derivation might proceed as follows:

(a) Show that for a slow-motion source, the retarded integral gives for the 1/r ≡ 1/|x|
(radiative) part of h̄jk

h̄jk(t,x) =
4

r

∫

Tjk(t− r,x′)dVx′ . (26.129)

(b) Show that in linearized theory in Lorenz gauge, the vacuum Einstein equations −h̄µν,αα
= 16πTµν [Eq. (24.106)] and the Lorenz gauge condition h̄µν,

ν = 0 [Eq. (24.105)] to-
gether imply that the stress-energy tensor that generates the waves must have vanishing
coordinate divergence, T µν ,ν = 0. This means that linearized theory is ignorant of the
influence of self gravity on the gravitating T µν !

(c) Show that this vanishing divergence implies [T 00xjxk],00 = [T lmxjxk],ml − 2[T ljxk +
T lkxj],l + 2T jk.

(d) By combining the results of (a) and (c), deduce that

h̄jk(t,x) =
2

r

d2Ijk(t− r)

dt2
, (26.130)

where Ijk is the second moment of the source’s (Newtonian) mass-energy distribution
T 00 = ρ [Eq. (26.110)].
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(e) Noticing that the trace-reversed metric perturbation (26.130) has the “speed-of-light-
propagation” form, deduce that the gravitational-wave field hTT

jk can be computed from
(26.130) by a transverse-traceless projection, Eq. (26.96).

Comment: Part (b) shows that this linearized-theory analysis is incapable of deducing the
gravitational waves emitted by a source whose dynanmics is controlled by its self gravity,
e.g., a nearly Newtonian binary star system. By contrast, the derivation of the quadrupole
formula given in Sec. 26.4.2 is valid for any slow-motion source, regardless of the strength
and roles of its internal gravity; see the discussion following Eq. (26.109).

Exercise 26.8 Problem: Energy carried by gravitational waves
Compute the net rate at which the quadrupolar waves (26.109) carry energy away from their
source, by carrying out the surface integral (24.114) with T 0j being Isaacson’s gravitational-
wave energy flux (26.58). Your answer should be Eq. (26.113). [Hint: perform the TT
projection in Cartesian coordinates using the projection tensor (26.94), and make use of the
following integrals over solid angle on the unit sphere

1

4π

∫

nidΩ = 0 ,
1

4π

∫

ninjdΩ =
1

3
δij ,

1

4π

∫

ninjnkdΩ = 0; ,

1

4π

∫

ninjnknl =
1

15
(δijδkl + δikδjl + δilδjk). (26.131)

These relations should be obvious by symmetry, aside from the numerical factors out in
front. Those factors are most easily deduced by computing the z components, i.e., by setting
i = j = k = l = z and using nz = cos θ.]

Exercise 26.9 Problem: Energy removed by gravitational radiation reaction
Burke’s radiation-reaction potential (26.115) produces a force per unit volume −ρ∇Φreact

on its nearly Newtonian source. If we multiply this force per unit volume by the velocity
v = dx/dt of the source’s material, we obtain thereby a rate of change of energy per unit
volume. Correspondingly, the net rate of change of the system’s mass-energy must be

dM

dt
= −

∫

ρv · ∇ΦreactdVx . (26.132)

Show that, when averaged over a few gravitational-wave periods, this formula agrees with
the rate of change of mass (26.113) that we derived by integrating the outgoing waves’ energy
flux.

Exercise 26.10 Problem: Propagation of waves through an expanding universe
As we shall see in Chap. 27, the following line element is a possible model for the large-scale
structure of our universe:

ds2 = b2[−dη2 + dχ2 + χ2(dθ2 + sin2 θdφ2)] , where b = boη
2 (26.133)

and bo is a constant with dimensions of length. This is an expanding universe with flat
spatial slices η = constant. Notice that the proper time measured by observers at rest in the
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spatial coordinate system is t = bo
∫

η2dη = (bo/3)η3. A nearly Newtonian, circular binary is
at rest at χ = 0 in an epoch when η ∼ ηo. The coordinates of the binary’s local asymptotic
rest frame are (t, r, θ, φ) where r = aχ and the coordinates cover only a tiny region of the
universe, χ . χo � ηo. The gravitational waves in this local asymptotic rest frame are
described by the Eqs. (26.123) and (26.124); see also Sec. 26.3.5. Use geometric optics (Sec.
26.3.6) to propagate these waves out through the expanding universe. In particular

(a) Show that the null rays are the curves of constant θ, φ, and η − χ.

