
Chapter 7

Diffraction

Version 0407.1.K, 10 Nov 2004
Please send comments, suggestions, and errata via email to kip@tapir.caltech.edu and to

rdb@caltech.edu, or on paper to Kip Thorne, 130-33 Caltech, Pasadena CA 91125

7.1 Overview

The previous chapter was devoted to the classical mechanics of wave propagation. We showed
how a classical wave equation can be solved in the short wavelength approximation to yield
Hamilton’s dynamical equations. We showed that, when the medium is time-independent
the frequency of a wave packet is constant. We imported a result from classical mechanics,
the principle of stationary action, to show that the true geometric-optics rays coincide with
paths along which the action or the integral of the phase is stationary. Our physical interpre-
tation of this result was that the waves do indeed travel along every path, from some source
to a point of observation, where they are added together but they only give a significant
net contribution when they can add coherently in phase, i.e. along the true rays. This is,
essentially, Huygens’ model of wave propagation, or, in modern language, a path integral.

Huygens’ principle asserts that every point on a wave front acts as a source of secondary
waves that combine so that their envelope constitutes the advancing wave front. This prin-
ciple must be supplemented by two ancillary conditions, that the secondary waves are only
formed in the direction of wave propagation and that a π/2 phase shift be introduced into
the secondary wave. The reason for the former condition is obvious, that for the latter, less
so. We shall discuss both together with the formal justification of Huygens’ construction
below.

We begin our exploration of the “wave mechanics” of optics in this chapter, and we
shall continue it in Chapters 8 and 9. Wave mechanics differs increasingly from geometric
optics as the wavelength increases relative to the scale length of the phase fronts and the
medium’s inhomogeneities. The number of paths that can combine constructively increases
and the rays that connect two points become blurred. In quantum mechanics, we recognize
this phenomenon as the uncertainty principle and it is just as applicable to photons as to
electrons.

Solving the wave equation exactly is very hard except in very simple circumstances.
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Geometric optics is one approximate method of solving it — a method that works well in the
short wavelength limit. In this chapter and the following ones, we shall develop approximate
techniques that work when the wavelength becomes longer and geometric optics fails.

We begin by making a somewhat artificial distinction between phenomena that arise when
an effectively infinite number of paths are involved, which we call diffraction and which we
describe in this chapter, and those when a few paths, or, more correctly, a few tight bundles
of rays are combined, which we term interference, and whose discussion we defer to the next
chapter.

In Sec. 7.2, we shall present the Fresnel-Helmholtz-Kirchhoff theory that underlies most
elementary discussions of diffraction, and we shall then distinguish between Fraunhofer
diffraction (the limiting case when spreading of the wavefront mandated by the uncertainty
principle is very important), and Fresnel diffraction (which arises when wavefront spreading
is a modest effect and geometric optics is beginning to work, at least roughly). In Sec. 7.3, we
shall illustrate Fraunhofer diffraction by computing the expected angular resolution of the
Hubble Space Telescope, and in Sec. 7.4, we shall analyze Fresnel diffraction and illustrate
it using lunar occultation of radio waves and zone plates.

Many contemporary optical devices can be regarded as linear systems that take an input
wave signal and transform it into a linearly related output. Their operation, particularly
as image processing devices can be considerably enhanced by processing the signal in the
Fourier domain, a procedure known as spatial filtering. In Sec. 7.5 we shall introduce a tool
for analyzing such devices: paraxial Fourier optics — a close analog of the paraxial geometric
optics of Chapter 6. We shall use paraxial Fourier optics in Sec. 7.5 to analyze the phase
contrast microscope and develop the theory of Gaussian beams — the kind of light beam
produced by lasers when their optically resonating cavities have spherical mirrors. Finally,
in Sec. 7.6 we shall analyze the effects of diffraction near a caustic of a wave’s phase field, a
location where geometric optics predicts a divergent magnification of the wave (Sec. 6.6 of
the preceeding chapter). As we shall see, diffraction makes the magnification finite.

7.2 Helmholtz-Kirchhoff Integral

In this section, we shall derive a formalism for describing diffraction. We shall restrict our
attention to the simplest (and, fortunately, the most widely useful) case: a scalar wave with
field variable ψ of frequency ω = ck that satisfies the Helmholtz equation

∇2ψ + k2ψ = 0 (7.1)

except at boundaries. Generally ψ will represent a real valued physical quantity (although it
may, for mathematical convenience, be given a complex representation). This is in contrast
to a quantum mechanical wave function satisfying the Schrödinger equation which is an
intrinsically complex function. The wave is monochromatic and non-dispersive and the
medium is isotropic and homogeneous so that k can be treated as constant. Each of these
assumptions can be relaxed with some technical penalty.

The scalar formalism that we shall develop based on Eq. (7.1) is fully valid for weak
sound waves in a fluid, e.g. air (Chap. 15). It is also fairly accurate, but not precisely so, for
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Fig. 7.1: Surface S for Helmholtz-Kirchhoff Integral. The surface S ′ surrounds the observation
point P and V is the volume bounded by S and S ′. The aperture Q, the incoming wave to the
left of it, and the point P ′ are irrelevant to the formulation of the Helmholtz-Kirchoff integral, but
appear in subsequent applications.

the most widely used application of diffraction theory: the propagation of electromagnetic
waves in vacuo or in a medium with homogeneous dielectric constant. In this case ψ can be
regarded as one of the Cartesian components of the electric field vector, e.g. Ex (or equally
well a Cartesian component of the vector potential or the magnetic field vector). In vacuo or
in a homogeneous dielectric medium, Maxwell’s equations imply that this ψ = Ex satisfies
the scalar wave equation and thence, for fixed frequency, the Helmholtz equation (7.1).
However, when the wave hits a boundary of the medium (e.g. the edge of an aperture, or
the surface of a mirror or lens), its interaction with the boundary can couple the various
components of E, thereby invalidating the simple scalar theory we shall develop. Fortunately,
this polarizational coupling is usually very weak in the paraxial (small angle) limit, and also
under a variety of other circumstances, thereby making our simple scalar formalism quite
accurate.

The Helmholtz equation (7.1) is an elliptic, linear, partial differential equation, and it
thus permits one to express the value ψP of ψ at any point P inside some closed surface S as
an integral over S of some linear combination of ψ and its normal derivative; see Fig. 7.1).
To derive such an expression, we first augment the actual wave ψ in the interior of S with
a second solution of the Helmholtz equation, namely

ψ0 =
eikr

r
. (7.2)

This is a spherical wave originating from the point P, and r is the distance from P to the
point where ψ0 is evaluated. Next we apply Gauss’s theorem, Eq. (1.119), to the vector field
ψ∇ψ0 − ψ0∇ψ and invoke Eq. (7.1), thereby arriving at Green’s theorem:

∫

S+S′

(ψ∇ψ0 − ψ0∇ψ) · dS = −
∫

V

(ψ∇2ψ0 − ψ0∇2ψ)dV

= 0 (7.3)

Here we have introduced a small sphere S ′ of radius r′ surrounding P (Fig. 7.1); V is the
volume between the two surfaces S ′ and S; and for future convenience we have made an
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unconventional choice of direction for the integration element dS: it points into V instead of
outward thereby producing the minus sign in the second expression in Eq. (7.3). As we let
the radius r′ decrease to zero, we find that, ψ∇ψ0 − ψ0∇ψ → −ψ(0)/r′2 + O(1/r′) and so
the integral over S ′ becomes 4πψ(P) ≡ 4πψP . Rearranging, we obtain

ψP =
1

4π

∫

S

(

ψ∇
eikr

r
− eikr

r
∇ψ

)

· dS . (7.4)

Equation (7.4), known as the Helmholtz-Kirchhoff formula, is the promised expression
for the field ψ at some point P in terms of a linear combination of its value and normal
derivative on a surrounding surface. The specific combination of ψ and dS ·∇ψ that appears
in this formula is perfectly immune to contributions from any wave that might originate
at P and pass outward through S (any “outgoing wave”). The integral thus is influenced
only by waves that enter V through S, propagate through V, and then leave through S.
[There cannot be sources inside S, except conceivably at P, because we assumed ψ satisfies
the source-free Helmholtz equation throughout V.] If P is many wavelengths away from the
boundary S, then, to high accuracy, the integral is influenced by the waves ψ only when they
are entering through S (when they are incoming), and not when they are leaving (outgoing).
This fact is important for applications, as we shall see.

