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1.1 Overview

In this book, we shall adopt a different viewpoint on the laws of physics than that found
in most elementary texts. In elementary textbooks, the laws are expressed in terms of
quantities (locations in space or spacetime, momenta of particles, etc.) that are measured
in some coordinate system or reference frame. For example, Newtonian vectorial quantities
(momenta, electric fields, etc.) are triplets of numbers [e.g., (1.7,3.9, —4.2)] representing the
vectors’ components on the axes of a spatial coordinate system, and relativistic 4-vectors are
quadruplets of numbers representing components on the spacetime axes of some reference
frame.

By contrast, in this book, we shall express all physical quantities and laws in a geometric
form that is independent of any coordinate system. For example, in Newtonian physics,
momenta and electric fields will be vectors described as arrows that live in the 3-dimensional,
flat Euclidean space of everyday experience. They require no coordinate system at all for
their existence or description—though sometimes coordinates will be useful. We shall state
physical laws, e.g. the Lorentz force law, as geometric, coordinate-free relationships between
these geometric, coordinate free quantities.

By adopting this geometric viewpoint, we shall gain great conceptual power and often also
computational power. For example, when we ignore experiment and simply ask what forms
the laws of physics can possibly take (what forms are allowed by the requirement that the laws
be geometric), we shall find remarkably little freedom. Coordinate independence strongly
constrains the laws (see, e.g., Sec. 1.4 below). This power, together with the elegance of the
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Fig. 1.1: The three frameworks and arenas for the classical laws of physics, and their relationship
to each other.

geometric formulation, suggests that in some deep (ill-understood) sense, Nature’s physical
laws are geometric and have nothing whatsoever to do with coordinates or reference frames.

The mathematical foundation for our geometric viewpoint is differential geometry (also
often called “tensor analysis” by physicists). This differential geometry can be thought of as
an extension of the vector analysis with which all readers should be familiar.

There are three different frameworks for the classical physical laws that scientists use, and
correspondingly three different geometric arenas for the laws; cf. Fig. (1.1). General relativity
is the most accurate classical framework; it formulates the laws as geometric relationships
in the arena of curved j-dimensional spacetime. Special relativity is the limit of general
relativity in the complete absence of gravity; its arena is flat, 4-dimensional Minkowski
spacetime. Newtonian physics is the limit of general relativity when (i) gravity is weak but
not necessarily absent, (ii) relative speeds of particles and materials are small compared to
the speed of light ¢, and (iii) all stresses (pressures) are small compared to the total density
of mass-energy; its arena is flat, 3-dimensional Fuclidean space with time separated off and
made universal (by contrast with the frame-dependent time of relativity).

In Parts -V of this book (statistical physics, optics, elasticity theory, fluid mechanics,
plasma physics) we shall confine ourselves to the Newtonian and special relativistic formula-
tions of the laws, and accordingly our arenas will be flat Euclidean space and flat Minkowski
spacetime. In Part VI we shall extend many of the laws we have studied into the domain of
strong gravity (general relativity), i.e., the arena of curved spacetime.

In Parts I and II (statistical physics and optics), in addition to confining ourselves to flat
space or flat spacetime, we shall avoid any sophisticated use of curvilinear coordinates; i.e.,
when using coordinates in nontrivial ways, we shall confine ourselves to Cartesian coordinates
in Euclidean space, and Lorentz coordinates in Minkowski spacetime. This chapter is an
introduction to all the differential geometric tools that we shall need in these limited arenas.

In Parts III, IV, and V, when studying elasticity theory, fluid mechanics, and plasma
physics, we will use curvilinear coordinates in nontrivial ways. As a foundation for them,
at the beginning of Part III we will extend our flat-space differential geometric tools to
curvilinear coordinate systems (e.g. cylindrical and spherical coordinates). Finally, at the
beginning of Part VI, we shall extend our geometric tools to the arena of curved spacetime.



In this chapter we shall alternate back and forth, one section after another, between flat-
space differential geometry and the laws of physics, using each to illustrate and illuminate the
other. We begin in Sec. 1.2 by recalling the foundational concepts of Newtonian physics and
of special relativity. Then in Sec. 1.3 we develop our first set of differential geometric tools:
the tools of coordinate-free tensor algebra. In Sec. 1.4 we illustrate our tensor-algebra tools by
using them to describe—without any coordinate system or reference frame whatsoever—the
kinematics of point particles that move through the Euclidean space of Newtonian physics
and through relativity’s Minkowski spacetime; the particles are allowed to collide with each
other and be accelerated by an electromagnetic field. In Sec. 1.5, we extend the tools of tensor
algebra to the domain of Cartesian and Lorentz coordinate systems, and then in Sec. 1.6
we use these extended tensorial tools to restudy the motions, collisions, and electromagnetic
accelerations of particles. In Sec. 1.7 we discuss rotations in Euclidean space and Lorentz
transformations in Minkowski spacetime, and we develop relativistic spacetime diagrams in
some depth and use them to study such relativistic phenomena as length contraction, time
dilation, and simultaneity breakdown. In Sec. 1.8 we illustrate the tools we have developed
by asking whether the laws of relativity permit a highly advanced civilization to build time
machines for traveling backward in time as well as forward. In Sec. 1.9 we develop additional
differential geometric tools: directional derivatives, gradients, and the Levi-Civita tensor, and
in Sec. 1.10 we use these tools to discuss Maxwell’s equations and the geometric nature of
electric and magnetic fields. In Sec. 1.11 we develop our final set of geometric tools: volume
elements and the integration of tensors over spacetime, and in Sec. 1.12 we use these tools
to define the stress tensor of Newtonian physics and relativity’s stress-energy tensor, and to
formulate very general versions of the conservation of 4-momentum.

1.2 Foundational Concepts

1.2.1 Newtonian Foundational Concepts

The arena for the Newtonian laws is a spacetime composed of the familiar 3-dimensional
Euclidean space of everyday experience (which we shall call 3-space), and a universal time t.
Sometimes we shall denote points in 3-space by capital script letters such as P and Q. These
points and the 3-space in which they live require no coordinate system for their definition.

A scalar is a single number that we associate with a point, P, in this space. We are
interested in scalars that represent physical quantities, e.g., temperature measured on the
thermodynamical scale. When a scalar can be associated with all points in some region of
space we call it a scalar field.

A wector in Euclidean 3-space (e.g., the arrow Ax of Fig. 1.2) can be thought of as a
straight arrow that reaches from one point, P, to another, Q. Sometimes we shall select
one point O in 3-space as an “origin” and identify all other points, say Q@ and P, by their
vectorial separations xo and xp from that origin.

The Euclidean distance Ao between two points P and Q in 3-space can be measured with
a ruler and requires no coordinate system for its definition. (If one does have a coordinate
system, it can be computed by the Pythagorean formula.) This distance is also regarded as
the length |Ax| of the vector Ax that reaches from P to Q, and the square of that length is



Fig. 1.2: A Euclidean 3-space diagram depicting two points P and Q, their vectorial separations
Zp and Tg from the (arbitrarily chosen) origin O, and the vector A¥ = o — ¥p connecting them.

denoted
|Ax)? = (Ax)? = (Ao)? . (1.1)

Of particular importance is the case when P and Q are neighboring points and Ax is
a differential quantity dx. We can think of such a vector as residing at P and if we can
associate a vector with every point, then we have a vector field. Now the product of a scalar
with a vector is still a vector. So if, for example, we consider a single element of a fluid at
two (universal) times, separated by dt, and multiply the displacement dx of the fluid element
by 1/dt, we obtain a new vector, the velocity v = dx/dt. Performing this operation at every
point P in the fluid defines the velocity field v(P). Similarly, the sum (or difference) of
two vectors is also a vector and so taking the difference of two velocity measurements and
multiplying by 1/dt generates the acceleration a = dv/dt. Multiplying by a (scalar) mass
gives a force F = ma; dividing an electrically produced force by the fluid element’s charge
gives another vector, the electric field E = F/q, and so on. We can define inner products of
pairs of vectors at a point (e.g., force and displacement) to obtain a new scalar (e.g., work),
and cross products of vectors to obtain a new vector (e.g., torque). By taking the difference
of two scalars or vectors, residing at adjacent points P and Q at the same absolute time, we
define standard functions of vector calculus, the gradient and divergence. In this fashion,
which we trust is quite familiar, and which we shall elucidate and generalize below, we can
construct all of the standard scalars and vectors of Newtonian physics. What is important
is that these physical quantities also require no coordinate system for their definition. They
are geometric objects residing in Euclidean 3-space at a particular time.

It is a fundamental (though often ignored) principle of physics that the Newtonian physical
laws must all be expressible as geometric relationships between these geometric objects and
that these relationships do not depend upon any coordinate system or orientation of axes or
the time. We shall return to this principle throughout this book.

1.2.2 Special Relativistic Foundational Concepts'

Because the nature and geometry of Minkowski spacetime are far less obvious intuitively
than those of Euclidean 3-space, we shall need a crutch in our development of the Minkowski
foundational concepts. That crutch will be inertial reference frames. We shall use them to
develop in turn the following frame-independent Minkowski-spacetime concepts: events, 4-
vectors, the principle of relativity, geometrized units, the interval and its invariance, and

IFor further detail see, e.g., Taylor and Wheeler (1992); pp. 5-29, 51, 53, 54, and 63-70 of Misner, Thorne,
and Wheeler (1973), and a forthcoming book by Hartle (2002); and chapter 1 of Schutz (1985).



spacetime diagrams.

An inertial reference frame is a (conceptual) three-dimensional latticework of measuring
rods and clocks with the following properties: (i) The latticework moves freely through
spacetime (i.e., no forces act on it), and is attached to gyroscopes so it does not rotate with
respect to distant, celestial objects. (i) The measuring rods form an orthogonal lattice and
the length intervals marked on them are uniform when compared to, e.g., the wavelength of
light emitted by some standard type of atom or molecule; and therefore the rods form an
orthonormal, Cartesian coordinate system with the coordinate z measured along one axis,
y along another, and z along the third. (4ii) The clocks are densely packed throughout the
latticework so that, ideally, there is a separate clock at every lattice point. (iv) The clocks
tick uniformly when compared, e.g., to the period of the light emitted by some standard
type of atom or molecule; i.e., they are ideal clocks. (v) The clocks are synchronized by the
Einstein synchronization process: If a pulse of light, emitted by one of the clocks, bounces
off a mirror attached to another and then returns, the time of bounce ¢, as measured by
the clock that does the bouncing is the average of the times of emission and reception as
measured by the emitting and receiving clock: ¢, = %(te +t,).2

Our second fundamental relativistic concept is the event. An event is a precise location
in space at a precise moment of time; i.e., a precise location (or “point”) in 4-dimensional
spacetime. We sometimes will denote events by capital script letters such as P and Q —
the same notation as for points in Euclidean 3-space; there need be no confusion, since we
will avoid dealing with 3-space points and Minkowski-spacetime points simultaneously.

A J-vector (also often referred to as a vector in spacetime) is a straight arrow AZ reaching
from one event P to another Q. We often will deal with 4-vectors and ordinary (3-space)
vectors simultaneously, so we shall need different notations for them: bold-face Roman font
for 3-vectors, Ax, and arrowed italic font for 4-vectors, AZ. Sometimes we shall identify an
event P in spacetime by its vectorial separation Zp from some arbitrarily chosen event in
spacetime, the “origin” O.

An inertial reference frame provides us with a coordinate system for spacetime. The
coordinates (2°, 2!, 22, 2%) = (¢, x,y, 2) which it associates with an event P are P’s location
(x,y, z) in the frame’s latticework of measuring rods, and the time t of P as measured by
the clock that sits in the lattice at the event’s location. (Many apparent paradoxes in special
relativity result from failing to remember that the time ¢ of an event is always measured by
a clock that resides at the event, and never by clocks that reside elsewhere in spacetime.)

It is useful to depict events on spacetime diagrams, in which the time coordinate t = 2°
of some inertial frame is plotted upward, and two of the frame’s three spatial coordinates,
x = 2! and y = 22, are plotted horizontally. Figure 1.3 is an example. Two events P and Q
are shown there, along with their vectorial separations ¥p and ¥ from the origin and the
vector AT = ¥o — Tp that separates them from each other. The coordinates of P and Q,
which are the same as the components of Zp and Zg in this coordinate system, are (tp, zp,

2For a deeper discussion of the nature of ideal clocks and ideal measuring rods see, e.g., pp. 23-29 and
395-399 of Misner, Thorne, and Wheeler (1973).
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Fig. 1.3: A spacetime diagram depicting two events P and Q, their vectorial separations ¥p and
Zo from the (arbitrarily chosen) origin, and the vector A¥ = Zo — Zp connecting them.

yp, zp) and (tg, xg, Yo, 20); and correspondingly, the components of AZ are

ASL’O:AT,:tQ—T/p, ASL’IIAJJ:SL’Q—JJP,
Ar? = Ay =yo —yp, A2*°=Az=20—2p. (1.2)

We shall denote these components of AZ more compactly by Az®, where the « index (and
every other lower case Greek index that we shall encounter) takes on values t = 0, z = 1,
y =2, and z = 3. Similarly, in 3-dimensional Euclidean space, we shall denote the Cartesian
components Ax of a vector separating two events by Az’ where the j (and every other
lower case Latin index) takes on the values x = 1, y = 2, and z = 3.