(b) Show that the orthonormal basis vectors ~eθ̂, ~eφ̂ associated with the (η, χ, θ, φ) coor-
dinates are parallel transported along the rays. (This should be fairly obvious from
symmetry.)

(c) Show that the wave fields have the form (26.124) with t − r replaced by the retarded
time τr = 1

3
bo(η − χ)3, and with 1/r being some function of χ and η (what is that

function?).

Exercise 26.11 Problem: Gravitational waves emitted by a linear oscillator
Consider a mass m attach to a spring so it oscillates along the z axis of a Cartesian coordinate
system, moving along the world line z = a cos Ωt, y = z = 0. Use the quadrupole moment
formalism to compute the gravitational waves h+(t, r, θ, φ) and h×(t, r, θ, φ) emitted by this
oscillator, with the polarization tensors chosen as in Eqs. (26.123). Pattern your analysis
after the computation of waves from a binary in Sec. 26.4.3 .

Exercise 26.12 Problem: Gravitational waves from waving arms
Wave your arms rapidly, and thereby try to generate gravitational waves.

(a) Compute in order of magnitude, using classical general relativity, the wavelength of the
waves you generate and their dimensionless amplitude at a distance of one wavelength
away from you.

(b) How many gravitons do you produce per second? Discuss the implications of your
result.

****************************

26.5 The Detection of Gravitational Waves

Physicists and astronomers are searching for gravitational waves in four different frequency
bands using four different techniques:

• In the extremely low frequency (ELF) band, ∼ 10−15 to ∼ 10−18 Hz, gravitational waves
are sought via their imprint on the polarization of the cosmic microwave background
(CMB) radiation. There is only one expected ELF source of gravitational waves, but
it is a very interesting one: quantum fluctuations in the gravitational field (spacetime
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curvature) that emerge from the big bang’s quantum-gravity regime, the Planck era,
and that are subsequently amplified to classical, detectable sizes by the universe’s
early inflationary expansion. We shall study this amplification and the resulting ELF
gravitational waves in Chap. 27 and shall see these waves’ great potential for probing
the physics of inflation.

• In the very low frequency (VLF) band, ∼ 10−7 to ∼ 10−9 Hz, gravitational waves
are sought via their influence on the propagation of radio waves emitted by pulsars
(spinning neutron stars) and by the resulting fluctuations in the arrival times of the
pulsars’ radio-wave pulses at earth. The expected VLF sources are violent processes in
the first fraction of a second of the universe’s life (Chap. 27), and the orbital motion
of extremely massive pairs of black holes in the distant universe.

• In the low frequency (LF) band, ∼ 10−4 to ∼ 0.1 Hz, gravitational waves are currently
sought via their influence on the radio signals by which NASA tracks interplanetary
spacecraft. In ∼ 2012 this technique will be supplanted by LISA, the Laser Interferom-
eter Space Antenna—three “drag-free” spacecraft in a triangular configuration with 5
kilometer long arms, that track each other via laser beams. LISA is likely to see waves
from massive black-hole binaries (hole masses ∼ 105 to 107M�) out to cosmologiocal
distances; from small holes, neutron stars, and white dwarfs spiraling into massive
black holes out to cosmological distances; from the orbital motion of white-dwarf bi-
naries, neutron-star binaries, and stellar-mass black-hole binaries in our own galaxy;
and possibly from violent processes in the very early universe.

• The high frequency (HF) band, ∼ 10 to ∼ 103 Hz, is where earth-based detectors oper-
ate: laser interferometer gravitational wave detectors such as LIGO, and resonant-mass
detectors in which a gravitational wave alters the amplitude and phase of vibrations
of a normal mode of a large, cylindrical bar. These detectors are likely to see waves
from spinning, slightly deformed neutron stars in our own galaxy, and from a variety
of sources in the distant universe: the final inspiral and collisions of binaries made
from neutron stars and/or stellar-mass black holes (up to hundreds of solar masses);
the tearing apart of a neutron star by the spacetime curvature of a companion black
hole; supernovae and the triggers of gamma ray bursts; and possibly waves from violent
processes in the very early universe.