7.2.1 Diffraction by an Aperture

Next, let us suppose that some aperture Q of size much larger than a wavelength but much
smaller than the distance to P is illuminated by a distant wave source (Fig. 7.1). (If the
aperture were comparable to a wavelength in size, or if part of it were only a few wavelengths
from P, then polarizational coupling effects at the aperture would be large; our assumption
avoids this complication.) Let the surface S pass through Q, and denote by ψ ′ the wave
incident on Q . We assume that the diffracting aperture has a local and linear effect on ψ ′.
More specifically, we suppose that the wave transmitted through the aperture is given by

ψQ = tψ′ , (7.5)

where t is a complex transmission function that varies over the aperture. In practice, t is
usually zero (completely opaque region) or unity (completely transparent region). However
t can also represent a variable phase factor when, for example, the aperture comprises a
medium of variable thickness and of different refractive index from that of the homogeneous
medium outside the aperture — as is the case in microscopes, telescopes, and other optical
devices.

What this formalism does not allow, though, is that ψQ at any point on the aperture
be influenced by the wave’s interaction with other parts of the aperture. For this reason,
not only the aperture, but any structure that it contains must be many wavelengths across.
To give a specific example of what might go wrong, suppose that electromagnetic radiation
is normally incident upon a wire grid. Surface currents will be induced in the wires by
the wave’s electric field, and those currents will produce a secondary wave that cancels the
primary wave immediately behind each wire, thereby “eclipsing” the wave. If the secondary
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wave from the currents flowing in the next wire is comparable with the first wire’s secondary
wave, then the transmitted net wave field will get modified in a complex, polarization-
dependent manner. Such modifications are negligble if the wires are many wavelengths
apart.

Let us now use the Helmholtz-Kirchoff formula (7.4) to compute the field at P due to
the wave ψQ = tψ′ transmitted through the aperture. Let the surface S of Fig. 7.1 comprise
the aperture Q, a sphere of radius R � r centered on P, and the linear extension of the
aperture to meet the sphere; and assume that the only incoming waves are those which pass
through the aperture. Then, as noted above, when the incoming waves subsequently pass on
outward through S, they contribute negligibly to the integral (7.4), so the only contribution
is from the aperture itself.1

On the aperture, as kr � 1, we can write ∇(eikr/r) ' −ikneikr/r where n is a unit vector
pointing towards P. Similarly, we write ∇ψ ' iktn′ψ′, where n′ is a unit vector along the
direction of propagation of the incident wave (and where our assumption that anything in
the aperture varies on scales long compared to λ̄ = 1/k permits us to ignore the gradient of
t). Inserting these gradients into the Helmholtz-Kirchoff formula, we obtain

ψP = − ik

2π

∫

Q

dS ·
(

n + n′

2

)

eikr

r
tψ′. (7.6)

Eq. (7.6) can be used to compute the wave from a small aperture at any point P in the
far field. It has the form of an integral transform of the incident field variable, ψ ′, where the
integral is over the area of the aperture. The kernel of the transform is the product of several
factors. There is a factor 1/r. This guarantees that the flux falls off as the inverse square
of the distance to the aperture as we might have expected. There is also a phase factor
−ieikr which advances the phase of the wave by an amount equal to the optical path length
between the element of the aperture and P, minus π/2. The amplitude and phase of the
wave ψ′ can also be changed by the transmission function t. Finally there is the geometric
factor dŜ · (n + n′)/2 (with dŜ the unit vector normal to the aperture). This is known as
the obliquity factor, and it ensures that the waves from the aperture propagate only forward
with respect to the original wave and not backward (not in the direction n = −n′). More
specifically, this factor prevents the backward propagating secondary wavelets in Huygens
construction from reinforcing each other to produce a back-scattered wave. When dealing
with paraxial Fourier optics (Sec. 7.5), we can usually set the obliquity factor to unity.

It is instructive to specialize to a point source seen through a small diffracting aperture.
If we suppose that the source has unit strength and is located at P ′, a distance r′ before Q
(Fig. 7.1), then ψ′ = −eikr′

/4πr′, and ψP can be written in the symmetric form

ψP =

∫
(

eikr

4πr

)

it(k′ + k) · dS
(

eikr′

4πr′

)

. (7.7)

1Actually, the incoming waves will diffract around the edge of the aperture onto the back side of the
screen that bounds the aperture, i.e. the side facing P ; and this diffracted wave will contribute to the
Helmholtz-Kirchhoff integral in a polarization-dependent way. However, because the diffracted wave decays
along the screen with an e-folding length of order a wavelength, its contribution will be negligible if the
aperture is many wavelengths across and P is many wavelengths away from the edge of the aperture, as we
have assumed.
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Fig. 7.2: Fraunhofer and Fresnel Diffraction.

We can think of this expression as the Greens function response at P to a δ-function source
at P ′. Alternatively, we can regard it as a propagator from P ′ to P by way of the aperture.

7.2.2 Spreading of the Wavefront

Equation (7.6) [or (7.7)] gives a general prescription for computing the diffraction pattern
from an illuminated aperture. It is commonly used in two complementary limits, called
“Frauhnhofer” and “Fresnel”.

Suppose that the aperture has linear size a and is roughly centered on the geometric ray
from the source point P ′ to the field point P. Consider the variations of the phase φ of
the contributions to ψP that come from various places in the aperture. Using elementary
trigonometry, we can estimate that locations on the aperture’s opposite sides produce phases
at P that differ by ∆φ = k(r2−r1) ∼ ka2/2r, where r1 and r2 are the distances from the two
edges of the aperture to the point P. There are two limiting regimes depending on whether
the aperture is large or small compared with the so-called Fresnel length

rF ≡
(

2πr

k

)1/2

= (λr)1/2. (7.8)

(Note that the Fresnel length depends on the distance r of the field point from the aperture.)
When a� rF , the phase variation ∆φ ∼ ka2/2r is � π and can be ignored; the contributions
from different parts of the aperture are essentially in phase with each other. This is the
Fraunhofer regime. When a� rF so ∆φ� π, the phase variation is of upmost importance
in determining the observed intensity pattern |ψP |2. This is the Fresnel regime; see Fig. 7.2.

We can use an argument familiar, perhaps, from quantum mechanics to deduce the qual-
itative form of the intensity patterns in these two regimes. For simplicity, let the incoming
wave be planar (r′ huge) and let it propagate perpendicular to the aperture as shown in Fig.
7.2. Then geometric optics (photons treated like classical particles) would predict that an
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Fig. 7.3: Geometry for computing the path length between a point Q in the aperture and the
point of observation P. The transverse vector x is used to identify Q in our Fraunhofer analysis
(Sec. 7.3), and x′ is used in our Fresnel analysis (Sec. 7.4).

opaque screen will cast a sharp shadow; the wave leaves the aperture plane as a beam with
a sharp edge. However, wave optics insists that the transverse localization of the wave into
a region of size ∆x ∼ a must produce a spread in its transverse wave vector, ∆kx ∼ 1/a (a
momentum uncertainty ∆px = ~∆kx ∼ ~/a in the language of the Heisenberg uncertainty
principle). This uncertain transverse wave vector produces, after propagating a distance r,
a corresponding uncertainty (∆kx/k)r ∼ r2

F/a in the beam’s transverse size; and this uncer-
tainty superposes incoherently on the aperture-induced size a of the beam to produce a net
transverse beam size

∆x ∼
√

a2 + (r2
F/a)

2

∼ a if r � a2/λ (Fresnel regime) (7.9)

∼
(

λ

a

)

r if r � a2/λ (Fraunhofer regime).

In the nearby, Fresnel regime, the aperture creates a beam whose edges will have the same
shape and size as the aperture itself, and will be reasonably sharp (but with some oscillatory
blurring, associated with the wave-packet spreading, that we shall analyze below). Thus,
in the Fresnel regime the field behaves approximately as one would predict using geometric
optics. By contrast, in the more distant, Fraunhofer regime, wave-front spreading will cause
the transverse size of the entire beam to grow linearly with distance; and, as we shall see,
the intensity pattern typically will not resemble the aperture at all.