When the physics or geometry of a situation being studied suggests some preferred inertial
frame (e.g., the frame in which some piece of experimental apparatus is at rest), then we
typically will use as axes for our spacetime diagrams the coordinates of that preferred frame.
On the other hand, when our situation provides mo preferred inertial frame, or when we
wish to emphasize a frame-independent viewpoint, we shall use as axes the coordinates of a
completely arbitrary inertial frame and we shall think of the spacetime diagram as depicting
spacetime in a coordinate-independent, frame-independent way:.

The coordinate system (¢, x,y, z) provided by an inertial frame is sometimes called an
inertial coordinate system, and sometimes a Minkowski coordinate system (a term we shall
not use), and sometimes a Lorentz coordinate system [because it was Lorentz (1904) who
first studied the relationship of one such coordinate system to another, the Lorentz trans-
formation|. We shall use the terms “Lorentz coordinate system” and “inertial coordinate
system” interchangeably, and we shall also use the term Lorentz frame interchangeably with
inertial frame. A physicist or other intelligent being who resides in a Lorentz frame and
makes measurements using its latticework of rods and clocks will be called an observer.

Although events are often described by their coordinates in a Lorentz reference frame,
and vectors by their components (coordinate differences), it should be obvious that the
concepts of an event and a vector need not rely on any coordinate system whatsoever for
their definition. For example, the event P of the birth of Isaac Newton, and the event Q of
the birth of Albert Einstein are readily identified without coordinates. They can be regarded
as points in spacetime, and their separation vector is the straight arrow reaching through
spacetime from P to Q. Different observers in different inertial frames will attribute different
coordinates to each birth and different components to the births’ vectorial separation; but



all observers can agree that they are talking about the same events P and Q in spacetime
and the same separation vector AZ. In this sense, P, Q, and AZ are frame-independent,
geometric objects (points and arrows) that reside in spacetime.

The principle of relativity states that Every (special relativistic) law of physics must
be expressible as a geometric, frame-independent relationship between geometric, frame-
independent objects, i.e. objects such as points in spacetime and vectors, which represent
physical quantities such as events and particle momenta.

Since the laws are all geometric (i.e., unrelated to any reference frame), there is no way
that they can distinguish one inertial reference frame from any other. This leads to an
alternative form of the principle of relativity (one commonly used in elementary textbooks
and equivalent to the above): All the (special relativistic) laws of physics are the same in
every inertial reference frame, everywhere in spacetime. A more operational version of this
principle is the following: Give identical instructions for a specific physics experiment to two
different observers in two different inertial reference frames at the same or different locations
in Minkowski (i.e., gravity-free) spacetime. The experiment must be self-contained, i.e.,
it must not involve observations of particles or fields that come to the observer from the
external universe. For example, an unacceptable experiment would be a measurement of the
anisotropy of the Universe’s cosmic microwave radiation and a computation therefrom of the
observer’s velocity relative to the radiation’s mean rest frame. An acceptable experiment
would be a measurement of the speed of light using the rods and clocks of the observer’s own
frame. The principle of relativity says that in this or any other self-contained experiment,
the two observers in their two different inertial frames must obtain identically the same
experimental results—to within the accuracy of their experimental techniques. Since the
experimental results are governed by the (nongravitational) laws of physics, this is equivalent
to the statement that all physical laws are the same in the two inertial frames.

Perhaps the most central of special relativistic laws is the one stating that the speed
of light ¢ in vacuum is frame-independent, i.e., is a constant, independent of the inertial
reference frame in which it is measured. It is illustrative to see how this comes about from
the laws of electromagnetism (which we assume to be familiar) applied in one reference
frame. Suppose that we have a large charge () and a test charge q. There will be a radial
electrostatic force Fi between them, o Qq/|Ax|?, when they are separated by a distance
|Ax|; this force can be measured through their mutual acceleration. Now take a long straight
wire, with high resistance, and use it to connect () to earth and allow the charge to flow
along this wire with an initial decay time At. The current I o< ()/At can then be measured.
Place ¢ the same distance |Ax| from the wire and then start it moving with speed v parallel
to the wire. There will be a measurable radial electromagnetic force Fy,, acting on q. As the
reader can verify, we can use the ratio of these forces to predict the speed of light:

2| Ax|vF.\ ?

This (quite impractical) thought experiment demonstrates that, provided one is prepared
to trust the laws of electromagnetism and their famous consequence, electromagnetic radia-
tion, then the speed of light is a derivable quantity and all physicists in all reference frames
should measure the same value for it in accordance with the principle of relativity. This need



not be an additional postulate underlying relativity theory.

The constancy of the speed of light was verified with nine-digit accuracy in an era when
the units of length (centimeters) and the units of time (seconds) were defined independently.
By 1983, the constancy had become so universally accepted that it was used to redefine the
centimeter (which was hard to measure precisely) in terms of the second (which is much
easier to measure with modern technology): The centimeter is now related to the second in
such a way that the speed of light is precisely ¢ = 2.99792458 x 10'° cm/s = 299,792, 458
m/s; i.e., one centimeter is the distance traveled by light in (1/2.9979245) x 10~ '%seconds.

Because of this constancy of the light speed, it is permissible when studying special
relativity to set ¢ to unity. Doing so is equivalent to the relationship

c = 2.99792458 x 10%cm/s = 1 (1.4)

between seconds and centimeters; i.e., equivalent to
1 second = 2.99792458 x 10'° cm . (1.5)
We shall refer to units in which ¢ = 1 as geometrized units, and we shall adopt them

throughout this book, when dealing with relativistic physics, since they make equations
look much simpler. Occasionally it will be useful to restore the factors of ¢ to an equation,
thereby converting it to ordinary (cgs or mks) units. This restoration is achieved easily
using dimensional considerations. For example, the equivalence of mass m and energy £ is
written in geometrized units as € = m. In cgs units £ has dimensions ergs = gram cm? /sec?,
while m has dimensions of grams, so to make £ = m dimensionally correct we must multiply
the right side by a power of ¢ that has dimensions cm?/sec?, i.e. by ¢?; thereby we obtain
E =mc

We turn, next, to another fundamental concept, the interval (As)? between the two
events P and Q whose separation vector is AZ. In a specific but arbitrary inertial reference
frame, (As)? is given by

(As)? = —(At)? 4+ (Az)* + (Ay)? + (A2)? = —(At)* + Z SijAx' Azt ; (1.6)
2¥)
cf. Eq. (1.2). Here ¢;; is the Kronecker delta, (unity if ¢ = j; zero otherwise) and the spatial
indices i and j are summed over 1, 2, 3. If (As)? > 0, the events P and Q are said to have a
spacelike separation; if (As)? = 0, their separation is null or lightlike; and if (As)? < 0, their
separation is timelike. For timelike separations, (As)? < 0 implies that As is imaginary; to
avoid dealing with imaginary numbers, we describe timelike intervals by

(AT)? = —(As)? (1.7)

whose square root A7 is real.

The coordinate separation between P and O depends on one’s reference frame; i.e., if
Az® and Az® are the coordinate separations in two different frames, then Az® # Ax®.
Despite this frame dependence, the principle of relativity forces the interval (As)? to be the
same in all frames:

(As)? = —(At) + (Ax)? + (Ay)? + (Az)*
= —(A) + (AT + (Ay)? + (A2) (1.8)
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Fig. 1.4: Geometry for proving the invariance of the interval.

We shall sketch a proof for the case of two events P and Q whose separation is timelike:
Choose the spatial coordinate systems of the primed and unprimed frames in such a way
that (i) their relative motion (with speed  that will not enter into our analysis) is along the
x direction and the 2’ direction, (ii) event P lies on the x and 2’ axes, and (iii) event Q lies in
the z-y plane and in the 2’-y’ plane, as shown in Fig. 1.4. Then evaluate the interval between
P and Q in the unprimed frame by the following construction: Place a mirror parallel to the
x-z plane at precisely the height h that permits a photon, emitted from P, to travel along
the dashed line of Fig. 1.4 to the mirror, then reflect off the mirror and continue along the
dashed path, arriving at event Q. If the mirror were placed lower, the photon would arrive
at the spatial location of Q sooner than the time of Q; if placed higher, it would arrive later.
Then the distance the photon travels (the length of the two-segment dashed line) is equal
to cAt = At, where At is the time between events P and Q as measured in the unprimed
frame. If the mirror had not been present, the photon would have arrived at event R after
time At, so cAt is the distance between P and R. From the diagram it is easy to see that
the height of R above the x axis is 2h — Ay, and the Pythagorean theorem then implies that

(As)? = —(At)?* + (Ax)* + (Ay)* = —(2h — Ay)* + (Ay)*. (1.9)
The same construction in the primed frame must give the same formula, but with primes
(As')? = —(At)? + (A2')? + (AyY)? = — (21 — AyY')? + (Ay')? . (1.10)

The proof that (As’)?> = (As)? then reduces to showing that the principle of relativity
requires that distances perpendicular to the direction of relative motion of two frames be
the same as measured in the two frames, b’ = h, Ay’ = Ay. We leave it to the reader to
develop a careful argument for this [Ex. 1.2].

Because of its frame invariance, the interval (As)? can be regarded as a geometric property
of the vector AZ that reaches from P to Q; we shall call it the squared length (AZ)? of AT:

(AT)? = (As)? . (1.11)
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This invariant interval between two events is as fundamental to Minkowski spacetime as
the Euclidean distance between two points is to flat 3-space. Just as the Euclidean distance
gives rise to the geometry of 3-space, as embodied, e.g., in Euclid’s axioms, so the interval
gives rise to the geometry of spacetime, which we shall be exploring. If this spacetime
geometry were as intuitively obvious to humans as is Euclidean geometry, we would not
need the crutch of inertial reference frames to arrive at it. Nature (presumably) has no need
for such a crutch. To Nature (it seems evident), the geometry of Minkowski spacetime, as
embodied in the invariant interval, is among the most fundamental aspects of physical law.

Before we leave this central idea, we should emphasize that vacuum electromagnetic
radiation is not the only type of wave. In this course, we shall encounter dispersive media,
like optical fibers or plasmas, where signals travel slower than c¢; we shall analyze sound
waves and seismic waves where the governing laws do not involve electromagnetism at all.
How do these fit into our special relativistic framework? The answer is simple. Each of these
waves requires a background medium that is at rest in one particular frame (not necessarily
inertial) and the velocity of the wave, specifically the group velocity, is most simply calculated
in this frame from the fundamental laws. We can then use the kinematic rules of Lorentz
transformation to compute the velocity in another frame. However if we had chosen to
compute the wave speed in the second frame directly, using the same fundamental laws,
we would have gotten the same answer, albeit with the expenditure of greater effort. All
waves are in full compliance with the principle of relativity. What is special about vacuum
electromagnetic waves and, by extension, photons is that no medium (or “ether” as it used
to be called) is needed for them to propagate. Their speed is therefore the same in all frames.

This raises an interesting question. What about other waves that do not require a
background medium? What about electron de Broglie waves? Here the fundamental wave
equation, Schrodinger’s or Dirac’s, is mathematically different from Maxwell’s and contains
an important parameter, the electron rest mass. This allows the fundamental laws of rela-
tivistic quantum mechanics to be written in a form that is the same in all inertial reference
frames and which allows an electron, considered as either a wave or a particle, to travel at
a different speed when measured in a different frame.

So, what then about non-electromagnetic waves that do not have an associated rest mass?
For a long while, we thought that neutrinos provided a good example, but we now appreciate
that they too, like electrons, have rest masses. However, there are particles that have not
yet been detected like photinos (the hypothesized, supersymmetric partners to photons) or
gravitons (and their associated gravitational waves that we shall discuss in Chapter 26) that
are believed to exist without a rest mass (or an ether!), just like photons. Must these travel
at the same speed as photons? The answer to this question, according to the principle of
relativity, is “yes”. The reason is simple. Suppose there were two such waves (or particles)
whose governing laws led to different speeds, ¢ and ¢ < ¢ each the same in all reference
frames. If we then move with speed ¢’ in the direction of propagation of the second wave, we
would bring it to rest, in conflict with our hypothesis. Therefore all signals, whose governing
laws require them to travel with a speed that has no governing parameters must travel with
a unique speed which we call “c”. The speed of light is more fundamental to relativity than
light itself!
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EXERCISES

Exercise 1.1 Practice: Geometrized Units
Convert the following equations from the geometrized units in which they are written to
cgs/Gaussian units:

(a)

(b)
(c)

The “Planck time” tp expressed in terms of Newton’s gravitation constant G and
Planck’s constant h, tp = vVGh. What is the numerical value of tp in seconds? in
meters?