For detailed discussions of these gravitational-wave sources in all four frequency bands,
and of prospects for their detection, see e.g. Cutler and Thorne (2002) and references therein.
It is likely that waves will be seen in all four bands within the next 20 years, and the first
detection is likely to occur in the HF band using gravitational-wave interferometers such as
LIGO.

We briefly discussed such interferometers in Sec. 8.5, focusing on optical interferometry
issues. In this chapter we shall analyze the interaction of a gravitational wave with such an
interferometer. That analysis will not only teach us much about gravitational waves, but will
also illustrate some central issues in the physical interpretation of general relativity theory.

To get quickly to the essentials, we shall examine initially a rather idealized detector: A
Michaelson interferometer (one without the input mirrors of Fig. 8.11) that floats freely in
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Fig. 26.3: An idealized gravitational-wave interferometer

space, so there is no need to hang its mirrors by wires; see Fig. 26.3. At the end of this
chapter, we shall briefly discuss more realistic interferometers and their analysis.

We shall use linearized theory to analyze the interaction of our idealized interferometer
with a gravitational wave. We shall perform our analysis twice, using two different coor-
dinate systems (two different gauges). Our two analyses will predict the same results for
the interferometer output, but they will appear to attribute those results to two different
mechanisms.

In our first analysis (performed in TT gauge; Sec. 26.5.1) the interferometer’s test masses
will remain always at rest in our chosen coordinate system, and the gravitational waves
h+(t − z) will interact with the interferometer’s light. The imprint that h+(t − z) leaves
on the light will cause a fluctuating light intensity Iout(t) ∝ h+(t) to emerge from the
interferometer’s output port and be measured by the photodiode.

In our second analysis (performed in the proper reference frame of the interferometer’s
beam splitter; Sec. 26.5.2) the gravitational waves will interact hardly at all with the light.
Instead, they will push the end mirrors back and forth relative to the coordinate system,
thereby lengthening one arm while shortening the other. These changing arm lengths will
cause a changing interference of the light returning to the beam splitter from the two arms,
and that changing interference will produce the fluctuating light intensity Iout(t) ∝ h+(t)
measured by the photodiodes.

These differences of viewpoint are somewhat like the differences between the Heisen-
berg Picture and the Schroedinger Picture in quantum mechanics. The intuitive pictures
associated with two viewpoints appear to be very different (Schroedinger’s wave function
vs. Heisenberg’s matrices; gravitational waves interacting with light vs. gravitational waves
pushing on mirrors). But whenever one computes the same physical observable from the
two different viewpoints (probability for a quantum measurement outcome; light intensity
measured by photodetector), the two viewpoints give the same answer.
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26.5.1 Interferometer analyzed in TT gauge

For our first analysis, we place the interferometer at rest in the x-y plane of a TT coordinate
system, with its arms along the x and y axes and its beam splitter at the origin as shown in
Fig. 26.3. For simplicity, we assume that the gravitational wave propagates in the z direction
and has + polarization, so the linearized spacetime metric has the TT-gauge form

ds2 = −dt2 + [1 + h+(t− z)]dx2 + [1 − h+(t− z)]dy2 + dz2 (26.134)

[Eq. (26.89)]. For ease of notation, we shall omit the subscript + from h+ in the remainder
of this section.

The beam splitter and end mirrors move freely and thus travel along geodesics of the
metric (26.134). The splitter and mirrors are at rest in the TT coordinate system before the
wave arrives, so initially the spatial components of their 4-velocities vanish, uj = 0. Because
the metric coefficients gαβ are all independent of x and y, the geodesic equation dictates that
the components ux and uy are conserved and thus remain zero as the wave passes, which
implies (since the metric is diagonal) ux = dx/dτ = 0 and uy = dy/dτ = 0. One can also
show (see Ex. 26.13) that uz = dz/dτ = 0 throughout the wave’s passage. Thus, in terms of
motion relative to the TT coordinate system, the gravitational wave has no influence at all
on the beam splitter and mirrors; they all remain at rest (constant x, y and z) as the waves
pass.