7.3 Fraunhofer Diffraction

Consider the Fraunhofer regime of strong wavefront spreading, a � rF , and for simplicity
specialize to the case of an incident plane wave with wave vector k orthogonal to the aperture
plane; see Fig. 7.3. Regard the line along k through the center of the aperture Q as the
“optic axis;” identify points in the aperture by their two-dimensional vectorial separation x
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from that axis; identify P by its distance r from the aperture center and its 2-dimensional
transverse separation rθ from the optic axis; and restrict attention to small-angle diffraction
|θ| � 1. Then the geometric path length between P and a point x on Q [the length denoted
r in Eq. (7.6)—note our change of the meaning of r] can be expanded as

Path length = (r2 − 2rx · θ + x2)1/2 ' r − x · θ +
x2

2r
+ . . . (7.10)

cf. Fig. 7.3. The first term in this expression, r, just contributes an x-independent phase
eikr to the ψP of Eq. (7.6). The third term, x2/2r, contributes a phase variation that is
� 1 here in the Fraunhofer region (but that will be important in the Fresnel region, Sec. 7.4
below). Therefore, in the Fraunhofer region we can retain just the second term, −x · θ and
write Eq. (7.6) in the form

ψP(θ) ∝
∫

e−ikx·θt(x)d2x ≡ t̃(θ) , (7.11)

where d2x is the surface area element in the aperture plane and we have dropped a constant
phase factor and constant multiplicative factors. Thus, ψP(θ) in the Fraunhofer regime is
given by the two-dimensional Fourier transform, denoted t̃(θ), of the transmission function
t(x), with x made dimensionless in the transform by multiplying by k = 2π/λ.

It is usually uninteresting to normalise Fraunhofer diffraction patterns. Moreover, on
those occasions when the absolute value of the observed flux is needed, rather than just
the angular shape of the diffraction pattern, it typically can be derived most easily from
conservation of the total wave energy. This is why we ignore the proportionality factor in
Eq. (7.11).

All of the techniques for handling Fourier transforms (which should be familiar from
quantum mechanics and elsewhere) can be applied to derive Fraunhofer diffraction patterns.
In particular, the convolution theorem turns out to be very useful. It says that the Fourier
transform of the convolution

f2 ⊗ f1 ≡
∫ +∞

−∞

f2(x − x′)f1(x
′)d2x′ (7.12)

of two functions f1 and f2 is equal to the product f̃1(θ)f̃2(θ) of their Fourier transforms,
and conversely. [Here and throughout this chapter we use the optics version of a Fourier
transform in which two-dimensional transverse position x is made dimensionless via the wave
number k; Eq. (7.11) above.]

As an example of the convolution theorem’s power, we shall compute the diffraction
pattern produced by a diffraction grating:

7.3.1 Diffraction Grating

A diffraction grating can be modeled as a finite series of alternating transparent and opaque,
long, parallel stripes. Let there be N transparent and opaque stripes each of width a � λ
(Fig. 7.4 a), and idealize them as infinitely long so their diffraction pattern is one-dimensional.
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Fig. 7.4: a) Diffraction grating formed by N alternating transparent and opaque stripes each of
width a. b) Decomposition of a finite grating into an infinite series of equally spaced δ-functions
that are convolved (the symbol ⊗) with the shape of an individual transparent stripe and then
multiplied (the symbol ×) by a large aperture function covering N such stripes; cf. Eq. (7.17)
c) The resulting Fraunhofer diffraction pattern shown schematically as the Fourier transform of a
series of delta functions multiplied by the Fourier transform of the large aperture and then convolved
with the transform of a single stripe.
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We shall outline how to use the convolution theorem to derive their Fraunhofer diffraction
pattern. The details are left as an exercise for the reader (Ex. 7.4).

First consider a single transparent stripe (slit) of width a centered on x = 0, and measure
the scalar angle θ from the direction of the incident radiation. This single stripe has the
transmission function

t1(x) = 1 |x| < a/2

= 0 |x| > a/2 , (7.13)

so its diffraction pattern is

ψP(θ) ∝ t̃1

∝
∫ a/2

−a/2

eikxθdx (7.14)

∝ sinc

(

kaθ

2

)

,

where sinc(x) ≡ sin(x)/x.
Now the idealized N -slit grating can be considered as an infinite series of δ-functions

with separation 2a convolved with the transmission function for a single slit,

∫ ∞

−∞

[

+∞
∑

n=−∞

δ(y − 2an)

]

t1(x− y)dy (7.15)

and then multiplied by the aperture function

H(x) = 1 |x| < Na

= 0 |x| > Na; (7.16)

more explicitly,

t(x) =

(

∫ ∞

−∞

[

+∞
∑

n=−∞

δ(y − 2an)

]

t1(x− y)dy

)

H(x) , (7.17)

which is shown graphically in Fig. 7.4 b.
The convolution theorem says that the Fourier transform of a convolution of two functions

is the product of the functions’ Fourier transforms, and conversely. Let us apply this theorem
to expression (7.17) for our transmission grating. The diffraction pattern of the infinite
series of δ-functions with spacing 2a is itself an infinite series of δ-functions with reciprocal
spacing 2π/(2ka) = λ/2a (see the hint in Ex. 7.4). This must be multiplied by the Fourier
transform t̃1(θ) of the single slit, and then convolved with the Fourier transform of H(x),
H̃(θ) ∝ sinc(Nkaθ). The result is shown schematically in Fig. 7.4 c. (Each of the transforms
is real, so the one-dimensional functions shown in the figure fully embody them.)

The diffracted energy flux is |ψP |2, where ψP is shown at the bottom of Fig. 7.4. What
the grating has done is channel the incident radiation into a few equally spaced beams with
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directions θ = πp/ka, where p is an integer known as the order of the beam. Each of these
beams has a shape given by |H̃(θ)|2: a sharp central peak with half width (distance from
center of peak to first null of the intensity) λ/2Na, followed by a set of side lobes whose
intensities are ∝ N−1.

The fact that the deflection angles θ = πp/ka of these beams are proportional to k−1 =
λ/2π underlies the use of diffraction gratings for spectroscopy. It is of interest to ask what
the wavelength resolution of such an idealized grating might be. If one focuses attention on
the p’th order beams at two wavelengths λ and δλ (which are located at θ = pλ/2a and
p(λ + δλ)/2a, then one can distinguish the beams from each other when their separation
δθ = pδλ/2a is at least as large as the angular distance λ/2Na between the maximum of
each beam’s diffraction pattern and its first minimum, i.e., when

λ

δλ
. R ≡ Np . (7.18)

R is called the grating’s chromatic resolving power.
Real gratings are not this simple. First they usually work not by modulating the ampli-

tude of the incident radiation in this simple manner, but instead by modulating the phase.
Second, the manner in which the phase is modulated is such as to channel most of the inci-
dent power into a particular order, a technique known as blazing. Third, gratings are often
used in reflection rather than transmission. Despite these complications, the principles of
a real grating’s operation are essentially the same as our idealized grating. Manufactured
gratings typically have N & 10, 000, giving a wavelength resolution for visual light that can
be as small as ∼ 10 pm, i.e. 10−11m.

7.3.2 Babinet’s Principle

We have shown how to compute the Fraunhofer diffraction pattern formed by, for example,
a narrow slit. We might also be interested in the pattern from a complementary aperture, a
needle of width and length the same as those for the slit. We can derive the needle’s pattern
by observing that the sum of the waves from the two apertures should equal the wave from
a completely unaltered incident wave front. That is to say if we exclude the direction of
the incident wave, the field amplitudes diffracted by the two apertures are the negative of
each other, and hence the intensities |ψ|2 are the same. Therefore, the Fraunhofer diffraction
patterns from the needle and the slit—and indeed from any pair of complementary apertures,
e.g., Fig. 7.5—are identical, except in the direction of the incident wave (the “precisely
forward” direction).

7.3.3 Hubble Space Telescope

The Hubble Space Telescope was launched in April 1990 to observe planets, stars and galaxies
above the earth’s atmosphere. One reason for going into space is to avoid the irregular
refractive index variations in the earth’s atmosphere, known, generically, as seeing, which
degrade the quality of the images. (Another reason is to observe the ultraviolet part of
the spectrum, which is absorbed in the earth’s atmosphere.) Seeing typically limits the
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Fig. 7.5: Two complementary apertures used to illustrate Babinet’s Principle.