The Lorentz force law mdv/dt = e(E + v x B).

The expression p = hAwn for the momentum p of a photon in terms of its angular
frequency w and direction n of propagation.

How tall are you, in seconds? How old are you, in centimeters?

Exercise 1.2 Derivation and Example: Invariance of the Interval

Complete the derivation of the invariance of the interval given in the text [Egs. (1.9) and
(1.10)], using the principle of relativity in the form that the laws of physics must be the
same in the primed and unprimed frames. In particular:

(a)

Having carried out the construction shown in Fig. 1.4 in the unprimed frame, use the
same mirror and photons for the analogous construction in the primed frame. Argue
that, independently of the frame in which the mirror is at rest (unprimed or primed),
the fact that the reflected photon has (angle of reflection) = (angle of incidence) in
the primed frame implies that this is also true for this same photon in the unprimed
frame. Thereby conclude that the construction leads to Eq. (1.10) as well as to (1.9).

Then argue that the perpendicular distance of an event from the common z and z’
axis must be the same in the two reference frames, so b’ = h and Ay’ = Ay; whence
Egs. (1.10) and (1.9) imply the invariance of the interval. [For a leisurely version of
this argument, see Secs. 3.6 and 3.7 of Taylor and Wheeler (1992).]

Skookoskookok ok sk skok sk skokok sk kokosk sk okok sk kokok skokoksk

1.3 Tensor Algebra Without a Coordinate System

We now pause in our development of the geometric view of physical law, to introduce, in a
coordinate-free way, some fundamental concepts of differential geometry: tensors, the inner
product, the metric tensor, the tensor product, and contraction of tensors. In this section
we shall allow the space in which the concepts live to be either 4-dimensional Minkowski
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spacetime, or 3-dimensional Euclidean space; we shall denote its dimensionality by /N; and
we shall use spacetime’s arrowed notation A for vectors even though the space might be
Euclidean 3-space.

We have already defined a vector Aasa straight arrow from one point, say P, in our space
to another, say Q. Because our space is flat, there is a unique and obvious way to transport
such an arrow from one location to another, keeping its length and direction unchanged.?
Accordingly, we shall regard vectors as unchanged by such transport. This enables us to
ignore the issue of where in space a vector actually resides; it is completely determined by
its direction and its length.

Fig. 1.5: A rank-3 tensor T.

A rank-n tensor T is, by definition, a real-valued, linear function of n vectors. Pictorially
we shall regard T as a box (Fig. 1.5) with n slots in its top, into which are inserted n vectors,
and one slot in its end, out of which rolls computer paper with a single real number printed
on it: the value that the tensor T has when evaluated as a function of the n inserted vectors.
Notationally we shall denote the tensor by a bold-face sans-serif character T

T, _,_,_). (1.12)
—_——
7 slots in which to put the vectors

If T is a rank-3 tensor (has 3 slots) as in Fig. 1.5, then its value on the vectors A, B, C' will
be denoted T(A, B, C). Linearity of this function can be expressed as

T(eE + fF,B,C) = eT(E,B,C) + fT(F,B,C) , (1.13)

where e and f are real numbers, and similarly for the second and third slots.

We have already defined the squared length (A)? = A% of a vector A as the squared
distance (in 3-space) or interval (in spacetime) between the points at its tail and its tip. The
inner product A - B of two vectors is defined in terms of the squared length by

A.Ezi (A+ By~ (A-By] . (1.14)

In Euclidean space this is the standard inner product, familiar from elementary geometry.
Because the inner product A - B is a linear function of each of its vectors, we can regard

it as a tensor of rank 2. When so regarded, the inner product is denoted g(_,_ ) and is

called the metric tensor. In other words, the metric tensor g is that linear function of two

vectors whose value is given by o L
g(A,B)=A-B. (1.15)

3This is not so in curved spaces, as we shall see in Part VI.
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Notice that, because A-B=B- ff, the metric tensor is symmetric in its two slots; i.e., one
gets the same real number independently of the order in which one inserts the two vectors
into the slots:
g(A, B) = g(B, A) (1.16)
With the aid of the inner product, we can regard any vector A as a tensor of rank one:
The real number that is produced when an arbitrary vector C is inserted into A’s slot is

AC)=A.C. (1.17)
From three (or any number of) vectors ff, B , C we can construct a tensor, their tensor
product, defined as follows:

A®@B® C(E,F,G) = A(E)B(F)C(G) = (A-E)(B- F)(C-G) . (1.18)

Here the first expression is the notation for the value of the new tensor, A® B®C evaluated
on the three vectors E , F , é; the middle expression is the ordinary product of three real
numbers, the value of A on E, the value of B on F , and the value of C on é; and the
third expression is that same product with the three numbers rewritten as scalar products.
Similar definitions can be given (and should be obvious) for the tensor product of any two
or more tensors of any rank; for example, if T has rank 2 and S has rank 3, then

T®S(E,F,G, H,J)=T(E,F)S(G,H,J). (1.19)

One last geometric (i.e. frame-independent) concept we shall need is contraction. We
shall 1llustrate this concept first by a simple example, then give the general definition. From
two vectors A and B we can construct the tensor product A® B (a second-rank tensor), and
we can also construct the scalar product A - B (a real number, i.e. a scalar, i.e. a rank-0
tensor). The process of contraction is the construction of A-B from A® B

contraction(A®@ B) = A- B . (1.20)

One can show fairly easily using component techniques (Sec. 1.5 below) that any second-rank
tensor T can be expressed as a sum of tensor products of vectors, T = AB+C®D+.. 3
and correspondlngly, it is natural to define the contraction of T to be contraction(T) =
A-B+C-D+.... Note that this contraction process lowers the rank of the tensor by two,
from 2 to 0. Slmllarly, for a tensor of rank n one can construct a tensor of rank n — 2 by
contraction, but in this case one must specify which slots are to be contracted. For example,
if T is a third rank tensor, expressible as T = A9BC+E®F®G+ ..., then the
contraction of T on its first and third slots is the rank-1 tensor (vector)

1&3contraction(A@ B C+EQF@G+...)=(A-CO\B+(E-G)F+... . (1.21)

All the concepts developed in this section (vectors, tensors, metric tensor, inner product,
tensor product, and contraction of a tensor) can be carried over, with no change whatsoever,
into any vector space* that is endowed with a concept of squared length.

4or, more precisely, any vector space over the real numbers. If the vector space’s scalars are complex

numbers, as in quantum mechanics, then slight changes are needed.
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1.4 Particle Kinetics and Lorentz Force Without a Ref-
erence Frame

In this section we shall illustrate our geometric viewpoint by formulating the laws of motion
for particles, first in Newtonian physics and then in special relativity.

Newtonian Particle Kinetics

In Newtonian physics, a classical particle moves through Euclidean 3-space, as universal
time ¢ passes. At time ¢ it is located at some point x(t) (its position). The function x(t)
represents a curve in 3-space, the particle’s trajectory. The particle’s velocity v(t) is the time
derivative of its position, its momentum p(t) is the product of its mass m and velocity, and
its acceleration a(t) is the time derivative of its velocity

v(t) =dx/dt, p(t)=mv(t), a(t)=dv/dt=d*x/dt*. (1.22)

Since points in 3-space are geometric objects (defined independently of any coordinate sys-
tem), so also are the trajectory x(t), the velocity, the momentum, and the acceleration.
(Physically, of course, the velocity has an ambiguity; it depends on one’s standard of rest.
However, some arbitrary choice of standard of rest has been built into our formalism by our
specific choice of the Euclidean 3-space.)

Newton’s second law of motion states that the particle’s momentum can change only if
a force F acts on it, and that its change is given by

dp/dt =ma=F . (1.23)

If the force is produced by an electric field E and magnetic field B, then this law of motion
takes the familiar Lorentz-force form

dp/dt = ¢(E +v x B) (1.24)

(here we have used the vector cross product, which will not be introduced formally un-
til Sec. 1.7 below). Obviously, these laws of motion are geometric relationships between
geometric objects.

Relativistic Particle Kinetics

In special relativity, a particle moves through 4-dimensional spacetime along a curve (its
world line) which we shall denote, in frame-independent notation, by Z(7). Here 7 is time
as measured by an ideal clock that the particle carries (the particle’s proper time), and Z is
the location of the particle in spacetime when its clock reads 7 (or, equivalently, the vector
from the arbitrary origin to that location).

The particle typically will experience an acceleration as it moves—e.g., an acceleration
produced by an external electromagnetic field. This raises the question of how the acceler-
ation affects the ticking rate of the particle’s clock. We define the accelerated clock to be
i1deal if its ticking rate is totally unaffected by its acceleration, i.e., if it ticks at the same
rate as a freely moving (inertial) ideal clock that is momentarily at rest with respect to it.
The builders of inertial guidance systems for airplanes and missiles always try to make their
clocks as acceleration-independent, i.e., as ideal, as possible.
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We shall refer to the inertial frame in which a particle is momentarily at rest as its
momentarily comoving inertial frame or momentary rest frame. Since the particle’s clock
is ideal, a tiny interval A7 of its proper time is equal to the lapse of coordinate time in
its momentary rest frame, A7 = At. Moreover, since the two events Z(7) and Z(7 + A7)
on the clock’s world line occur at the same spatial location in its momentary rest frame,
Azr® = 0 (where ¢ = 1, 2, 3), the invariant interval between those events is (As)? =
—(At)? + 37, Ar' Al oy = —(At)? = —(A7)?. This shows that the particle’s proper time T
is equal to the square root of the invariant interval, T = \/—s2, along its world line.

Figure 1.6 shows the world line of the accelerated particle in a spacetime diagram where
the axes are coordinates of an arbitrary Lorentz frame. This diagram is intended to emphasize
the world line as a frame-independent, geometric object. Also shown in the figure is the
particle’s 4-velocity i, which (by analogy with the velocity in 3-space) is the time derivative
of its position:

U =dz/dr . (1.25)
This derivative is defined by the usual limiting process
daz .. Z(r+ A1) —Z(7)
iy = dm, T 029

The squared length of the particle’s 4-velocity is easily seen to be —1:

_dF dF  di-dF

=& dr @y =_1. (1.27)

i’ = g(u, @)

The last equality follows from the fact that dz - d¥ is the squared length of dx which equals
the invariant interval (As)? along it, and (d7)? is minus that invariant interval.

x

Fig. 1.6: Spacetime diagram showing the world line #(7) and 4-velocity @ of an accelerated particle.
Note that the 4-velocity is tangent to the world line.

The particle’s 4-momentum is the product of its 4-velocity and rest mass
p=mi =mdZ/dr = dZ/d( . (1.28)
Here the parameter ( is a renormalized version of proper time,

(=1/m. (1.29)
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This ¢, and any other renormalized version of proper time with position-independent renor-
malization factor, are called affine parameters for the particle’s world line. Expression (1.28),
together with the unit length of the 4-velocity @? = —1, implies that the squared length of
the 4-momentum is

pr=-m*. (1.30)

In quantum theory a particle is described by a relativistic wave function which, in the
geometric optics limit (Chapter 6), has a wave vector k that is related to the classical

particle’s 4-momentum by .
k=7p/h. (1.31)

The above formalism is valid only for particles with nonzero rest mass, m # 0. The
corresponding formalism for a particle with zero rest mass can be obtained from the above
by taking the limit as m — 0 and d7 — 0 with the quotient d{ = d7/m held finite. More
specifically, the 4-momentum of a zero-rest-mass particle is well defined (and participates in
the conservation law to be discussed below), and it is expressible in terms of the particle’s
affine parameter ¢ by Eq. (1.28)

. dr

= c (1.32)
However, the particle’s 4-velocity @ = p/m is infinite and thus undefined; and proper time
7 = m( ticks vanishingly slowly along its world line and thus is undefined. Because proper
time is the square root of the invariant interval along the world line, the interval between
two neighboring points on the world line vanishes identically; and correspondingly the world
line of a zero-rest-mass particle is null. (By contrast, since dr? > 0 and ds* < 0 along the
world line of a particle with finite rest mass, the world line of a finite-rest-mass particle is
timelike.)

The 4-momenta of particles are important because of the law of conservation of 4-
momentum (which, as we shall see in Sec. 1.6, is equivalent to the conservation laws for
energy and ordinary momentum): If a number of “initial” particles, named A =1,2,3, ...
enter a restricted region of spacetime )V and there interact strongly to produce a new set of
“final” particles, named A = 1,2,3, ... (Fig. 1.7), then the total 4-momentum of the final
particles must be be the same as the total 4-momentum of the initial ones:

Y a=) Pa. (1.33)
A A

Note that this law of 4-momentum conservation is expressed in frame-independent, geometric
language—in accord with Einstein’s insistence that all the laws of physics should be so
expressible.