(Despite this lack of motion, the proper distances between the mirrors and the beam
splitter—the interferometer’s physically measured arm lengths—do change. If the unchang-
ing coordinate lengths of the two arms are ∆x = `x and ∆y = `y, then the metric (26.134)
says that the physically measured arm lengths are

Lx =

[

1 +
1

2
h(t)

]

`x , Ly =

[

1 − 1

2
h(t)

]

`y . (26.135)

When h is positive, the x arm is lengthened and the y arm is shortened; when negative, Lx
is shortened and Ly is lengthened.)

Turn, next, to the propagation of light in the interferometer. We assume, for simplicity,
that the light beams have large enough transverse sizes that we can idealize them, on their
optic axes, as plane electromagnetic waves. (In reality, they will be Gaussian beams, of
the sort studied in Sec. 7.5.5). The light’s vector potential satisfies the curved-spacetime
vacuum wave equation Aα:µ

µ = 0 [Eq. (24.71) with vanishing Ricci tensor]. We write the
vector potential in geometric optics (eikonal-approximation) form as

Aα = <(Aαeiφ) , (26.136)

where Aα is a slowly varying amplitude and φ is a rapidly varying phase; cf. Eq. (6.18).
Because the wavefronts are (nearly) planar and the spacetime metric is nearly flat, the
light’s amplitude Aµ will be very nearly constant as it propagates down the arms, and we
can ignore its variations. Not so the phase. It oscillates at the laser frequency, ωo ∼ 3× 1014

Hz; i.e., φout
x arm ' ωo(x − t) for light propagating outward from the beam splitter along the

x arm, and similarly for the returning light and the light in the y arm. The gravitational
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wave imprints onto the phase tiny deviations from this ωo(x − t); we must compute those
imprints.

In the spirit of geometric optics, we introduce the light’s spacetime wave vector

~k ≡ ~∇φ , (26.137)

and we assume that ~k varies extremely slowly compared to the variations of φ. Then the wave
equation Aα:µ

µ = 0 reduces to the statement that the wave vector is null, ~k·~k = φ,αφ,βg
αβ = 0.

For light in the x arm the phase depends only on x and t; for that in the y arm it depends only
on y and t. Combining this with the TT metric (26.134) and noting that the interferometer
lies in the z = 0 plane, we obtain

−
(

∂φx arm

∂t

)2

+ [1 − h(t)]

(

∂φx arm

∂x

)2

= 0 ,

−
(

∂φy arm

∂t

)2

+ [1 + h(t)]

(

∂φy arm

∂y

)2

= 0 . (26.138)

We idealize the laser as perfectly monochromatic and we place it at rest in our TT
coordinates, arbitrarily close to the beam splitter. Then the outgoing light frequency, as
measured by the beam splitter, must be precisely ωo and cannot vary with time. Since proper
time, as measured by the beam splitter, is equal to coordinate time t [cf. the metric (26.134))],
the frequency that the laser and beam splitter measure must be ω = −∂φ/∂t = −kt. This
dictates the following boundary conditions (initial conditions) on the phase of the light that
travels outward from the beam splitter:

∂φout
x arm

∂t
= −ωo at x = 0 ,

∂φout
y arm

∂t
= −ωo at y = 0 . (26.139)

It is straightforward to verify that the solutions to Eq. (26.138) [and thence to the wave
equation and thence to Maxwell’s equation] that satisfy the boundary conditions (26.139)
are

φout
x arm = −ωo

[

t− x+
1

2
H(t− x) − 1

2
H(t)

]

,

φout
y arm = −ωo

[

t− y − 1

2
H(t− y) +

1

2
H(t)

]