0 1.22
Dθ/λV

Fig. 7.6: Airy diffraction pattern produced by a circular aperture.

angular resolution of Earth-bound telescopes at visual wavelengths to ∼ 0.5′′. We wish to
compute how much the angular resolution improves by going into space. As we shall see,
the computation is essentially an exercise in Fraunhofer diffraction theory.

The essence of the computation is to idealise the telescope as a circular aperture with
diameter equal to the diameter of the primary mirror. Light from this mirror is actually
reflected onto a secondary mirror and then follows a complex optical path before being
focused onto a variety of detectors. However, this path is irrelevant to the angular resolution.
The purpose of the optics is merely to bring the light to a focus close to the mirror, in order
to produce an instrument that is compact enough to be launched and to match the sizes of
stars’ images to the pixel size on the detector. In doing so, however, the optics leaves the
angular resolution unchanged; the resolution is the same as if we were simply to observe the
light, which passes through the primary mirror’s circular aperture, far beyond the mirror, in
the Fraunhofer region.

If the telescope aperture were very small, for example a pin hole, then the light from
a point source (a very distant star) would create a broad diffraction pattern, and the tele-
scope’s angular resolution would be correspondingly poor. As we increase the diameter of
the aperture, we still see a diffraction pattern, but its angular width diminishes.

Using these considerations, we can compute how well the telescope can distinguish neigh-
boring stars. We do not expect it to resolve them fully if they are closer together on the
sky than the angular width of the diffraction patttern. Of course, optical imperfections and
pointing errors in a real telescope may degrade the image quality even further, but this is
the best that we can do, limited only by the uncertainty principle.
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The calculation of the Fraunhofer amplitude far from the aperture is straightforward:

ψ(θ) ∝
∫

Disk with diameter D

e−ikx·θd2x

∝ jinc

(

kDθ

2

)

(7.19)

where D is the diameter of the aperture (i.e., of the telescope’s primary mirror) and jinc(x) ≡
J1(x)/x with J1 the Bessel function of order one. The flux from the star observed at angle θ
is therefore ∝ jinc2(kDθ/2). This intensity pattern, known as the Airy pattern, is shown in
Fig. 7.6. There is a central “Airy disk” surrounded by a circle where the flux vanishes, and
then further surrounded by a series of concentric rings whose flux diminishes with radius.
Only 16 percent of the total light falls outside the central Airy disk. The angular radius θA

of the Airy disk, i.e. the radius of the dark circle surrounding it, is determined by the first
zero of J1(kDθ/2): θA = 1.22λ/D.

A conventional, though essentially arbitrary, criterion for angular resolution is to say that
two point sources can be distinguished if they are separated in angle by more than θA. For
the Hubble Space Telescope, D = 2.4m and θA ∼ 0.04′′ at visual wavelengths, which is over
ten times better than is achievable on the ground with conventional (non-adaptive) optics.

Initially, there was a serious problem with Hubble’s telescope optics. The hyperboloidal
primary mirror was ground to the wrong shape, so rays parallel to the optic axis did not
pass through a common focus after reflection off a convex hyperboloidal secondary mirror.
This defect, known as spherical aberration, created blurred images. However, it was possible
to correct this error in subsequent instruments in the optical train, and the Hubble Space
Telescope became the most successful telescope of all time, transforming our view of the
Universe.

****************************

EXERCISES

Exercise 7.1 Practice: Convolutions and Fourier Transforms

(a) Calculate the one-dimensional Fourier transforms of the functions f1(x) ≡ e−x2/2σ2

,
and f2 ≡ 0 for x < 0, f2 ≡ e−x/h for x ≥ 0.

(b) Take the inverse transforms of your answers to part (a) and recover the original func-
tions.

(c) Convolve the exponential function f2 with the Gaussian function f1 and then compute
the Fourier transform of their convolution. Verify that the result is the same as the
product of the Fourier transforms of f1 and f2.

Exercise 7.2 Problem: Pointilist Painting
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Fig. 7.7: Diffraction grating formed from three groups of parallel lines.

The neo-impressionist painter George Seurat was a member of the pointillist school. His
paintings consisted of an enormous number of closely spaced dots (of size ∼ 0.4mm)
of pure pigment. The illusion of color mixing was produced only in the eye of the
observer. How far from the painting should one stand in order to obtain the desired
blending of color?

Exercise 7.3 Problem: Thickness of a Human Hair

Conceive and carry out an experiment using light diffraction to measure the thickness
of a hair from your head, accurate to within a factor ∼ 2. [Hint: make sure the source
of light that you use is small enough that its finite size has negligible influence on your
result.]

Exercise 7.4 Derivation: Diffraction Grating

Use the convolution theorem to carry out the calculation of the Fraunhofer diffraction
pattern from the grating shown in Fig. 7.4. [Hint: To show that the Fourier trans-
form of the infinite sequence of equally spaced delta functions is a similar sequence
of delta functions, perform the Fourier transform to get

∑+∞

n=∞
ei2kanθ (aside from a

multiplicative factor); then use the formulas for a Fourier series expansion, and its
inverse, for any function that is periodic with period π/ka to show that

∑+∞

n=−∞
ei2kanθ

is a sequence of delta functions.]

Exercise 7.5 Derivation: Airy Pattern

Derive and plot the Airy diffraction pattern (7.19) and show that 84 percent of the
light is contained within the Airy disk.

Exercise 7.6 Problem: Triangular Diffraction Grating

Sketch the Fraunhofer diffraction pattern you would expect to see from a diffraction
grating made from three groups of parallel lines aligned at angles of 120◦ to each other
(Fig. 7.7).
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Exercise 7.7 Problem: Light Scattering by Particles

Consider the scattering of light by an opaque particle of size a� 1/k. One component
of the scattered radiation is due to diffraction around the particle. This component
is confined to a cone with opening angle ∆θ ∼ π/ka � 1 about the incident wave
direction. It contains power PS = FA, where F is the incident energy flux and A is
the cross sectional area of the particle perpendicular to the incident wave.

(a) Give a semi-quantitative derivation of ∆θ and PS using Babinet’s principle.

(b) Explain why the total “extinction” (absorption plus scattering) cross section is equal
to 2A independent of the shape of the opaque particle.

****************************

7.4 Fresnel Diffraction

We next turn to the Fresnel regime, where the aperture is much larger than the Fresnel
length rF and there is a large phase variation over the aperture. We again specialize to
incoming wave vectors that are approximately orthogonal to the aperture plane and to small
diffraction angles so that we can ignore the obliquity factor. By contrast with the Frauhofer
case, however, we identify P by its distance z from the aperture plane instead of its distance
r from the aperture center, and we use as our integration variable in the aperture x′ ≡ x−rθ
(cf. Fig. 7.3.), thereby writing the dependence of the phase at P on x in the form

∆φ ≡ k × [(path length from x to P) − z] =
kx′2

2z
+O

(

kx′4

z3

)

. (7.20)

In the Fraunhofer region (Sec. 7.3 above), only the linear term −kx · θ in kx′2/2z ' k(x −
rθ)2/r was significant. In the Fresnel region the term quadratic in x is also significant (and
we have changed variables to x′ so as to simplify it), but the O(x′4) term is negligible.

Let us consider the Fresnel diffraction pattern formed by a simple aperture of arbitrary
shape, illuminated by a normally incident plane wave. It is convenient to introduce Cartesian
coordinates (x′, y′) and to define

s =

(

k

πz

)1/2

x′ , t =

(

k

πz

)1/2

y′ . (7.21)

[Notice that (k/πz)1/2 is
√

2/(Fresnel length rF ); cf. Eq. (7.8).] We can thereby rewrite
Eq. (7.6) (setting the obliquity factor to one) in the form

ψP = − ike
ikz

2πz

∫

Q

ei∆φψQdx
′dy′ = − i

2

∫ ∫

eiπs2/2eiπt2/2ψQe
ikzdsdt . (7.22)
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Fig. 7.8: Cornu Spiral.