If a particle moves freely (no external forces and no collisions with other particles), then
its 4-momentum p’ will be conserved along its world line, dp/d( = 0. Since p'is tangent to the
world line, this means that the direction of the world line never changes; i.e., the free particle
moves along a straight line through spacetime. To change the particle’s 4-momentum, one
must act on it with a 4-force F ,

dp/dr = F . (1.34)
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X

Fig. 1.7: Spacetime diagram depicting the law of 4-momentum conservation for a situation where
two particles, numbered 1 and 2 enter an interaction region V in spacetime, there interact strongly,
and produce two new particles, numbered 1 and 2. The sum of the final 4-momenta, pj + p5, must
be equal to the sum of the initial 4-momenta, p; + Po.

If the particle is a fundamental one (e.g., photon, electron, proton), then the 4-force must
leave its rest mass unchanged,

0=dm?/dr = —dp®/dr = —2p - dp/dr = —2f - F ; (1.35)

i.e., the 4-force must be orthogonal to the 4-momentum.

As a specific example, consider a fundamental particle with charge g and rest mass m # 0,
interacting with an electromagnetic field. It experiences an electromagnetic 4-force whose
relativistic form we shall deduce from simple geometric considerations. The Newtonian
version of the electromagnetic force [Eq. (1.24)] is proportional to ¢ and contains one piece
(electric) that is independent of velocity v, and a second piece (magnetic) that is linear in
v. It is reasonable to expect that, in order to produce this Newtonian limit, the relativistic
4-force will be proportional to ¢ and will be linear in the 4-velocity . Linearity means there
must exist some second-rank tensor F(__, ) (the “electromagnetic field tensor”) such that

dp/dr = F(_) = qF(_, @) . (1.36)

Because the 4-force F must be orthogonal to the particle’s 4-momentum and thence also to
its 4-velocity, F' -4 = F(u) = 0, expression (1.36) must vanish when @ is inserted into its
empty slots. In other words, for all timelike unit-length vectors i,

F(i,@) =0 . (1.37)

It is an instructive exercise (Ex. 1.3) to show that this is possible only if F is antisymmetric,
so the electromagnetic 4-force is

dp/dr = qF(_, %), where F(A,B) = —F(B, A) for all A and B . (1.38)

This is the relativistic form of the Lorentz force law. In Sec. 1.10 below, we shall deduce the
relationship of F to the electric and magnetic fields, and the relationship of this relativistic
Lorentz force to its Newtonian form (1.24).
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This discussion of particle kinematics and the electromagnetic force is elegant, but per-
haps unfamiliar. In Secs. 1.6 and 1.10 we shall see that it is equivalent to the more elementary
(but more complex) formalism based on components of vectors.
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EXERCISES

Exercise 1.3 Derivation and Example: Antisymmetry of Electromagnetic Field Tensor
Show that Eq. (1.37) can be true for all timelike, unit-length vectors « if and only if F is
antisymmetric. [Hints: (i) Show that the most general second-rank F can be written as the
sum of a symmetric tensor S and an antisymmetric tensor A, and that the antisymmetric
piece contributes nothing to Eq. (1.37). (ii) Let B and C be any two vectors such that B+C
and B — C are both timelike; show that S(B,C) = 0. (iii) Convince yourself (if necessary
using the component tools developed in the next section) that this result, together with the
4-dimensionality of spacetime and the large arbitrariness inherent in the choice of Aand B ,
implies S vanishes (i.e., it gives zero when any two vectors are inserted into its slots).]
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1.5 Component Representation of Tensor Algebra’

Euclidean 3-space

In the Euclidean 3-space of Newtonian physics, there is a unique set of orthonormal
basis vectors {e;,e,,e.} = {e1, ey, €3} associated with any Cartesian coordinate system
{z,y,2} = {2*, 2%, 23} = {21, 29, 23}. [In Cartesian coordinates in Euclidean space, we will
usually place indices down, but occasionally we will place them up. It doesn’t matter. By
definition, in Cartesian coordinates a quantity is the same whether its index is down or up.]
The basis vector e; points along the x; coordinate direction, which is orthogonal to all the
other coordinate directions, and it has unit length, so

€€, = 5jk . (139)
Any vector A in 3-space can be expanded in terms of this basis,
A = Ajej . (140)

Here and throughout this book, we adopt the Einstein summation convention: repeated
indices (in this case j) are to be summed (in this 3-space case over j = 1,2,3). By virtue
of the orthonormality of the basis, the components A; of A can be computed as the scalar

product
Aj =A- ej . (141)

°For a more detailed treatment see, e.g. chapters 2 and 3 of Schutz (1985), or pp. 6062, 74-89, and
201-203 of Misner, Thorne, and Wheeler (1973).
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Fig. 1.8: (a) The orthonormal basis vectors e; associated with a Euclidean coordinate system in
3-space; (b) the orthonormal basis vectors €, associated with an inertial (Lorentz) reference frame
in Minkowski spacetime.

(The proof of this is straightforward: A -e; = (Axey) - e; = Ai(ey, - ;) = Apdy; = Aj.)
Any tensor, say the third-rank tensor T(_,_,_ ), can be expanded in terms of tensor
products of the basis vectors:
T=Tje®e; Qe . (1.42)

The components T;;;, of T can be computed from T and the basis vectors by the generalization
of Eq. (1.41)
Ejk = T(ei, ej, ek) . (143)

(This equation can be derived using the orthonormality of the basis in the same way as
Eq. (1.41) was derived.) As an important example, the components of the metric are
gix = g(ej,ex) = e, - e, = 0, [where the first equality is the method (1.43) of comput-
ing tensor components, the second is the definition (1.15) of the metric, and the third is the
orthonormality relation (1.39)]:

gjk = 0;; in any orthonormal basis in 3-space. (1.44)

In Part VI we shall often use bases that are not orthonormal; in such bases, the metric
components will not be 0.

The components of a tensor product, e.g. T(_,_,_)®S(_,_), are easily deduced by
inserting the basis vectors into the slots [Eq. (1.43)]; they are T(e;, ej,e;) ® S(e;,en) =
TiikSim [cf. Eq. (1.18)]. In words, the components of a tensor product are equal to the
ordinary arithmetic product of the components of the individual tensors.

In component notation, the inner product of two vectors and the value of a tensor when
vectors are inserted into its slots are given by

as one can easily show using previous equations. Finally, the contraction of a tensor [say, the
fourth rank tensor R(_,_,_,_ )] on two of its slots [say, the first and third] has components
that are easily computed from the tensor’s own components:

Components of [1&3contraction of R] = R, (1.46)

Note that R;;;; is summed on the 7 index, so it has only two free indices, j and k, and thus
is the component of a second rank tensor, as it must be if it is to represent the contraction
of a fourth-rank tensor.
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Minkowski spacetime
In Minkowski spacetime, associated with any inertial reference frame there is a Lorentz
coordinate system {t,z,y,z} = {2% 2!, 22, 23} generated by the frame’s rods and clocks,
and associated with these coordinates is a set of orthonormal basis vectors {é}, €, €,, €.} =
{€y, €1, €, €3}; cf. Fig. 1.8. (The reason for putting the indices up on the coordinates but
down on the basis vectors will become clear below.) The basis vector €, points along the z®
coordinate direction, which is orthogonal to all the other coordinate directions, and it has
squared length —1 for a = 0 (vector pointing in timelike direction) and +1 for @ = 1,2,3
(spacelike):
Co - gﬁ = Tap; (147)

where 7,4 is defined by

Mo=—1, NMu=ne=n3=1, ng=0if a#j. (1.48)

The fact that €,-€3 # d,3 prevents many of the Euclidean-space component-manipulation
formulas (1.41)—(1.46) from holding true in Minkowski spacetime. There are two approaches
to recovering these formulas. One approach, often used in elementary textbooks [and also
used in Goldstein’s (1980) Classical Mechanics and in the first edition of Jackson’s Classical
Electrodynamics], is to set 2° = it, where i = v/—1 and correspondingly make the time basis
vector be imaginary, so that €, - €3 = do3. When this approach is adopted, the resulting
formalism does not care whether indices are placed up or down; one can place them wherever
one’s stomach or liver dictate without asking one’s brain. However, this 2° = it approach
has severe disadvantages: (i) it hides the true physical geometry of Minkowski spacetime, (ii)
it cannot be extended in any reasonable manner to non-orthonormal bases in flat spacetime,
and (iii) it cannot be extended in any reasonable manner to the curvilinear coordinates
that one must use in general relativity. For this reason, most advanced texts [including the
second and third editions of Jackson (1999)] and all general relativity texts take an alternative
approach, which we also adopt in this book. This alternative approach requires introducing
two different types of components for vectors, and analogously for tensors: contravariant
components denoted by superscripts, and covariant components denoted by subscripts. In
Parts I-V of this book we introduce these components only for orthonormal bases; in Part
VI we develop a more sophisticated version of them, valid for nonorthonormal bases.

When expanding a vector or tensor in terms of the Minkowski-spacetime basis vectors,
one uses its contravariant components:

A=A, T=T"E,0&c¢8,. (1.49)

Here and throughout this book, Greek (spacetime) indices are to be summed whenever they
are repeated with one up and the other down.

Equations (1.49) can be regarded as definitions of the contravariant components A% and
T8, The covariant components of A are defined (when, as in Parts -V, the basis is
orthonormal) by

Ay =npA?, de. Ag=—A° Aj=4AT for j=1,2,3. (1.50)
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Similarly, one can lower any index on a tensor using 7,s:

Talw = nuﬁnujTaﬁﬂy ) ‘ '
ie. T% = +T°", T%; = -T"%, T% =-T"" T =+T>". (151)

In words, lowering a temporal index changes the component’s sign and lowering a spatial
index leaves the component unchanged—and similarly for raising indices.

These definitions give rise to simple formulae for computing a vector’s components from
the vector itself: By analogy with the Euclidean-space formula A -e; = A;, we compute

A.e, = (APeg) - €, = APey - é, = APng, = A,. Thus (and similarly for a tensor)
Ag=A-Ey, Topy =T(Er E¢). (1.52)

By applying this formula to the metric, and then raising its indices, we obtain for its com-
ponents in our orthonormal basis

gaﬁ = naﬁ ) gaﬁ = 50{5 ) gaﬁ = 50{5 3 gaﬁ - 77046 . (153)

In other words, the components are nonzero only if the indices are equal, and all nonzero
components are +1 except gogo = g°° = —1. These metric components enable us to restate
the rule (1.50), (1.51) for lowering and raising indices: Indices are lowered and raised with
the components of the metric

Aa = gaﬁAﬁ 5 A% = gaﬁAﬁ ) Ta;w = guﬁgu’yTaﬁﬂy Taﬁ’y = gﬁug’wTa;w . (154)

These elegant equations have no more content than their predecessors: raising or lowering a
spatial index leaves a component unchanged; raising or lowering a temporal index changes
the component’s sign.

This index notation gives rise to formulas for tensor products, inner products, values of
tensors on vectors, and tensor contractions, that are the obvious analogs of those in Euclidean
space:

[Contravariant components of T(_, _,_ )®S(_,_)] = T*"8% (1.55)

A.-B=AB, = A,B*, T(A,B,C) =Ty, A*B’C" = T A,BsC, , (1.56)
Covariant components of [1&3contraction of R] = RM,,5,

Contravariant components of [1&3contraction of R] = R (1.57)

Notice the very simple pattern in Eqgs. (1.49), (1.52), (1.54)—(1.57), which universally
permeates the rules of index gymnastics, a pattern that permits one to reconstruct the rules
without any memorization: Free indices (indices not summed over) must agree in position
(up versus down) on the two sides of each equation. In keeping with this pattern, one
often regards the two indices in a pair that is summed (one index up and the other down)
as “strangling each other” and thereby being destroyed, and one speaks of “lining up the
indices” on the two sides of an equation to get them to agree.

Slot-Naming Index Notation
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We now pause, in our development of the component version of tensor algebra, for a very
important philosophical remark. Consider the rank-2 tensor F(__, _). We can define a new
tensor G(__, _ ) to be the same as F, but with the slots interchanged; i.e., for any two vectors
A and B it is true that G(%f, E) = F(é, f_f) We need a simple, compact way to indicate
that F and G are equal except for an interchange of slots. The best way is to give the slots
names, say « and f—i.e., to rewrite F(_, _) as F(_,, _3) or more conveniently as F,g;
and then to write the relationship between G and F as G,3 = Fj3,. NO! some readers might
object. This notation is indistinguishable from our notation for components on a particular
basis. GOOD! an astute reader will exclaim. The relation G5 = Fjp, in a particular basis
is a true statement if and only if “G = F with slots interchanged” is true, so why not use
the same notation to symbolize both? This, in fact, we shall do. We shall ask our readers to
look at any “index equation” such as G,3 = Fj, like they would look at an Escher drawing:
momentarily think of it as a relationship between components of tensors in a specific basis;
then do a quick mind-flip and regard it quite differently, as a relationship between geometric,
basis-independent tensors with the indices playing the roles of names of slots. This mind-flip
approach to tensor algebra will pay substantial dividends.