, (26.140)

where H(t) is the first time integral of the gravitational waveform,

H(t) ≡
∫ t

0

h(t′)dt′ ; (26.141)

cf. Ex. 26.14.
The outgoing light reflects off the mirrors, which are at rest in the TT coordinates at

locations x = `x and y = `y. As measured by observers at rest in these coordinates, there
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is no doppler shift of the light because the mirrors are not moving. Correspondingly, the
phases of the reflected light, returning back along the two arms, have the following forms:

φback
x arm = −ωo

[

t+ x− 2`x +
1

2
H(t+ x− 2`x) −

1

2
H(t)

]

,

φback
y arm = −ωo

[

t+ y − 2`y −
1

2
H(t+ y − 2`y) +

1

2
H(t)

]

. (26.142)

The difference of the phases of the returning light, at the beam splitter (x = y = 0), is

∆φ ≡ φback
x arm − φback

y arm = −ωo[−2(`x − `y) +
1

2
H(t− 2`x) +

1

2
H(t− 2`y) −H(t)]

' +2ωo[`x − `y + `h(t)] for earth-based interferometers. (26.143)

In the second line we have used the fact that for earth-based interferometers operating in
the high-frequency band, the gravitational wavelength λGW ∼ c/(100Hz) ∼ 3000 km is long
compared to the interferometers’ ∼ 4 km arms, and the arms have nearly the same length,
`y ' `x ≡ `.

The beam splitter sends a light field ∝ eiφ
back
x arm + eiφ

back
y arm back toward the laser, and a

field ∝ eiφ
back
x arm − eiφ

back
y arm = eiφ

back
y arm(ei∆φ − 1) toward the photodetector. The intensity of

the light entering the photodetector is proportional to the squared amplitude of the field,
IPD ∝ |ei∆φ − 1|2. We adjust the interferometer’s arm lengths so their difference `x − `y is
small compared to the light’s reduced wavelength 1/ωo = c/ωo but large compared to |`h(t)|.
Correspondingly, |∆φ| � 1, so only a tiny fraction of the light goes toward the photodetector
(it is the interferometer’s “dark port”), and that dark-port light intensity is

IPD ∝ |ei∆φ − 1|2 ' |∆φ|2 ' 4ω2
o(`x − `y)

2 + 8ω2
o(`x − `y)`h(t) . (26.144)

The time varying part of this intensity is proportional to the gravitational waveform h(t),
and it is this time varying part that the photodetector reports as the interferometer output.

26.5.2 Interferometer analyzed in proper reference frame of beam

splitter

We shall now reanalyze our idealized interferometer in the proper reference frame of its beam
splitter, denoting that frame’s coordinates by x̂α. Because the beam splitter is freely falling
(moving along a geodesic through the gravitational-wave spacetime), its proper reference
frame is locally Lorentz (“LL”), and its metric coefficients have the form gα̂β̂ = ηαβ +

O(δjkx̂
jx̂k/R2) [Eq. (24.15)]. Here R is the radius of curvature of spacetime, and 1/R2 is of

order the components of the Riemann tensor, which have magnitude ḧ(t̂ − ẑ) [Eq. (26.41)
with t and z equal to t̂ and ẑ aside from fractional corrections of order h]. Thus,

gα̂β̂ = ηαβ + O[ḧ(t̂− ẑ)δjkx̂
jx̂k] . (26.145)
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The following coordinate transformation takes us from the TT coordinates xα used in
the previous section to the beam splitter’s LL coordinates:

x =

[

1 − 1

2
h(t̂− ẑ)

]

x̂ , y =

[

1 +
1

2
h(t̂− ẑ)

]

ŷ ,

t = t̂− 1

4
ḣ(t̂− ẑ)(x̂2 − ŷ2) , z = ẑ +

1

4
ḣ(t̂− ẑ)(x̂2 − ŷ2) . (26.146)

It is straightforward to insert this coordinate transformation into the TT-gauge metric
(26.134) and thereby obtain, to linear order in h,

ds2 = −dt̂2 + dx̂2 + dŷ2 + dẑ2 +
1

2
(x̂2 − ŷ2)ḧ(t− z)(dt̂− dẑ)2 . (26.147)

This has the expected LL form (26.145) and, remarkably, it turns out not only to be a
solution of the vacuum Einstein equations in linearized theory but also an exact solution to
the full vacuum Einstein equations [cf. Ex. 35.8 of MTW].