We shall use this rather general expression in the next section, when discussing Fourier
optics. In this section we shall focus on the details of the Fresnel diffraction pattern for an
incoming plane wave that falls perpendicularly on the aperture, so ψQ is constant over the
aperture. For simplicity, we initially confine attention to a rectangular aperture with edges
along the x′ and y′ directions. Then the two integrals have limits that are independent of each
other and the integrals can be expressed in the form S(smax)−S(smin) and S(tmax)−S(tmin),
so

ψP =
−i
2

[S(smax) − S(smin)][S(tmax) − S(tmin)]ψQe
ikz ≡ −i

2
∆Ss∆StψQe

ikz , (7.23)

where the arguments are the limits of integration and where

S(ξ) ≡
∫ ξ

0

eiπs2/2ds ≡ U(ξ) + iV (ξ) (7.24)

with

U(ξ) =

∫ ξ

0

ds cos(πs2/2) , (7.25)

V (ξ) =

∫ ξ

0

ds sin(πs2/2) . (7.26)

The real functions U(ξ), V (ξ) are known as Fresnel integrals.
It is convenient to exhibit the Fresnel integrals graphically using a Cornu spiral (Fig. 7.8).

This is a graph of the parametric equation [U(ξ), V (ξ)], or equivalently a graph of S(ξ) =
U(ξ) + iV (ξ) in the complex plane. The two terms in Eq. (7.24) can be represented in
amplitude and phase by arrows in the (U, V ) plane reaching from ξ = smin on the Cornu
spiral to ξ = smax, and from ξ = tmin to ξ = tmax.
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The simplest illustration is the totally unobscured, plane wavefront. In this case, the
limits of both integrations extend from −∞ to +∞, which as we see in Fig. 7.8 is an arrow
of length 21/2 and phase π/4. Therefore, ψP is equal to (21/2eiπ/4)2(−i/2)ψQe

ikz = ψQe
ikz,

as we could have deduced simply by solving the Helmholtz equation (7.1) for a plane wave.
This unobscured-wavefront calculation elucidates three issues that we have already met.

First, it illustrates our interpretation of Fermat’s principle in geometric optics. In the limit
of short wavelength, the paths that contribute to the wave field are just those along which
the phase is stationary to small variations in path. Our present calculation shows that,
because of the tightening of the Cornu spiral as one moves toward a large argument, the
contributing paths are those that are separated from the geometric-optics one by less than
a few Fresnel lengths at Q. (For a laboratory experiment with light and z ∼ 2m, a Fresnel
length is typically ∼ 1mm.)

A second, and related, point is that in computing the diffraction pattern from a more
complicated aperture, we need only perform the integral (7.6) in the immediate vicinity of the
geometric-optics ray. We can ignore the contribution from the extension of the aperture Q to
meet the “sphere at infinity” (the surface S in Fig. 7.1) even when the wave is unobstructed
there. The rapid phase variation makes the contribution from S sum to zero.

Third, in integrating over the whole area of the wave front at Q, we have summed
contributions with increasingly large phase differences that add in such a way that the total
has a net extra phase of π/2, relative to the geometric-optics ray. This phase factor cancels
exactly the prefactor −i in the Fresnel-Kirchhoff integral, Eq. (7.6). (This phase factor is
unimportant in the limit of geometric optics.)

7.4.1 Lunar Occultation of a Radio Source

The next simplest case of Fresnel diffraction is the pattern formed by a straight edge. As a
specific example, consider a cosmologically distant source of radio waves that is occulted by
the moon. If we treat the lunar limb as a straight edge, then the radio source will create a
changing diffraction pattern as it passes behind the moon, and the diffraction pattern can
be measured by a radio telescope on earth. We orient our coordinates so the moon’s edge
is along the y′ direction (t direction). Then in Eq. (7.23) ∆St ≡ S(tmax) − S(tmin) =

√
2i is

constant, and ∆Ss ≡ S(smax) − S(smin) is described by the Cornu spiral. Long before the
occultation, ∆Ss will be given by the arrow from (−1/2,−1/2) to (1/2, 1/2), i.e. ∆Ss =

√
2i.

The observed wave amplitude, Eq. (7.23), is therefore ψQe
ikz.

When the moon starts to occult the radio source, the upper bound on the Fresnel integral
begins to diminish from smax = +∞, and the complex vector on the Cornu spiral begins to
oscillate in length (e.g., from A to B in Fig. 7.9) and in phase. The observed flux will also
oscillate, more and more strongly as geometric occultation is approached. At the point of
geometric occultation, the complex vector extends from (−1/2,−1/2) to (0, 0) and so the
observed wave amplitude is one half the unocculted value, and the intensity is reduced to
one fourth. As the occultation proceeds, the length of the complex vector and the observed
flux will decrease monotonically to zero, while the phase continues to oscillate.

Historically, diffraction of a radio source’s waves by the moon led to the discovery of
quasars—the hyperactive nuclei of distant galaxies. In the early 1960s, a team of British
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Fig. 7.9: Diffraction pattern formed by a straight edge and graphical interpretation using Cornu
Spiral.

radio observers led by Cyril Hazard knew that the moon would occult a powerful radio source
named 3C273, so they set up their telescope to observe the development of the diffraction
pattern as the occultation proceded. From the pattern’s observed times of ingress (passage
into the moon’s shadow) and egress (emergence from the moon’s shadow), Hazard determined
the coordinates of 3C273 on the sky. These coordinates enabled Maarten Schmidt at the
200-inch telescope on Palomar Mountain to identify 3C273 optically and discover (from its
optical redshift) that it was surprisingly distant and consequently had an unprecedented
luminosity.

In Hazard’s occultation measurements, the observing wavelength was λ ∼ 0.2 m. Since
the moon is roughly z ∼ 400, 000 km distant, the Fresnel length was about rF =

√
λz ∼ 10

km. The orbital speed of the moon is u ∼ 200 m s−1, so the diffraction pattern took a time
∼ 5rF/u ∼ 4 min to pass through the telescope.

The straight-edge diffraction pattern of Fig. 7.9 occurs universally along the edge of the
shadow of any object, so long as the source of light is sufficiently small and the shadow’s
edge bends on lengthscales long compared to the Fresnel length rF =

√
λz.

7.4.2 Circular Apertures

We have shown how the diffraction pattern for a plane wave can be thought of as formed by
waves that derive from a patch a few Fresnel lengths in size. This notion can be made quan-
titatively useful by reanalyzing the unobstructed wave front in circular polar coordinates.
More specifically: consider, a plane wave incident on an aperture Q that is infinitely large

(no obstruction), and define ρ ≡ |x′|/rF =
√

1
2
(s2 + t2). Then the phase factor in Eq. (7.22)

is ∆φ = πρ2 and the observed wave will thus be given by

ψP = −i
∫ ρ

0

2πρdρeiπρ2

ψQe
ikz

= (1 − eiπρ2

)ψQe
ikz . (7.27)

Now, this integral does not appear to converge as ρ→ ∞. We can see what is happening
if we sketch an amplitude-and-phase diagram (Fig. 7.10). Adding up the contributions to
ψP from each annular ring, we see that as we integrate outward from ρ = 0, the complex



19

Fresnel
Zones

2= 0, 2, 4, . . .

= 1, 3, 5, . . .

Re

Im

ρ

ρ

ψ

ψ
2ρ

2ρ

Fig. 7.10: Amplitude-and-phase diagram for an unobstructed plane wave front, decomposed into
Fresnel zones.

vector has the initial phase retardation of π/2 but then moves on a semi-circle so that by the
time we have integrated out to a radius of rF , i.e. ρ = 1, the contribution to the observed
wave is ψP = 2ψQ in phase with the incident wave. Then, when the integration has been
extended onward to

√
2 rF , ρ =

√
2, the circle has been completed and ψP = 0! The integral

continues on around the same circle as the upper-bound radius is further increased.
Of course, the field must actually have a well-defined value, despite this apparent failure of

the integral to converge. To understand how the field becomes well-defined, imagine splitting
the aperture Q up into concentric annular rings, known as Fresnel half-period zones, of radius√
n rF , where n = 1, 2, 3 . . . . The integral fails to converge because the contribution from

each odd-numbered ring cancels that from an adjacent even-numbered ring. However, the
thickness of these rings decreases as 1/

√
n, and eventually we must allow for the fact that

the incoming wave is not exactly planar; or, equivalently and more usefully, we must allow
for the fact that the wave’s distant source has some finite angular size. The finite size causes
different pieces of the source to have their Fresnel rings centered at slightly different points
in the aperture plane, and this causes our computation of ψP to begin averaging over rings.
This averaging forces the tip of the complex vector to asymptote to the center of the circle
in Fig. 7.10. Correspondingly, due to the averaging, the observed intensity asymptotes to
|ψQ|2.