As an example of the power of this slot-naming index notation, consider the contraction
of the first and third slots of a third-rank tensor T. In any basis, where we write T =
T°P¢e, ® €3 ® €, the rule (1.21) for computing the contraction gives 1&3contraction(T) =
€n - €T &3, which, since €, - €, = 1, gives T 3. This means that 1&3contraction(T)
has components T%,; cf. Eq. (1.57). Correspondingly, in slot-naming index notation we
denote 1&3contraction(T) by the simple expression T%%,. We say that the first and third
slots are “strangling each other” by the contraction, leaving free only the second slot (named
() and therefore producing a rank-1 tensor (a vector).

By virtue of the “index-lowering” role of the metric, we can also write the contraction as

T°8, = T, . (1.58)

and we can look at this relation from either of two viewpoints: The component viewpoint
says that the components of the contraction of T in any chosen basis are obtained by taking
a product of components of T and of the metric g and then summing over the appropriate
indices. The slot-naming viewpoint says that the contraction of T can be achieved by taking
naming index notation), and by then strangling on each other the first and fourth slots
[named « in Eq. (1.58)], and also strangling on each other the third and fifth slots [named
v in Eq. (1.58)].
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EXERCISES

Exercise 1.4 Derivation: Component Manipulation Rules

Derive the component manipulation rules in Eqs. (1.43) and (1.53)—(1.57) of the text. Base
your derivations on the definitions which precede those rules in the text. As you proceed,
abandon any piece of the exercise when it becomes trivial for you.
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Exercise 1.5 Practice: Numerics of Component Manipulations

In Minkowski spacetime, in some inertial reference frame, let the components of a vector A
and a second-rank tensor T be A% = 1, A' =2, A2 = A3 =0; T =3, T = 710 = 2,
T'" = —1, all others vanish. Evaluate T(A, A) and the components of T(A, ) and A® T.

Exercise 1.6 Practice: Meaning of Slot Naming Index Notation
The following expressions and equations are written in slot-naming index notation; convert
them to index-free notation: A,B""; A,B%; Sapy = Thpa; AaBY = g A*B”.
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1.6 Particle Kinetics in Index Notation and in a Lorentz
Frame

As an illustration of the component representation of tensor algebra, let us return to the
relativistic, accelerated particle of Fig. 1.6 and, from the frame-independent equations of
Sec. 1.4, derive the component description given in elementary textbooks.

We introduce a specific inertial reference frame and associated Lorentz coordinates x®
and basis vectors {€,}. In this Lorentz frame, the particle’s world line Z(7) is represented by
its coordinate location x®(7) as a function of its proper time 7. The covariant components
of the separation vector di between two neighboring events along the particle’s world line
are the events’ coordinate separations dz® [Eq. (1.2)—which is why we put the indices up
on coordinates|; and correspondingly, the components of the particle’s 4-velocity @ = dZ/dr

are
dz®

Codr
(the time derivatives of the particle’s spacetime coordinates). Note that Eq. (1.59) implies

«

u (1.59)

. da? dd AT W
j= _ _
Cdt dt/dr  u®’ (1.60)

Here v’ are the components of the ordinary velocity as measured in the Lorentz frame. This
relation, together with the unit norm of @, @* = gapu®u® = —(u®)? + §;;u'v! = —1, implies
that the components of the 4-velocity have the forms familiar from elementary textbooks:

1

(1 — 5,’j1}i'Uj)% '

wW=v, W=7, where =

(1.61)

It is useful to think of v/ as the components of a 3-dimensional vector v, the ordinary
velocity, that lives in the 3-dimensional Euclidean space t = const of the chosen Lorentz
frame. As we shall see below, this 3-space is not well defined until a Lorentz frame has
been chosen, and correspondingly, v relies for its existence on a specific choice of frame.
However, once the frame has been chosen, v can be regarded as a coordinate-independent,
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Fig. 1.9: Spacetime diagram in a specific Lorentz frame, showing the frame’s 3-space t = 0 (stippled
region), the 4-velocity @ of a particle as it passes through that 3-space (i.e., at time ¢t = 0); and two
3-dimensional vectors that lie in the 3-space: the spatial part of the particle’s 4-velocity, u, and
the particle’s ordinary velocity v.

basis-independent 3-vector lying in the frame’s 3-space t =const. Similarly, the spatial part
of the 4-velocity @ (the part with components u/ in our chosen frame) can be regarded as a
3-vector u lying in the frame’s 3-space; and Egs. (1.61) become the component versions of
the coordinate-independent, basis-independent 3-space relations
! (1.62)
u="v, = —. .
W V= e

Figure 1.9 shows stippled the 3-space t = 0 of a specific Lorentz frame, and the 4-velocity
« and ordinary velocity v of a particle as it passes through that 3-space.

The components of the particle’s 4-momentum p’in our chosen Lorentz frame have special
names and special physical significances: The time component of the 4-momentum is the
particle’s energy £ as measured in that frame

m
£ =p" = mu’ = my = ——— = (the particle’s energy)

V1 —v2

2 forv=lv|<1. (1.63)

1
~m + §mv
Note that this energy is the sum of the particle’s rest mass-energy m = mc? and its kinetic
energy my — m (which, for low velocities, reduces to the familiar nonrelativistic kinetic
energy F = %mv2). The spatial components of the 4-momentum, when regarded from the
viewpoint of 3-dimensional physics in the 3-space of the chosen Lorentz frame, are the same
as the components of the momentum, a 3-vector residing in the frame’s 3-space:

mu?
VvV1—v2

or, in basis-independent, 3-dimensional vector notation,

P =mu =my! = = (j-component of particle’s momentum) ; (1.64)

mv
p = mu=myv = —— = (particle’s momentum) . 1.65
V=il ) (1.65)
For a zero-rest-mass particle, as for one with finite rest mass, we identify the time com-
ponent of the 4-momentum, in a chosen Lorentz frame, as the particle’s energy, and the
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spatial part as its momentum. Moreover, if—appealing to quantum theory—we regard a
zero-rest-mass particle as a quantum associated with a monochromatic wave, then quantum
theory tells us that the wave’s angular frequency w as measured in a chosen Lorentz frame
will be related to its energy by

£ = p® = hw = (particle’s energy) ; (1.66)

and, since the particle has p? = —(p°)? + p? = —m? = 0 (in accord with the lightlike nature
of its world line), its momentum as measured in the chosen Lorentz frame will be

p =hwn. (1.67)

Here n is the unit 3-vector that points in the direction of travel of the particle, as measured
in the chosen Lorentz frame. Egs. (1.66) and (1.67) are the temporal and spatial components
of the geometric, frame-independent relation p = hk [Eq. (1.31), which is valid for zero-rest-
mass particles as well as finite-mass ones].

The introduction of a specific Lorentz frame into spacetime can be said to produce a
“3+1” split of every 4-vector into a 3-dimensional vector plus a scalar (a real number). The
3+1 split of a particle’s 4-momentum p produces its momentum p plus its energy £ = p’;
and correspondingly, the 341 split of the law of 4-momentum conservation (1.33) produces
a law of conservation of momentum plus a law of conservation of energy:

dopa=d_Pa. D &= Ea. (1.68)

Here the barred quantities are the momenta or energies of the particles entering the inter-
action region, and the unbarred quantities are the momenta or energies of those leaving; cf.
Fig. 1.7.

Because the concept of energy does not even exist until one has chosen a Lorentz frame,
and neither does that of momentum, the laws of energy conservation and momentum con-
servation separately are frame-dependent laws. In this sense they are far less fundamental
than their combination, the frame-independent law of 4-momentum conservation.
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EXERCISES

Exercise 1.7 Example and Practice: Frame-Independent Expressions for Energy, Momen-
tum, and Velocity
An observer with 4-velocity U measures the properties of a particle with 4-momentum p.

(a) Show that the energy £ which the observer measures the particle to have is computable
from the frame-independent equation

E=—p-U. (1.69)



(b)

(c)

(d)
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Show that the rest mass the observer measures is computable from

m? = —p>. (1.70)
Show that the momentum the observer measures has the magnitude
L = o1
pl=[(7-U)+7-pl> . (1.71)
Show that the ordinary velocity the observer measures has the magnitude
p|
= B 1.72
v =2 (172

where |p| and £ are given by the above frame-independent expressions.

Show that the ordinary velocity v, thought of as a 4-vector that happens to lie in the
observer’s 3-space of constant time is given by

7+ (7-0)0

= 1.73
—p-U (1.73)

7=
Show that the Euclidean metric of the observer’s 3-space, when thought of as a tensor
in 4-dimensional spacetime, has the form

P=g+UxU. (1.74a)

Show, further, that if A is an arbitrary vector in spacetime, then —A .U is the com-
ponent of A along the observer’s 4-velocity U and

P(_,A)=A+(A-U)U (1.74Db)

is the projection of A into the observer’s 3-space; i.e., it is the spatial part of A as seen
by the observer. For this reason, P is called a projection tensor. In quantum mechanics
one introduces the concept of a projection operator P as an operator that satisfies the
equation P? = P. Show that the projection tensor P is a projection operator in the
quantum mechanical sense:

PauPuﬁ = Paﬁ . (174C)

Show that Eq. (1.73) for the particle’s ordinary velocity, thought of as a 4-vector, can
be rewritten as
P(_.p)

—5-U

(1.75)

U=

Exercise 1.8 FEzxample: Doppler Shift Derived without Lorentz Transformations

An atom moving with ordinary velocity v as measured in some inertial reference frame F
emits a photon in a direction n as measured in F'. The photon’s energy is later measured,
by an observer at rest in F', to be . Let U be the emitting atom’s 4-velocity and p’ be
the photon’s 4-momentum. By a computation carried out in frame F', evaluate Eq. (1.69) to
obtain the photon energy £ measured by the emitting atom. Then compute the ratio E¢/E
to obtain the standard formula for the photon’s Doppler shift in terms of v and n.
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1.7 Orthogonal and Lorentz Transformations of Bases,
and Spacetime Diagrams

Euclidean 3-space

Consider two different Cartesian coordinate systems {z, y, 2} = {1, z2, 23}, and {z, 7, z} =
{z1,23,23}. Denote by {e;} and {e;} the corresponding bases. It must be possible to expand
the basis vectors of one basis in terms of those of the other. We shall denote the expansion
coefficients by the letter R and shall write

e,- - eﬁRﬁZ 5 eﬁ - e,R,ﬁ . (176)

The quantities R, and R;; are not the components of a tensor; rather, they are the elements
of transformation matrices

Ry Ris Rig Ry Ris Rys
||Raill = || Ran Rae Rss ||, ||Ripll =|| Rax Raz Rz || - (1.77)
Rs; Rsy Rss Rs1 Rss Rss

(Here and throughout this book we use double vertical bars to denote matrices.) These two
matrices must be the inverse of each other, since one takes us from the barred basis to the
unbarred, and the other in the reverse direction, from unbarred to barred:

RyiRig = 05, RipRpj = 045 - (1.78)

The orthonormality requirement for the two bases implies that §;; = e; - e; = (e;Rpi) -
(egR3j) = RpiRgi(ep - e5) = RypiRyi0p; = Ry Ry;. This says that the transpose of ||Ry|| is its
inverse—which we have already denoted by ||R;z||; thus,

This property implies that the transformation matrix is orthogonal; i.e., the transformation
is a reflection or a rotation [see, e.g., Goldstein (1980)]. Thus (as should be obvious and
familiar), the bases associated with any two Euclidean coordinate systems are related by a
reflection or rotation. [Note: Eq. (1.79) does not say that ||R;;|| is a symmetric matrix; in
fact, it typically is not. Rather, (1.79) says that ||R;;|| is the transpose of || Rz||.]

The fact that a vector A is a geometric, basis-independent object implies that A =
Aiei = AieﬁRﬁi = (RﬁiAi)eﬁ = Aﬁeﬁ; i.e.,

A; = RpA;,  and similarly A; = RiA; ; (1.80)
and correspondingly for the components of a tensor
Tpgr = Rpi R RewTige » - Tijre = RipRjqRirThgr - (1.81)

It is instructive to compare the transformation law (1.80) for the components of a vector
with those (1.76) for the bases. To make these laws look natural, we have placed the
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transformation matrix on the left in the former and on the right in the latter. In Minkowski
spacetime, the placement of indices, up or down, will automatically tell us the order.

Minkowski spacetime

Consider two different inertial reference frames in Minkowski spacetime; denote their
Lorentz coordinates by {z*} and {z#} and their bases by {e,} and {e;}; and write the
transformation from one basis to the other as

ga = é;jLﬂa 5 é;] == gaLaﬂ . (182)

As in Euclidean 3-space, L*, and L, are elements of two different transformation matrices,
and since these matrices operate in opposite directions, they must be the inverse of each
other:
LF Lo = 6", LYLFs=46%. (1.83)

Notice the up/down placement of indices on the elements of the transformation matrices: the
first index is always up, and the second is always down. This is just a convenient convention
which helps systematize the index shuffling rules in a way that can be easily remembered.
Our rules about summing on the same index when up and down, and matching unsummed
indices on the two sides of an equation, automatically dictate the matrix to use in each of
the transformations (1.82); and similarly for all other equations in this section.