Throughout our idealized interferometer, the magnitude of the metric perturbation in
these LL coordinates is |hα̂β̂| . (`/λ̄GW)2h, where λ̄GW = λGW/2π is the waves’ reduced

wavelength and h is the magnitude of h(t̂− ẑ). For earth-based interferometers operating in
the HF band (∼ 10 to ∼ 1000 Hz), λ̄GW is of order 50 to 5000 km, and the arm lengths are
` ≤ 4 km, so (L/λ̄)2 . 10−2 to 10−6. Thus, the metric coefficients hα̂β̂ are no larger than
h/100. This has a valuable consequence for the analysis of the interferometer: Up to frac-
tional accuracy ∼ (`/λ̄GW)2h . h/100, the LL coordinates are globally Lorentz throughout
the interferometer; i.e., t̂ measures proper time, and x̂j are Cartesian and measure proper
distance. In the rest of this section, we shall restrict attention to such earth-based inter-
frometers, but shall continue to idealize them as freely falling.

The beam splitter, being initially at rest at the origin of these LL coordinates, remains
always at rest, but the mirrors move. Not surprisingly, the geodesic equation for the mirrors
in the metric (26.147) dictates that their coordinate positions are, up to fractional errors of
order (`/λ̄GW)2h,

x̂ = Lx =

[

1 +
1

2
h(t̂)

]

`x , ŷ = ẑ = 0 for mirror in x arm,

ŷ = Ly =

[

[1 − 1

2
h(t̂)

]

`y , x̂ = ẑ = 0 for mirror in y arm. (26.148)

(This can also be deduced from the gravitational-wave tidal acceleration −RGW
t̂0̂k̂0̂

x̂k , as in Eq.
(26.45), and from the fact that to good accuracy x̂ and ŷ measure proper distance from the
beam splitter.) Thus, although the mirrors do not move in TT coordinates, they do move
in LL coordinates. The two coordinate systems predict the same time-varying physical arm
lengths (the same proper distances from beam splitter to mirrors), Lx and Ly [Eqs. (26.135)
and (26.148)].

As in TT coordinates, so also in LL coordinates, we can analyze the light propagation
in the geometric optics approximation, with Aα̂ = <(Aα̂eiφ). Just as the wave equation
for the vector potential dictates, in TT coordinates, that the rapidly varying phase of the
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outward light in the x arm has the form φout
x arm = −ωo(t− x) + O(ωo`hµν) [Eq. (26.140) with

x ∼ ` � λ̄GW so H(t − x) − H(t) ' Ḣ(t)x = h(t)x ∼ hL ∼ hµνL], so similarly the wave
equation in LL coordinates turns out to dictate that

φout
x arm = −ωo(t̂− x̂) + O(ωo`hµ̂ν̂) = −ωo(t̂− x̂) + O

(

ωo`h
`2

λ̄2
GW

)

, (26.149)

and similarly for the returning light and the light in the y arm. The term O(ωo`h `
2/λ̄2

GW)
is the influence of the direct interaction between the gravitational wave and the light. Aside
from this term, the analysis of the interferometer proceeds in exactly the same way as in
flat space (because t̂ measures proper time and x̂ and ŷ proper distance): The light travels
a round trip distance Lx in one arm and Ly in the other, and therefore acquires a phase
difference, upon arriving back at the beam splitter, given by

∆φ = −ωo[−2(Lx − Ly)] + O

(

ωo`h
`2

λ̄2
GW

)

' +2ωo[`x − `y + `h(t̂)] + O

(

ωo`h
`2

λ̄2
GW

)

. (26.150)

This net phase difference for the light returning from the two arms is the same as we
deduced in TT coordinates [Eq. (26.143)], up to the negligible correction O(ωo`h `

2/λ̄2
GW),

and therefore the time-varying intensity of the light into the photodiode will be the same
[Eq. (26.144)].

In our TT analysis the phase shift 2ωo`h(t) arose from the interaction of the light with
the gravitational waves. In the LL analysis, it is due to the displacements of the mirrors in
the LL coordinates (i.e., the displacements as measured in terms of proper distance), which
cause the light to travel different distances in the two arms. The direct LL interaction of the
waves with the light produces only the tiny correction O(ωo`h `

2/λ̄2
GW) to the phase shift.