Although this may not seem to be a particularly wise way to decompose a plane wave
front, it does allow a particularly striking experimental verification of our theory of diffrac-
tion. Suppose that we fabricate an aperture (called a zone plate) in which, for a chosen
observation point P on the optic axis, alternate half-period zones are obscured. Then the
wave observed at P will be the linear sum of several diameters of the circle in Fig. 7.10, and
therefore will be far larger than ψQ. This strong amplification is confined to our chosen spot
on the optic axis; most everywhere else the field’s intensity is reduced, thereby conserving
energy. Thus, the zone plate behaves like a lens. The lens’s focal length is f = kA/2π2,
where A (typically chosen to be a few mm2 for light) is the area of the first half-period zone.

Zone plates are only good lenses when the radiation is monochromatic, since the fo-
cal length is wavelength-dependent, f ∝ λ−1. They have the further interesting property
that they possess secondary foci, where the fields from 3, 5, 7, . . . contiguous zones add up
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coherently (Ex. 7.8).

****************************

EXERCISES

Exercise 7.8 Problem: Zone Plate

(a) Use an amplitude-and-phase diagram to explain why a zone plate has secondary foci
at distances of f/3, f/5, f/7 . . . .

(b) An opaque, perfectly circular disk of diameter D is placed perpendicular to an incoming
plane wave. Show that, at distances r such that rF � D, the disk casts a rather sharp
shadow, but at the precise center of the shadow there should be a bright spot.2 How
bright?

Exercise 7.9 Example: Seeing in the atmosphere.

Stars viewed through the atmosphere appear to have angular diameters of order an arc
second and to exhibit large amplitude fluctuations of flux with characteristic frequencies
that can be as high as 100Hz. Both of these phenomena are a consequence of irregular
variations in the refractive index of the atmosphere. An elementary model of this effect
consists of a thin phase-changing screen, about a km above the ground, on which the
rms phase variation is ∆φ & 1 and the characteristic spatial scale, on which the phase
changes by ∼ ∆φ, is a.

(a) Explain why the rays will be irregularly deflected through a scattering angle ∆θ ∼
(λ/a)∆φ. Strong intensity variation requires that several rays deriving from points on
the screen separated by more than a, combine at each point on the ground. These rays
combine to create a diffraction pattern on the ground with scale b.

(b) Show that the Fresnel length in the screen is ∼
√
ab. Now the time variation arises

because winds in the upper atmosphere with speeds u ∼ 30m s−1 blow the irregularities
and the diffraction pattern past the observer. Use this information to estimate the
Fresnel length, rF , the atmospheric fluctuation scale size a, and the rms phase variation
∆φ. Do you think the assumptions of this model are well satisfied?

Exercise 7.10 Challenge: Multi-Conjugate Adaptive Optics

The technique of Adaptive Optics can be used to improve the quality of the images
observed by a telescope. Bright artificial “laser stars” are created by shining several
lasers at layers of sodium atoms in the upper atmosphere and observing the scattered
light. The wavefronts from these “stars” will be deformed at the telescope due to

2Poisson predicted the existence of this spot as a consequence of Fresnel’s wave theory of light, in or-
der to demonstrate that Fresnel’s theory was wrong. However, Dominique Arago quickly demonstrated
experimentally that the bright spot existed.
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inhomogeneities in the lower atmosphere, and the deformed wavefront shapes can be
measured across the image plane. The light from a much dimmer adjacent astronomical
source can then be processed, e.g. using a deformable reflecting surface, so as to remove
its wavefront distortions. Discuss some of the features that an effective adaptive optics
system needs. Assume the atmospheric model discussed in Ex. 7.9.

Exercise 7.11 Problem: Spy Satellites

Telescopes can also look down through the same atmospheric irregularities as those
discussed in the previous example. In what important respects will the optics differ
from that for telescopes looking upward?

****************************

7.5 Paraxial Fourier Optics

We have developed a linear theory of wave optics which has allowed us to calculate diffrac-
tion patterns in the Fraunhofer and Fresnel limiting regimes. That these calculations agree
with laboratory measurements provides some vindication of the theory and the assumptions
implicit in it. We now turn to practical applications of these ideas, specifically to the ac-
quisition and processing of images by instruments operating throughout the electromagnetic
spectrum. As we shall see, these instruments rely on an extension of paraxial geometric
optics (Sec. 6.4) to situations where diffraction effects are important. Because of the central
role played by Fourier transforms in diffraction [e.g. Eq. (7.11)], the theory underlying these
instruments is called paraxial Fourier optics, or just Fourier optics.

Although the conceptual framework and mathematical machinery for image processing
by Fourier optics were developed over a century ago, Fourier optics has only been widely
exploited during the past thirty years. This maturation has been driven in part by a grow-
ing recognition of similarities between optics and communication theory — for example,
the realization that a microscope is simply an image processing system. The development
of electronic computation has also triggered enormous strides; computers are now seen as
extensions of optical devices, and visa versa. It is a matter of convenience, economics and
practicality to decide which parts of the image processing are carried out with mirrors, lenses,
etc., and which parts are performed numerically.

One conceptually simple example of optical image processing would be an improvement
in one’s ability to identify a faint star in the Fraunhofer diffraction rings (“fringes”) of a
much brighter star. As we shall see below [Eq. (7.33) and subsequent discussion], the bright
image of a source in a telescope’s or microscope’s focal plane has the same Airy diffraction
pattern as we met in Eq. (7.19) and Fig. 7.6. If the shape of that image could be changed
from the ring-endowed Airy pattern to a Gaussian, then it would be far easier to identify
a nearby feature or faint star. One way to achieve this would be to attenuate the incident
radiation at the telescope aperture in such a way that, immediately after passing through
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the aperture, it has a Gaussian profile instead of a sharp-edged profile. Its Fourier transform
(the diffraction pattern in the focal plane) would then also be a Gaussian. Such a Gaussian-
shaped attenuation is difficult to achieve in practice, but it turns out—as we shall see–that
there are easier options.

Before exploring these options, we must lay some foundations, beginning with the concept
of coherent illumination in Sec. 7.5.1, and then point spread functions in Sec. 7.5.2.

7.5.1 Coherent Illumination

If the radiation that arrives at the input of an optical system derives from a single source,
e.g. a point source that has been collimated into a parallel beam by a converging lens,
then the radiation is best described by its complex amplitude ψ (as we are doing in this
chapter). An example might be a biological specimen on a microscope slide, illuminated
by an external point source, for which the phases of the waves leaving different parts of
the slide are strongly correlated with each other. This is called coherent illumination. If, by
contrast, the source is self luminous and of non-negligible size, with the atoms or molecules in
its different parts radiating independently—for example a cluster of stars—then the phases
of the radiation from different parts are uncorrelated, and it may be the intensity of the
radiation, not the complex amplitude, that obeys well-defined (non-probabilistic) evolution
laws. This is called incoherent illumination. In this chapter we shall develop Fourier optics
for a coherently illuminating source (the kind of illumination tacitly assumed in previous
sections of the chapter) . A parallel theory with a similar vocabulary can be developed for
incoherent sources, and some of the foundations for it will be laid in Chap. 8. In Chap. 8
we shall also develop a more precise formulation of the concept of coherence.