In Euclidean 3-space the orthonormality of the two bases dictated that the transforma-
tions must be orthogonal, i.e. must be reflections or rotations. In Minkowski spacetime,
orthonormality implies gog = €, - €5 = (€5 L") - (€5L"3) = LFo L7 3.5 1-€.,

9ur "ol 5 = gop , and similarly g.sL®s L7 = g - (1.84)

Any matrices whose elements satisfy these equations is a Lorentz transformation.

From the fact that vectors and tensors are geometric, frame-independent objects, one can
derive the Minkowski-space analogs of the Euclidean transformation laws for components
(1.80), (1.81):

AP = [F AY ) TFP = [F,L75LP., T and similarly in the opposite direction.
(1.85)
Notice that here, as elsewhere, these equations can be constructed by lining up indices in
accord with our standard rules.

If (as is conventional) we choose the origins of the two Lorentz coordinate systems to
coincide, then the vector 7 extending from the origin to some event P, whose coordinates
are % and x%, has components equal to those coordinates. As a result, the transformation
law for the components of ¥ becomes the following relationship between the two sets of
coordinates:

= L%a", af=LFat . (1.86)
An important specific example of a Lorentz transformation is the following
vy By 00 vy =By 00
o« =Py 00 il —fr v 00
I =10 o 1ol Ml=1 o o 10| @80
0 0 01 0 0 01
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Fig. 1.10: Spacetime diagrams illustrating the pure boost (1.89) from one Lorentz reference frame
to another.

where 3 and ~ are related by
Bl<1, y=@1-pY)72. (1.88)

One can readily verify that these matrices are the inverses of each other and that they
satisfy the Lorentz-transformation relation (1.84). These transformation matrices produce
the following change of coordinates [Eq. (1.86)]

t=v+p7), z=7@+pt), y=9y, 2=

These expressions reveal that any point at rest in the unbarred frame (a point with fixed,
time-independent z,y, z) is seen in the barred frame to move along the world line z =
const — 3t, ij = const, z = const. In other words, the unbarred frame is seen by observers at
rest in the barred frame to move with uniform velocity v = —fé;, and correspondingly the
barred frame is seen by observers at rest in the unbarred frame to move with the opposite
uniform velocity v = +€,. This special Lorentz transformation is called a pure boost along
the x direction.

Figure 1.10 illustrates the pure boost (1.89). Diagram (a) in that figure is a two-
dimensional spacetime diagram, with the y- and z-coordinates suppressed, showing the ¢
and 7 axes of the boosted Lorentz frame F in the ¢, x Lorentz coordinate system of the
unboosted frame F. That the barred axes make angles tan=! 3 with the unbarred axes, as
shown, can be inferred from the Lorentz transformation equation (1.89). Note that invari-
ance of the interval guarantees that the event ¥ = a on the Z-axis lies at the intersection
of that axis with the dashed hyperbola z? — > = a?; and similarly, the event ¢ = a on the
t-axis lies at the intersection of that axis with the hyperbola t* — 2?2 = a®. As is shown
in diagram (b) of the figure, the barred coordinates ¢, T of an event P can be inferred by
projecting from P onto the ¢- and Z-axes, with the projection going parallel to the Z- and t-
axes respectively. Diagram (c) shows the 4-velocity @ of an observer at rest in frame F' and
that, @ of an observer in frame F. The events which observer F' regards as all simultaneous,
with time ¢t = 0, lie in a 3-space that is orthogonal to « and includes the x-axis. This is the
Euclidean 3-space of reference frame F and is also sometimes called F’s 3-space of simul-
taneity. Similarly, the events which observer F regards as all simultaneous, with ¢ = 0, live

Y

ISIIRN

(1.89)
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in the 3-space that is orthogonal to @ and includes the Z-axis. This is the Euclidean 3-space
(3-space of simultaneity) of frame F.

Exercise 1.11 uses spacetime diagrams, similar to Fig. 1.10, to deduce a number of im-
portant relativistic phenomena, including the contraction of the length of a moving object
(“length contraction”), the breakdown of simultaneity as a universally agreed upon concept,
and the dilation of the ticking rate of a moving clock (“time dilation”). This exercise is
extremely important; every reader who is not already familiar with it should study it.
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EXERCISES

Exercise 1.9 Problem: Allowed and Forbidden Electron-Photon Reactions

Show, using spacetime diagrams and also using frame-independent calculations, that the law
of conservation of 4-momentum forbids a photon to be absorbed by an electron, e + v —
e and also forbids an electron and a positron to annihilate and produce a single photon
et + e — ~ (in the absence of any other particles to take up some of the 4-momentum);
but the annihilation to form two photons, e™ + e~ — 27, is permitted.

Exercise 1.10 Derivation: The Inverse of a Lorentz Boost

Show that, if the Lorentz coordinates of an inertial frame F' are expressed in terms of those
of the frame F by Eq. (1.89), then the inverse transformation from F to F is given by the
same equation with the sign of ( reversed. Write down the corresponding transformation
matrix L*, [analog of Eq. (1.87)].

Exercise 1.11 Example: Spacetime Diagrams
Use spacetime diagrams to prove the following:

(a) Two events that are simultaneous in one inertial frame are not necessarily simultaneous
in another. More specifically, if frame F moves with velocity @ = 3¢, as seen in frame
F, where 3 > 0, then of two events that are simultaneous in F' the one farther “back”
(with the more negative value of z) will occur in F' before the one farther “forward”.

(b) Two events that occur at the same spatial location in one inertial frame do not neces-
sarily occur at the same spatial location in another.

(c) If P, and P, are two events with a timelike separation, then there exists an inertial
reference frame in which they occur at the same spatial location; and in that frame the
time lapse between them is equal to the square root of the negative of their invariant

interval, At = At = v —As2.

(d) If P; and P, are two events with a spacelike separation, then there exists an inertial
reference frame in which they are simultaneous; and in that frame the spatial distance
between them is equal to the square root of their invariant interval, \/g¢;;Az?Azi =

As =V As2.



(e)

(f)
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If the inertial frame F moves with speed f3 relative to the frame F, then a clock at

rest in F ticks more slowly as viewed from F than as viewed from F—more slowly by
1

a factor vt = (1 — 3?)2.

If the inertial frame F moves with velocity v = 3¢, relative to the frame F and the
two frames are related by a pure boost, then an object at rest in £ as studied in F
appears shortened by a factor y=! = (1 — 62)% along the x direction, but its length
along the y and z directions is unchanged.

Exercise 1.12 FExample: General Boosts and Rotations

(a)

Show that, if n? is a 3-dimensional unit vector and 3 and v are defined as in Eq. (1.88),
then the following is a Lorentz transformation; i.e., it satisfies Eq. (1.84).

L%=~, L%=Ls=pw , Lp=1L=(@-1nn"+o". (1.90)

Show, further, that this transformation is a pure boost along the direction n with speed
B, and show that the inverse matrix ||L* .|| for this boost is the same as ||[L* ;||, but
with ( changed to —/3.

Show that the following is also a Lorentz transformation:

0 0 0

L%l = (1.91)

|25 ’

o O O

where ||R;;|| is a three-dimensional rotation matrix for Euclidean 3-space. Show, fur-
ther, that this Lorentz transformation rotates the inertial frame’s spatial axes (its
latticework of measuring rods), while leaving the frame’s velocity unchanged; i.e., the
new frame is at rest with respect to the old.

The general Lorentz transformation [i.e., the general solution of Egs. (1.84)] can be
expressed as a sequence of pure boosts, pure rotations, and pure inversions (in which
one or more of the coordinate axes are reflected through the origin, so x® = —z%).
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1.8 Time Travel

Time dilation is one facet of a more general phenomenon: Time, as measured by ideal
clocks, is a “personal thing,” different for different observers who move through spacetime
on different world lines. This is well illustrated by the infamous “twins paradox,” in which
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Fig. 1.11: (a) Spacetime diagram depicting the twins paradox. Marked along the two world lines
are intervals of proper time as measured by the two twins. (b) Spacetime diagram depicting the
motions of the two mouths of a wormhole. Marked along the mouths’ world tubes are intervals of
proper time 7. as measured by the single clock that sits on the common mouths.

one twin, Methuselah, remains forever at rest in an inertial frame and the other, Florence,
makes a spacecraft journey at high speed and then returns to rest beside Methuselah.

The twins’ world lines are depicted in Fig. 1.11(a), a spacetime diagram whose axes are
those of Methuselah’s inertial frame. The time measured by an ideal clock that Methuselah
carries is the coordinate time t of his inertial frame; and its total time lapse, from Florence’s
departure to her return, is tyeturn — tdeparture = 1 Methuselah- DY contrast, the time measured by
an ideal clock that Florence carries is the proper time 7, i.e. the square root of the invariant
interval (1.11), along her world line; and thus her total time lapse from departure to return
is

TMethuselah
TFiorence = /dT = / \/dt2 - 5Zjdxldx] = / V1—v2dt. (192)
0

Here (t, z') are the time and space coordinates of Methuselah’s inertial frame, and v is
Florence’s ordinary speed, v = /8;;(dx?/dt)(dxz7 /dt), relative to Methuselah’s frame. Obvi-
ously, Eq. (1.92) predicts that Triorence is less than Tyetnuselan- In fact (cf. Exercise 1.13), even
if Florence’s acceleration is kept no larger than one Earth gravity throughout her trip, and
her trip lasts only Trigrence = (& few tens of years), Thjethuselan can be hundreds or thousands
or millions or billions of years.

Does this mean that Methuselah actually “experiences” a far longer time lapse, and
actually ages far more than Florence? Yes. The time experienced by humans and the aging
of the human body are governed by chemical processes, which in turn are governed by the
natural oscillation rates of molecules, rates that are constant to high accuracy when measured
in terms of ideal time (or, equivalently, proper time 7). Therefore, a human’s experiential
time and aging time are the same as the human’s proper time—so long as the human is not
subjected to such high accelerations as to damage her body.

In effect, then, Florence’s spacecraft has functioned as a time machine to carry her far
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into Methuselah’s future, with only a modest lapse of her own proper time (ideal time;
experiential time; aging time).

Is it also possible, at least in principle, for Florence to construct a time machine that
carries her into Methuselah’s past—and also her own past? At first sight, the answer would
seem to be Yes. Figure 1.11(b) shows one possible method, using a wormhole. (Another
method uses cosmic strings.®)

Wormholes are hypothetical “handles” in the topology of space. A simple model of
a wormhole can be obtained by taking a flat 3-dimensional space, removing from it the
interiors of two identical spheres, and identifying the spheres’ surfaces so that if one enters
the surface of one of the spheres, one immediately finds oneself exiting through the surface
of the other. When this is done, there is a bit of strongly localized spatial curvature at
the spheres’ common surface, so to analyze such a wormhole properly, one must use general
relativity rather than special relativity. In particular, it is the laws of general relativity,
combined with the laws of quantum field theory, that tell one how to construct such a
wormhole and what kinds of materials (quantum fields) are required to “hold it open” so
things can pass through it. Unfortunately, despite considerable effort, theoretical physicists
have not yet deduced definitively whether those laws permit such wormholes to exist.” On
the other hand, assuming such wormholes can exist, the following special relativistic analysis
shows how one might be used to construct a machine for backward time travel.®

The two identified spherical surfaces are called the wormhole’s mouths. Ask Methuselah
to keep one mouth with himself, forever at rest in his inertial frame, and ask Florence to
take the other mouth with herself on her high-speed journey. The two mouths’ world tubes
(analogs of world lines for a 3-dimensional object) then have the forms shown in Fig. 1.11(b).
Suppose that a single ideal clock sits on the wormhole’s identified mouths, so that from the
external Universe one sees it both on Methuselah’s wormhole mouth and on Florence’s. As
seen on Methuselah’s mouth, the clock measures his proper time, which is equal to the
coordinate time t [see tick marks along the left world tube in Fig. 1.11(b)]. As seen on
Florence’s mouth, the clock measures her proper time, Eq. (1.92) [see tick marks along
the right world tube in Fig. 1.11(b)]. The result should be obvious, if surprising: When
Florence returns to rest beside Methuselah, the wormhole has become a time machine. If
she travels through the wormhole when the clock reads 7. = 7, she goes backward in time
as seen in Methuselah’s (or anyone else’s) inertial frame; and then, in fact, traveling along
the everywhere timelike, dotted world line, she is able to meet her younger self before she
entered the wormhole.

This scenario is profoundly disturbing to most physicists because of the dangers of science-
fiction-type paradoxes (e.g., the older Florence might kill her younger self, thereby preventing
herself from making the trip through the wormhole and killing herself). Fortunately perhaps,
it now seems seems moderately likely (though not certain) that vacuum fluctuations of
quantum fields will destroy the wormhole at the moment when its mouths’ motion first
makes backward time travel possible; and it also seems likely that this mechanism will

6Gott (1991)

"See, e.g., Morris and Thorne (1987), Thorne (1993), Borde, Ford and Roman (2002), and references
therein.