It should be evident that the LL description is much closer to elementary physics than
the TT description. This is always the case, when one’s apparatus is sufficiently small that
one can regard t̂ as measuring proper time and x̂j as Cartesian coordinates that measure
proper distance throughout the apparatus. But for a large apparatus (e.g. LISA, with its arm
lengths ` & λ̄GW) the LL analysis becomes quite complicated, as one must pay close attention
to the O(ωo`h `

2/λ̄2
GW) corrections. In such a case, the TT analysis is much simpler.

26.5.3 Realistic Interferometers

For realistic, earth-based interferometers, one must take account of the acceleration of grav-
ity. Experimenters do this by hanging their beam splitters and test masses on wires or fibers.
The simplest way to analyze such an interferometer is in the proper reference frame of the
beam splitter, where the metric must now include the influence of the acceleration of gravity
by adding a term −2geẑ to the metric coefficient h0̂0̂ [cf. Eq. (23.86)]. The resulting analysis,
like that in the LL frame of our freely falling interferometer, will be identical to what one
would do in flat spacetime, so long as one takes account of the motion of the test masses as
dictated by the gravitational-wave tidal acceleration −Rî0̂ĵ0̂x̂

j, and so long as one is willing

to ignore the tiny effects of O(ωo`h `
2/λ̄2

GW).



44

To make the realistic interferometer achieve high sensitivity, the experimenters introduce
a lot of clever complications, such as the input mirrors of Fig. 8.11 which turn the arms into
Fabry-Perot cavities. All these complications can be analyzed, in the beam splitter’s proper
reference frame, using standard flat-spacetime techniques, so long as one makes sure to take
account of the end-mirror motion as dictated by the gravitational-wave tidal acceleeration.
The direct coupling of the light to the gravitational waves can be neglected, as in our idealized
interferometer.

****************************

EXERCISES

Exercise 26.13 Derivation and Practice: Geodesic motion in TT coordinates
Consider a particle that is at rest in the TT coordinate system of the gravitational-wave
metric (26.134) before the gravitational wave arrives. In the text it is shown that the
particle’s 4-velocity has ux = uy = 0 as the wave passes. Show that uz = 0 and ut = 1 as
the wave passes, so the components of the particle’s 4-velocity are unaffected by the passing
gravitational wave.

Exercise 26.14 Example: Light in an interferometric gravitational wave detector in TT
gauge
Consider the light propagating outward from the beam splitter, along the x arm of an
interferometric gravitational wave detector, as analyzed in TT gauge, so (suppressing the
subscript “x arm” and superscript “out”) the electromagnetic vector potential is Aα =
<(Aαeiφ(x,t) with Aα constant and with φ = −ωo

[

t− x+ 1
2
H(t− x) − 1

2
H(t)

]

[Eqs. (26.140)
and (26.141).

(a) Show that this φ satisfies the nullness equation (26.138), as claimed in the text —
which implies that Aα = <(Aαeiφ(x,t)) satisfies Maxwell’s equations in the geometric
optics limit.

(b) Show that this φ satisfies the initial condition (26.139), as claimed in the text.

(c) Show, by an argument analogous to Eq. (26.76), that ∇~k
~k = 0. Thus, the wave

vector must be the tangent vector to geometric optics rays that are null geodesics
in the gravitational-wave metric. Photons travel along these null geodesics and have
4-momenta ~p = ~~k.

(d) Because the gravitational-wave metric (26.134) is independent of x, the px component
of a photon’s 4-momentum must be conserved along its geodesic world line. Compute
px = kx = −∂φ/∂x, thereby verify this conservation law.

(e) Explain why the photon’s frequency, as measured by observers at rest in our TT
coordinate system, is ω = −kt = −∂φ/∂t. Explain why the rate of change of this
frequency, as computed moving with the photon, is dω/dt ' (∂/∂t + ∂/∂x)ω, and
show that dω/dt ' − 1

2
ωodh/dt.

****************************
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