7.5.2 Point Spread Functions

In our treatment of paraxial geometric optics (Sec. 6.4), we showed how it is possible to
regard a group of optical elements as a sequence of linear devices and relate the output rays
to the input by linear operators, i.e. matrices. This chapter’s theory of diffraction is also
linear and so a similar approach can be followed. As in Sec. 6.4, we will restrict attention
to small angles relative to some optic axis (“paraxial Fourier optics”). We shall describe
the wave field at some distance zj along the optic axis by the function ψj(x), where x is a
two dimensional vector perpendicular to the optic axis as in Fig. 7.3. If we consider a single
linear optical device, then we can relate the output field ψ2 at z2 to the input ψ1 at z1 using
a Greens’ function denoted P21(x2,x1):

ψ2(x2) =

∫

P21(x2,x1)d
2x1ψ1. (7.28)

If ψ1 were a δ-function, then the output would be simply given by the function P21, up
to normalization. For this reason, P21 is usually known as the Point Spread Function.
Alternatively, we can think of it as a propagator. If we now combine two optical devices
sequentially, so the output of the first device ψ2 is the input of the second, then the point
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spread functions combine in the natural manner of any linear propagator to give a total
point spread function

P31(x3,x1) =

∫

P32(x3,x2)d
2x2P21(x2,x1) . (7.29)

Just as the simplest matrix for paraxial, geometric-optics propagation is that for free
propagation through some distance d, so also the simplest point spread function is that for
free propagation. From Eq. (7.22) we see that it is given by

P21 =
−ik
2πd

eikd exp

(

ik(x1 − x2)
2

2d

)

, (7.30)

where d = z2 − z1 is the distance of propagation along the optic axis. Note that this P21

depends upon only on x1 − x2 and not on x1 or x2 individually, as it should because there
is translational invariance in the x1,x2 planes.

A thin lens adds or subtracts an extra phase ∆φ to the wave, and ∆φ depends quadrat-
ically on distance from the optic axis (|x|), so that the angle of deflection, which is pro-
portional to the gradient of the phase, will depend linearly on x. Correspondingly, the
point-spread function for a thin lens is

P21 = exp

(−ik|x1|2
2f

)

δ(x2 − x1) (7.31)

where f is the focal length, positive for a converging lens and negative for a diverging lens.

7.5.3 Abbé’s Description of Image Formation by a Thin Lens

We can use these two point spread functions to give a wave description of the production of
images by a single converging lens, in parallel to the geometric-optics description of Figs. 6.5
and 6.7. We shall do this in two stages. First, we shall propagate the wave from the source
plane S a distance u in front of the lens, through the lens L, to its focal plane F a distance f
behind the lens (Fig. 7.11). Then we shall propagate the wave a further distance v− f from
the focal plane to the image plane. We know from geometric optics that v = fu/(u − f)
[Eq. (6.59)]. We shall restrict ourselves to u > f so v is positive and the lens forms a real
image.

Using Eqs. (7.29), (7.30), (7.31), we obtain for the propagator from the source plain to
the focal plane

PFS =

∫

PFL′d2x′LPL′Ld
2xLPLS

=

∫

ik

2πf
eikf exp

(

ik(xF − x′
L)2

2f

)

d2xL′δ(xL′ − xL) exp

(−ik|xL|2
2f

)

×−ik
2πu

eiku exp

(

ik(xS − xL)2

2u

)

d2xL

=
−ik
2πf

eik(f+u) exp

(

− ikx2
F

2(v − f)

)

exp

(

− ikxF · xS

f

)

. (7.32)
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Fig. 7.11: Wave theory of a single converging lens.

Here we have extended all integrations to ±∞ and have used the values of the Fresnel
integrals at infinity, S(±∞) = ±(1 + i)/2 to get the expression on the last line. The wave
in the focal plane is given by

ψF (xF ) =

∫

PFSd
2xSψS(xS)

= − ik

2πf
eik(f+u) exp

(

− ikx2
F

2(v − f)

)

ψ̃S(xF/f) (7.33)

where

ψ̃S(θ) =

∫

d2xSψS(xS)e−ikθ·xS . (7.34)

Thus, we have shown that the field in the back focal plane is, apart from an unimportant
phase factor, proportional to the Fourier transform of the field in the source plane; in other
words, the focal-plane field is the Fraunhofer diffraction pattern of the input wave. That
this has to be the case can be understood from Fig. 7.11. The focal plane F is where the
converging lens brings parallel rays from the source plane to a focus. By doing so, the lens

in effect brings in from “infinity” the Fraunhofer diffraction pattern of the source, and places

it into the focal plane.

It now remains to propagate the final distance from the focal plane to the image plane.
We do so with the free-propagation point-spread function of Eq. (7.30):

ψI =

∫

PIFd
2xFψF (7.35)

= −
(u

v

)

eik(u+v) exp

(

ikx2
I

2(v − f)

)

ψS(xS = −xIu/v) . (7.36)

This says that (again ignoring a phase factor) the wave in the image plane is just a magnified

version of the wave in the source plane, as we might have expected from geometric optics. In
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words, the lens acts by taking the Fourier transform of the source and then takes the Fourier

transform again to recover the source structure.3

The focal plane is a convenient place to process the image by altering its Fourier transform—
a process known as spatial filtering. One simple example is a low-pass filter in which a small
circular aperture or “stop” is introduced into the focal plane, thereby allowing only the low-
order spatial Fourier components to be transmitted to the image plane. This will obviously
lead to considerable smoothing of the wave. An application is to the output beam from
a laser (Chap. 9), which ought to be smooth but has high spatial frequency structure on
account of noise and imperfections in the optics. A low-pass filter can be used to clean the
beam. In the language of Fourier transforms, if we multiply the transform of the source, in
the back focal plane, by a small-diameter circular aperture function, we will thereby convolve
the image with a broad Airy-disk smoothing function. Conversely, we can exclude the low
spatial frequencies with a high-pass filter, e.g. by placing an opaque circular disk in the focal
plane, centered on the optic axis. This will have the effect of accentuating boundaries and
discontinuities in the source and can be used to highlight features where the gradient of the
brightness is considerable. Another type of filter is used when the image is pixellated and
thus has unwanted structure with wavelength equal to pixel size: a narrow range of frequen-
cies centered around this spatial frequency is removed by putting an appropriate filter in the
back focal plane.

7.5.4 Phase Contrast Microscopy

“Phase contrast microscopy” is a very useful technique for studying small objects, such as
transparent biological specimens, that modify the phase of coherent illuminating light, but
not its amplitude. Let us suppose that the phase change in the specimen, φ(x), is small, as
often is the case for biological specimens. We can then write the field just after it passes

3This description of image formation was developed by Ernst Abbé in 1873.
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through the specimen as

ψS(x) = H(x)eiφ(x) ' H(x) + iφ(x)H(x) ; (7.37)

see Fig. 7.12. Here H is the microscope’s aperture function, unity for |x| < D/2 and zero
for |x| > D/2, with D the aperture diameter. The intensity is not modulated, and therefore
the effect of the specimen on the wave is very hard to observe unless one is clever.

Equation (7.37) and the linearity of the Fourier transform imply that the wave in the
focal plane is the sum of (i) the Fourier transform of the aperture function, i.e. an Airy
function (bright spot with very small diameter), and (ii) the transform of the phase function
convolved with that of the aperture (in which the fine-scale variations of the phase function
dominate and push φ̃ to large radii in the focal plane, Fig. 7.12, and the aperture has little
influence):

ψF ∼ jinc

(

kD|xF |
2f

)

+ iφ̃

(

kxF

f

)

. (7.38)

If a high pass filter is used to remove the Airy disk completely then the remaining wave in
the image plane will be essentially φ magnified by v/u. The flux will still be quadratic in
the phase and so the contrast in the image will be small. A better technique is to phase
shift the Airy disk in the focal plane by ±π/2 so that the two terms in Eq. (7.38) are in
phase. The intensity variations [∝ (1±φ)2] will now be linear in the phase φ. An even better
procedure is to attenuate the Airy disk until its amplitude is comparable with the rms value
of φ and also phase shift it by ±π/2. This will maximise the contrast in the final image.
Analogous techniques are used in communications to inter-convert amplitude-modulated and
phase-modulated signals.

7.5.5 Gaussian Beams

The mathematical techniques of Fourier optics enable us to analyze the structure and prop-
agation of light beams that have Gaussian profiles. (Such Gaussian beams are the natural
output of ideal lasers, they are the real output of spatially filtered lasers, and they are widely
used for optical communications, interferometry and other practical applications. Moreover,
they are the closest one can come in the real world of wave optics to the idealization of a
geometric-optics pencil beam.)