8Morris, Thorne, and Yurtsever (1988).
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always prevent the construction of backward-travel time machines, no matter what tools
one uses for their construction.’
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EXERCISES

Exercise 1.13 Ezample: Twins Paradox

(a) The 4-acceleration of a particle or other object is defined by @ = di/dr, where 4 is its
4-velocity and 7 is proper time along its world line. Show that, if an observer carries an
accelerometer, the magnitude of the acceleration a measured by the accelerometer will
always be equal to the magnitude of the observer’s 4-acceleration, a = |d| = va - a.

(b) In the twins paradox of Fig. 1.11(b), suppose that Florence begins at rest beside
Methuselah, then accelerates in Methuselah’s z-direction with an acceleration a equal
to one Earth gravity, “1g”, for a time Triorence/4 as measured by her, then accelerates
in the —a-direction at 1g for a time Tgiorence/2 thereby reversing her motion, and
then accelerates in the +z-direction at 1g for a time Trigrence/4 thereby returning to
rest beside Methuselah. (This is the type of motion shown in the figure.) What is the
resulting relationship between the total time lapse as measured by the two twins? Show
that, if Triorence 18 several tens of years, then Thethuselan ¢an be hundreds or thousands
or millions or even billions of years.

Exercise 1.14 Challenge: Around the World on TWA

In a long-ago era when an airline named Trans World Airlines (TWA) flew around the
world, J. C. Hafele and R. E. Keating carried out a real live twins’ paradox experiment:
They synchronized two atomic clocks, and then flew one around the world eastward on
TWA, and on a separate trip, around the world westward, while the other clock remained
at home at the Naval Research Laboratory near Washington D. C. When the clocks were
compared after each trip, they were found to have aged differently. Compute the difference
in aging, and compare your result with the experimental data (Hafele and Keating, 1972).
Note: The rotation of the Earth is important, but general relativistic effects (notably the
gravitational redshift) are less so—though not entirely negligible. Why?
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1.9 Directional Derivatives, Gradients, Levi-Civita Ten-
sor, Cross Product and Curl
Let us return to the formalism of differential geometry. We shall use the vector notation A

of Minkowski spacetime, but our discussion will be valid simultaneously for spacetime and
for Euclidean 3-space.

9Kim and Thorne (1991), Hawking (1992), Thorne (1993).
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Consider a tensor field T(P) in spacetime or 3-space and a vector A. We define the
directional deriwvative of T along A by the obvious limiting procedure

VT =lim %[T(fp + eA) — T(Zp)] (1.93)
and similarly for the directional derivative of a vector field B(P) and a scalar field ¢(P).
In this definition we have denoted points, e.g. P, by the vector £p that reaches from some
arbitrary origin to the point.

It should not be hard to convince oneself that the directional derivative of any tensor
field T is linear in the vector A along which one differentiates. Correspondingly, if T has
rank n (n slots), then there is another tensor field, denoted ﬁT, with rank n + 1, such that

V;T=VT(_,_,_,A). (1.94)

Here on the right side the first n slots (3 in the case shown) are left empty, and A is put
into the last slot (the “differentiation slot”). The quantity VT is called the gradient of T.
In slot-naming index notation, it is conventional to denote this gradient by 7,35, where in
general the number of indices preceding the semicolon is the rank of T. Using this notation,
the directional derivative of T along A reads [cf. Bq. (1.94)] ThgqsA°.

It is not hard to show that in any orthonormal (i.e., Cartesian or Lorentz) coordinate
system, the components of the gradient are nothing but the partial derivatives of the com-
ponents of the original tensor,

oT,,
Taﬁ’y;& = W? = Taﬁ'y,5 . (195)

(Here and henceforth all indices that follow a subscript comma represent partial derivatives,
e.g., S = 025,/020x".) In a non-Cartesian and non-Lorentz basis, the components
of the gradient typically are not obtained by simple partial differentiation [i.e. Eq. (1.95)
fails| because of twisting and turning and expansion and contraction of the basis vectors as
we go from one location to another. In Part III we shall learn how to deal with this by
using objects called connection coefficients. Until then, however, we shall confine ourselves
to Cartesian and Lorentz bases, so subscript semicolons and subscript commas can be used
interchangeably.

Because the gradient and the directional derivatives are defined by the same standard
limiting process as one uses when defining elementary derivatives, they obey the standard
Leibniz rule for differentiating products, e.g.

ViS®T)=(VsS)®@T+SV;T,
ie., (ST A* = (8P AM)T0¢ 4 SP(T%  AH) (1.96)

and
VifT) = (ViHTH VT, e, (fT), A" = (f AT 4 fT9 A" (1.97)

In an orthonormal basis these relations should be obvious: They follow from the Leibniz rule
for partial derivatives.
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Because the components g, of the metric tensor are constant in any Lorentz or Cartesian
coordinate system, Eq. (1.95) (which is valid in such coordinates) guarantees that g.g., = 0;
i.e., the metric has vanishing gradient:

Veg=0, ie, gapu=0. (1.98)

From the gradient of any vector or tensor we can construct several other important
derivatives by contracting on indices: (i) Since the gradient VA of a vector field A has two
slots, VA(_ ,_), we can strangle (contract) its slots on each other to obtain a scalar field.
That scalar field is the divergence of A and is denoted

V - A = (contraction of VA) = A%, (1.99)

(i4) Similarly, if T is a tensor field of rank three, then 7*%7_ is its divergence on its third
slot, and 77,4 is its divergence on its second slot. (iii) By taking the double gradient and
then contracting on the two gradient slots we obtain, from any tensor field T, a new tensor
field with the same rank,

V2T =(V-V)T, or, in index notation, Ty, " . (1.100)

In any Euclidean space V? is called the Laplacian; in spacetime it is called the d’Alembertian.

The metric tensor is a fundamental property of the space in which it lives; it embodies
the inner product and thence the space’s notion of distance or interval and thence the space’s
geometry. In addition to the metric, there is one (and only one) other fundamental tensor
that embodies a piece of the space’s geometry: the Levi-Civita tensor e.

The Levi-Civita tensor has a number of slots equal to the dimensionality /N of the space
in which it lives, 4 slots in 4-dimensional spacetime and 3 slots in 3-dimensional Euclidean
space; and € is antisymmetric in each and every pair of its slots. These properties turn out
to determine € uniquely up to a multiplicative constant. That constant is fixed by a compat-
ibility relation between € and the metric g: If {€,} is an orthonormal basis [orthonormality
being defined with the aid of the metric, €, - €3 = g(€, €3) = Nap In spacetime and = 0,5 in
Euclidean space|, and if this basis is right-handed (a new property, not determined by the
metric), then

€(€1,€,...,€x) = +1 in a space of N dimensions; €(€, €1, €9, €3) = +1 in spacetime.
(1.101)
The concept of right handedness should be familiar in Euclidean 2-space or 3-space. In
spacetime, the basis is right handed if {€7, &, €3} is right handed and €, points to the future.
Equation (1.101) and the antisymmetry of € imply that in an orthonormal basis, the only
nonzero covariant components of € are

€12.8 = +1,
€ap.r = +1 if a, B, ..., v is an even permutation of 1, 2, ..., N
=—1 if a, 4, ..., vis an odd permutation of 1, 2, ..., N

=0 if «a, G, ..., v are not all different; (1.102)
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(In spacetime the indices run from 0 to 3 rather than 1 to N = 4.) One can show that
these components in one right-handed orthonormal frame imply these same components
in all other right-handed orthonormal frames by virtue of the fact that the orthogonal (3-
space) and Lorentz (spacetime) transformation matrices have unit determinant; and that in
a left-handed orthormal frame the signs of these components are reversed.

In 3-dimensional Euclidean space, the Levi-Civita tensor is used to define the cross prod-
uct:

AxB=¢€¢(_,A B) ie, in slot-naming index notation, €;;;A; By ; (1.103)

V x A = (the vector field whose slot-naming index form is €, Ag,;) - (1.104)

[Equation (1.104) is an example of an expression that is complicated if written in index-free
notation; it says that V x A is the double contraction of the rank-5 tensor € ® VA on its
second and fifth slots, and on its third and fourth slots.]

Although Eqgs. (1.103) and (1.104) look like complicated ways to deal with concepts that
most readers regard as familiar and elementary, they have great power. The power comes
from the following property of the Levi-Civita tensor in Euclidean 3-space [readily derivable
from its components (1.102)]:

€ijmEklm = 5,?1 = 5,25{ — 5552 . (1.105)

Examine the 4-index delta function ;) carefully; it says that either the indices above and
below each other must be the same (i = k and j = [) with a + sign, or the diagonally related
indices must be the same (i = [ and j = k) with a — sign. [We have put the indices ij of
5,2]1 up solely to facilitate remembering this rule. Recall (first paragraph of Sec. 1.5) that
in Euclidean space and Cartesian coordinates, it does not matter whether indices are up or
down.] With the aid of Eq. (1.105) and the index-notation expressions for the cross product
and curl, one can quickly and easily derive a wide variety of useful vector identities; see the
very important Exercise 1.15.
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EXERCISES

Exercise 1.15 FExample and Practice: Vectorial Identities for the Cross Product and Curl
Here is an example of how to use index notation to derive a vector identity for the double cross
product A x (B x C): In index notation this quantity is €;;5A;(€xim BiCr). By permuting the
indices on the second € and then invoking Eq. (1.105), we can write this as €;;x€mpA; BiCy =
00" A; BiCy,. By then invoking the meaning (1.105) of the 4-index delta function, we bring
this into the form A;B;C; — A; B;C;, which is the index-notation form of (A-C)B—(A-B)C.
Thus, it must be that A x (B x C) = (A-C)B - (A-B)C.

Use similar techniques to evaluate the following quantities:

(a) Vx(V xA)
(b) (A xB)-(C x D)
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(¢) (A xB)x (CxD)
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1.10 Nature of Electric and Magnetic Fields; Maxwell’s
Equations

Now that we have introduced the gradient and the Levi-Civita tensor, we are prepared to
study the relationship of the relativistic version of electrodynamics to the nonrelativistic
(“Newtonian”) version.

Consider a particle with charge ¢, rest mass m and 4-velocity « interacting with an
electromagnetic field F(_,_ ). In index notation, the electromagnetic 4-force acting on the
particle [Eq. (1.38)] is

dp®/dr = qF*Pug . (1.106)
Let us examine this 4-force in some arbitrary inertial reference frame in which the components
of the particle’s ordinary velocity are v/ = v; and of its 4-velocity, u® = ~, v/ = v’

[Eq. (1.61)]. Anticipating the connection with the nonrelativistic viewpoint, we introduce
the following notation for the contravariant components of the antisymmetric electromagnetic
field tensor:

FY% = - =F;  F9=¢;.B. (1.107)

(Recall that spatial indices, being Euclidean, can be placed up or down freely with no change
in sign of the indexed quantity.) Inserting these components of F and « into Eq. (1.106)
and using the relationship dt/dr = u® = v between ¢ and 7 derivatives, we obtain for the
components of the 4-force dp;/dr = vdp;/dt = qy(E; + €;xv;By.) and dp°/dr = ~dp®/dt =
~vEjv;. Dividing by -y, converting into 3-space index notation, and denoting the particle’s
energy by £ = p°, we bring these into the familiar Lorentz-force form

dp/dt =q(E+v xB), df/dt=v E. (1.108)

Evidently E is the electric field and B the magnetic field as measured in our chosen Lorentz
frame.

This may be familiar from standard electrodynamics textbooks, e.g. Jackson (1999). Not
so familiar, but quite important, is the following geometric interpretation of the electric and
magnetic fields: E and B are spatial vectors as measured in the chosen inertial frame. We
can also regard these quantities as 4-vectors that lie in the 3-surface of simultaneity ¢t = const
of the chosen frame, i.e. that are orthogonal to the 4-velocity (denote it w) of the frame’s
observers (cf. Fig. 1.10). We shall denote this 4-vector version of E and B by Egz and B,
where the subscript @ identifies the 4-velocity of the observers who measure these fields.
These fields are depicted in Fig. 1.12(a).