Consider a beam that is precisely plane-fronted, with a Gaussian profile, at location z = 0
on the optic axis,

ψ0 = exp

(−$2

σ2
0

)

; (7.39)

here $ = |x| is radial distance from the optic axis. The form of this same wave at a distance
z further down the optic axis can be computed by folding this ψ0 into the point spread
function (7.30) (with the distance d replaced by z). The result is

ψz =
1

(1 + z2/z2
0)

1/2
exp

( −$2

σ2
0(1 + z2/z2

0)

)

exp

[

i

(

k$2

2z(1 + z2
0/z

2)
− tan−1 z

z0
+ kz

)]

,

(7.40)
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where

z0 =
kσ2

0

2
=
πσ2

0

λ
. (7.41)

Formula (7.40) for the freely propagating beam is valid for negative z as well as positive.
Notice that the beam’s radius (distance from optic axis to the point of 1/e attenuation of
its amplitude) is

σz = σ0(1 + z2/z2
0)

1/2 . (7.42)

This beam radius is a minimum at z = 0 (the beam’s waist), and increases away from there
in either direction.

The Gaussian beam’s form (7.41) near some arbitrary location z is fully characterized
by three parameters: the wavelength λ = 2π/k, the distance z to the waist, and the beam
radius at the waist σ0 [from which the local beam radius σz can be computed by Eq. (7.42)].
At location z, the beam’s wave fronts (surfaces of constant phase) have radius of curvature
Rz = z(1 + z2

0/z
2). The radius of curvature is infinite at the waist. Near the waist, in

the Fresnel region(λz)1/2 � σ0, it decreases with distance as Rz ' z2
0/z. It reaches a

minimum value at the boundary between the Fresnel and the Fraunhofer regions, and it
then begins to increase as Rz ∝ z. Correspondingly, in the Fresnel region the beam radius is
nearly constant, σz ' σ0, while in the Fraunhofer region it increases linearly with distance,
σz ' σ0z/z0. These are just the behaviors that one should expect from the uncertainty
principle analysis at the end of Sec. 7.2.

It is easy to compute the effects of a thin lens on a Gaussian beam by folding the ψz at the
lens’s location into the lens point spread function (7.31). The result is a phase change that
preserves the general Gaussian form of the wave, but alters the distance to the waist and the
radius at the waist. Thus, by judicious placement of lenses (or, equally well curved mirrors),
and judicious choices of their focal lengths, one can tailor the parameters of a Gaussian
beam to fit whatever optical device one is working with. For example, if one wants to send a
Gaussian beam into a self-focusing optical fiber, one should place its waist at the entrance to
the fiber, and adjust its waist size there to coincide with that of the fiber’s Gaussian mode of
propagation (the mode analyzed in Ex. 7.12). The beam will then enter the fiber smoothly,
and will propagate steadily along the fiber, with the effects of the transversely varying index
of refraction continually compensating for the effects of diffraction so as to keep the phase
fronts flat and the waist size constant.

****************************

EXERCISES

Exercise 7.12 Problem: Guided Gaussian Beams

Consider a self-focusing optical fiber discussed in Chap. 6 in which the refractive index
is

n(x) = n0(1 − α2$2)1/2 , (7.43)

where $ = |x|.
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(a) Write down the Helmholtz equation in cylindrical polar coordinates and seek an ax-
isymmetric mode for which ψ = R($)Z(z) , where R,Z are functions to be determined
and z measures distance along the fiber. In particular show that there exists a mode
with a Gaussian radial profile that propagates along the fiber without spreading.

(b) Compute the group and phase velocities along the fiber for this mode.

Exercise 7.13 Problem: Convolution via Fourier Optics

(a) Suppose that you have two thin sheets with transmission functions t = g(x, y) and
t = h(x, y), and you wish to compute via Fourier optics the convolution

g ⊗ h(xo, yo) ≡
∫ ∫

g(x, y)h(x+ xo, y + yo)dxdy . (7.44)

Devise a method for doing so using Fourier optics. [Hint: use several lenses and a pro-
jection screen with a pinhole through which passes light whose intensity is proportional
to the convolution; place the two sheets at strategically chosen locations along the optic
axis, and displace one of the two sheets transversely with respect to the other.]

(b) Suppose you wish to convolve a large number of different one-dimensional functions
simultaneously, i.e. you want to compute

gj ⊗ hj(xo) ≡
∫

gj(x)hj(x + xo)dx (7.45)

for j = 1, 2, . . .. Devise a way to do this via Fourier optics using appropriately con-
structed transmissive sheets and cylindrical lenses.

****************************

7.6 Diffraction at a Caustic

In Sec. 6.6, we described how caustics can be formed in general in the geometric-optics
limit—e.g., on the bottom of a swimming pool when the water’s surface is randomly rippled,
or behind a gravitational lens. We chose as an example a simple phase changing screen
illuminated by a point source and observed from some fixed distance r, and we showed how
a pair of images would merge as the transverse distance x of the observer from the caustic
decreases to zero. We expanded the phase in a Taylor series φ(s, x) = as3/3−bxs, where the
coefficients a, b are constant and s is a transverse coordinate in the screen (cf. Fig. 6.13). We
were then able to show that the magnification of the images diverged ∝ x−1/2 [Eq. (6.77)],
as the caustic was approached. This raised the question of what happens when we take into
account the finite wavelength of the wave.
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Fig. 7.13: The Airy Function Ai(z) describing diffraction at a caustic. The argument is z =
−bx/a1/3 where x is distance from the caustic and a, b are constants.

We are now in a position to answer this question. We simply use the Helmholtz-Kirchhoff
integral (7.6) to write the expression for the amplitude measured at position x in the form

ψ(x) ∝ 1

λr

∫

dseiφ(s,x) , (7.46)

ignoring multiplicative constants and constant phase factors. The phase φ varies rapidly
with s at large |s|, so we can treat the limits of integration as ±∞. The integral turns out
to be the Airy function

∫ ∞

−∞

ds cos(as3/3 − bxs) =
2π

a1/3
Ai(−bx/a1/3) . (7.47)

Ai(z) is displayed in Fig. 7.13.
The asymptotic behavior of Ai(z) is

Ai(z) ∼ π−1/2z−1/4 sin(2z3/2/3 + π/4), z → −∞

∼ e−2z3/2/3

2π1/2z1/4
, z → ∞ . (7.48)

We see that the amplitude ψ remains finite as the caustic is approached instead of diverging
as in the geometric-optics limit. Furthermore, for x > 0 (left part of Fig. 7.13), where an
observer sees two geometric-optics images, the envelope of ψ diminishes ∝ x−1/4, so that the
intensity |ψ|2 decreases ∝ x−1/2 just as in the geometric-optics limit. The peak magnification
is ∝ a−2/3. What is actually seen is a series of bands alternating dark and light with spacing
calculable using ∆(2z3/2/3) = π or ∆x ∝ x−1/2. At sufficient distance from the caustic, it
will not be possible to resolve these bands and a uniform illumination of average intensity
will be observed. In other words, we have recovered the geometric-optics limit. The scalings
derived above, just like the geometric-optics scalings are a universal property of this type of
caustic (the simplest caustic of all, the “fold”).

There is a helpful analogy, familiar from quantum mechanics. Consider a particle in
a harmonic potential well in a very excited state. Its wave function is given in the usual
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way using Hermite polynomials of large order. Close to the classical turning point, these
functions change from being oscillatory to an exponential decay, just like the Airy function
(and if we were to expand about the turning point, we would recover Airy functions). What
is happening, of course is that the probability density of finding the particle close to its
turning point diverges because it is moving very slowly there, and the oscillations are due
to interference between waves associated with the particle moving in opposite directions. If
we just consider the motions of photons parallel to the aperture then we have essentially the
same problem here; the oscillations are associated with interference of the waves associated
with the motions of the photons in two beams, one from each of the geometric-optics images.
This is our first illustration of the formation of large contrast interference fringes when only a
few beams are combined. We shall meet other examples of such interference in the following
chapter.

****************************

EXERCISES

Exercise 7.14 Problem: Wavelength scaling at a caustic

Assume that the phase variation introduced at the screen in Fig. 6.14 is non-dispersive
so that the φ(s, x) in Eq. (7.46) is φ ∝ λ−1. Show that the peak magnification of the
interference fringes at the caustic scales with wavelength ∝ λ−4/3. Also show that the
spacing of the fringes at a given observing position is ∝ λ.

****************************
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