In the rest frame of the observer w, the components of Ej are EY% =0, Efa = E; [the

E; appearing in Eqs. (1.107)], and similarly for Bg: and the components of @ are w® = 1,
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Fig. 1.12: (a) The electric and magnetic fields measured by an observer with 4-velocity @, shown
as 4-vectors Eg and By that lie in the observer’s 3-surface of simultaneity (stippled 3-surface
orthogonal to @). (b) Resolution of Ejz into pieces parallel and perpendicular to the motion of the

observer w; cf. Exercise 1.17.

w? = 0. Therefore, in this frame Eqs. (1.107) can be rewritten as

E% = FPwy, B = %eawawa : (1.109)
(To verify this, insert the above components of F and « into this equation and, after some
algebra, recover Eqgs. (1.107) along with E% = B% = 0.) Equations (1.109) say that in one
special reference frame, that of the observer w, the components of the 4-vectors on the left and
on the right are equal. This implies that in every Lorentz frame the components of these
4-vectors will be equal; i.e., it implies that Egs. (1.109) are true when one regards them
as geometric, frame-independent equations written in slot-naming index notation. These
equations enable one to compute the electric and magnetic fields measured by an observer
(viewed as 4-vectors in the observer’s 3-surface of simultaneity) from the observer’s 4-velocity
and the electromagnetic field tensor, without the aid of any basis or reference frame.
Equations (1.109) embody explicitly the following important fact: The electromagnetic
field tensor F is a geometric, frame-independent quantity. By contrast, the electric and
magnetic fields Ez and By individually depend for their existence on a specific choice of
observer (with 4-velocity ), i.e., a specific choice of inertial reference frame, i.e., a specific
choice of the split of spacetime into a 3-space (the 3-surface of simultaneity orthogonal to the
observer’s 4-velocity @) and corresponding time (the Lorentz time of the observer’s reference
frame). Only after making such an observer-dependent “3+1 split” of spacetime into space
plus time do the electric field and the magnetic field come into existence as separate entities.
Different observers with different 4-velocities @ make this spacetime split in different ways,
tklereby resolving the frame-independent F into different electric and magnetic fields Ez and
Bg.
By the same procedure as we used to derive Eqgs. (1.109), one can derive the inverse
relationship, the following expression for the electromagnetic field tensor in terms of the
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(4-vector) electric and magnetic fields measured by some observer:
F = wE? — B3’ + P 5w B, . (1.110)

Maxwell’s equations in geometric, frame-independent form are!'®

FoB . _ 47 J* in Gaussian units
B T €0 = p1oJ in SI units .
P55 =0 (1.111)

(Since we are setting the speed of light to unity, €, = 1/u,.) Here J is the charge-current
4-vector, which in any inertial frame has components

J" = p. = (charge density) , J' = j; = (current density). (1.112)

Exercise 1.18 describes how to think about this charge density and current density as geo-
metric objects determined by the observer’s 4-velocity or 341 split of spacetime into space
plus time. Exercise 1.19 shows how the frame-independent Maxwell equations (1.111) reduce
to the more familiar ones in terms of E and B.
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EXERCISES

Exercise 1.16 Derivation and Practice: Reconstruction of F
Derive Eq. (1.110) by the same method as was used to derive (1.109).

Exercise 1.17 Challenge: Relationship Between Fields Measured by Different Observers
In standard electrodynamics textbooks, e.g. Jackson (1999), Lorentz transformations are
used to derive the following relationship between the electric and magnetic fields measured
by two observers who move relative to each other:

TIZEH’ E/J_I’}/(EJ_—FVXBJ_),

Here v is the ordinary velocity of the primed frame as measured in the unprimed frame, the
primed fields are measured in the primed frame and unprimed fields in the unprimed frame,
|| means component parallel to v, and L means component perpendicular to v, as shown in
Fig. 1.12(b).

Derive Eq. (1.113) from the geometric, frame-independent expression (1.110), without
performing any Lorentz transformations. [Hint: Perform your calculation in the primed
frame and let @ be the 4-velocity of the unprimed frame. There will be some trickiness
about the meanings of E; and By.]

0The absence of €, = 1/u, in Gaussian units has motivated relativity physicists universally to adopt
them and avoid SI units. Even J.D. Jackson, in the most recent edition of his classic textbook Classical
FElectrodynamics (Jackson 1999), switches from SI to Gaussian units when moving into the relativistic domain
(his Chapter 11 onward; see his Preface). In the relativistic segments of this book, we shall follow suit.
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Exercise 1.18 Problem: 3+1 Split of Charge-Current 4-Vector

Just as the electric and magnetic fields measured by some observer can be regarded as 4-
vectors Eg and By that live in the observer’s 3- space of simultaneity, so also the charge
density and current density that the observer measures can be regarded as a scalar pgz and
4-vector j} that live in the 3-space of simultaneity. Derive geometric, frame-independent
equations for pg and jz in terms of the charge-current 4-vector J and the observer’s 4-
velocity o, and derive a geometric expression for J in terms of P j@, and 0.

Exercise 1.19 Problem: Frame-Dependent Version of Mazwell’s Equations
From the geometric version of Maxwell’s equations (1.111), derive the elementary, frame-
dependent version

| 4mp. in Gaussian units OE [ 47j in Gaussian units
V‘E_{ Pe/€o in SI units, VX B_E_{ [toJ in ST units,
B
V-B=0, VXE—G—a—:O.

ot
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1.11 Volumes, Integration, and the Gauss and Stokes
Theorems

The Levi-Civita tensor is the foundation for computing volumes and performing volume
integrals in any number of dimensions. In Cartesian coordinates of 2-dimensional Euclidean
space, the area (i.e. 2-dimensional volume) of a parallelogram whose sides are A and B is

‘Al Bl

2-Volume = EabAaBb = AlBg - AgBl = det (1114)

Ag B2

a relation that should be familiar from elementary geometry. Equally familiar should be the
expression for the 3-dimensional volume of a parallelopiped with legs A, B, and C:

Al Bl Cl
3-Volume = GijkAiBjCk =A. (B X C) = det A2 BQ Cg . (1115)
As Bs Cj

Recall that this volume has a sign: it is positive if {A, B, C,} is a right handed set of
vectors and negative if left-handed. The generalization to 4-dimensional spacetime should
be obvious: The 4-dimensional parallelopiped whose legs are the four vectors ff, B , C , D has
a 4-dimensional volume given by

A B % DO
S o4 55 1 1 1 1
4-Volume = €,4,sA*B°C'D° = €(A, B,C, D) = det } gz gz gz

A3 B® ¢ D?

(1.116)
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Note that this 4-volume is positive if the set of vectors {/_f, B’, c , ﬁ} is right-handed and
negative if left-handed.

Just as Egs. (1.105) and (1.114) give us a way to perform area integrals in 2- and 3-
dimensional Euclidean space, so Equation (1.116) provides us a way to perform volume
integrals over 4-dimensional Minkowski spacetime: To integrate some tensor field T over
some region V of spacetime, we need only divide spacetime up into tiny parallelopipeds,
multiply the 4-volume d¥ of each parallelopiped by the value of T at its center, and add.
It is not hard to see from Eq. (1.116) that in any right-handed Lorentz coordinate system,
the 4-volume of a tiny parallelopiped whose edges are dz® along the four coordinate axes is
dY: = dtdxdydz, and correspondingly the integral of T over V can be expressed as

/ T4y = / T°% dtdadydz . (1.117)
v %

The analogous expressions in 2- and 3-dimensional Fuclidean space should be obvious and
familiar.
In Euclidean 3-space, we define the vectorial surface area of a parallelogram with legs A
and B to be
=AxB=¢(_,A B). (1.118)

This vectorial surface area has a magnitude equal to the area of the parallelogram and a
direction perpendicular to it. Such vectorial surface areas are the foundation for surface
integrals in 3-dimensional space, and for the familiar Gauss and Stokes theorems:

/(V~A)dV01ume: A-dS (1.119)
V3 V3

(where Vj is a 3-dimensional region and 0Vs is its two-dimensional boundary),

VxA-dE= | A-dl (1.120)
Vo 2%

(where Vs is a 2-dimensional region, 0V is the 1-dimensional curve that bounds it, and the
last integral is a line integral around that curve).

Notice that in Euclidean 3-space, the vectorial surface area €(_, A, B) of the parallelo-
gram with legs A and B can be thought of as an object that is waiting for us to insert a
third leg C so as to compute a volume €(C, A, B)—the volume of the parallelopiped with
legs C, A, and B.

By analogy, in 4-dimensional spacetime any 3-dimensional parallelopiped with legs A B.C
has a vectorial 3-volume ¥ (not to be confused with the scalar 4-volume ) defined by

S(_)=e. A4 B C); %, =6upnA°BCY. (1.121)

Here we have written the volume vector both in abstract notation and in component notation.
This volume vector has one empty slot, ready and waiting for a fourth vector (“leg”) to be
inserted, so as to compute the 4-volume X of a 4-dimensional parallelopiped.
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Notice that the volume vector % is orthogonal to each of its three legs (because of the
antisymmetry of €), and thus (unless it is null) it can be written as & = Vil where V is the
magnitude of the volume and 7 is the unit normal to the three legs.

Interchanging any two legs of the parallelopiped reverses the 3-volume’s sign. Conse-
quently, the 3-volume is characterized not only by its legs but also by the order of its legs,
or equally well, in two other ways: (i) by the direction of the vector 3 (reverse the order of
the legs, and the direction of & will reverse); and (i) by the sense of the 3-volume, defined
as follows. Just as a 2-volume (i.e., a segment of a plane) in 3-dimensional space has two
sides, so a 3-volume in 4-dimensional spacetime has two sides; c¢f. Fig. 1.13. Every vector
D for which - D > 0 points out of one side of the 3-volume 3. We shall call that side the
“positive side” of i; and we shall call the other side, the one out of which point vectors D
with & - D < 0, its “negative side”. When something moves through or reaches through or
points through the 3-volume from its negative side to its positive side, we say that this thing
is moving or reaching or pointing in the “positive sense”; and similarly for “negative sense”.
The examples shown in Fig. 1.13 should make this more clear.

positive
4 sense

(b)

Fig. 1.13: Spacetime diagrams depicting 3-volumes in 4-dimensional spacetime, with one spatial
dimension (that along the z-direction) suppressed.

Figure 1.13(a) shows two of the three legs of the volume vector % = e(_, Azé,, Ayey,
Aze,), where z,y, z are the spatial coordinates of a specific Lorentz frame. It is easy to show
that this vector can also be written as & = —AVeéy, where AV is the ordinary volume of the
parallelopiped as measured by an observer in the chosen Lorentz frame, AV = AxAyAz.
Thus, the direction of the vector ¥ is toward the past (direction of decreasing Lorentz time
t). From this, and the fact that timelike vectors have negative squared length, it is easy to
infer that £- D > 0 if and only if the vector D points out of the “future” side of the 3-volume
(the side of increasing Lorentz time t), i.e., the positive side of Y is the future side. This
means that the vector % points in the negative sense of its own 3-volume.

Figure 1.13(b) shows two of the three legs of the volume vector Y = €(_, Atey, Ayey,
AzE.) = —AtAAE, (with AA = AyAz). In this case, & points in its own positive sense.

This peculiar behavior is completely general: When the normal to a 3-volume is timelike,
its volume vector % points in the negative sense; when the normal is spacelike, 3 points
in the positive sense; and—it turns out—when the normal is null, > lies in the 3-volume
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(parallel to its one null leg) and thus points neither in the positive sense nor the negative.!*

Note the physical interpretations of the 3-volumes of Fig. 1.13: That in Fig. 1.13(a) is an
instantaneous snapshot of an ordinary, spatial, parallelopiped, while that in Fig. 1.13(b) is
the 3-dimensional region in spacetime swept out during time At by the parallelogram with
legs Aye,, Aze, and with area AA = AyAz.

Just as in 3-dimensional FEuclidean space, vectorial surface areas can be used to con-
struct 2-dimensional surface integrals, so also (and in identically the same manner) in 4-
dimensional spacetime, vectorial volume elements can be used to construct integrals over
3-dimensional volumes (also called 3-dimensional surfaces), e.g. fvg A - dS. More specifi-
cally: Let (a,b,c) be (possibly curvilinear) coordinates in the 3-surface V3, and denote by
Z(a, b, ¢) the spacetime point P on V3 whose coordinate values are (a, b, ¢). Then (0Z/0a)da,
(0Z/0b)db, (0% /dc)dc are the vectorial legs of the elementary parallelopiped whose corners
are at (a,b, ), (a+da,b,c), (a,b+db, c), etc; and the spacetime components of these vectorial
legs are (0z®/da)da, (0z*/0b)db, (0z*/0c)dec. The 3-volume of this elementary parallelop-
iped is d% = e(_,(0%/0a)da, (% /0b)db, (0F/Oc)dc), which has spacetime components

Ox® 0xP Ox
= _— ) 1.122
h = e G gy g tadbde (1.122)

This is the integration element to be used when evaluating

dx

/ff—dVE:/ ArdY, (1.123)
\% Vs

Just as there are Gauss and Stokes theorems for integrals in Euclidean 3-space, so also
there are Gauss and Stokes theorems in spacetime. The Gauss theorem has the obvious form

/ (ﬁ-[l’)di:/ A dSS (1.124)
Vs Vs

where the first integral is over a 4-dimensional region V, in spacetime, and the second is over
the 3-dimensional boundary of V4, with the boundary’s positive sense pointing outward,
away from V) (just as in the 3-dimensional case). We shall not write down the 4-dimensional
Stokes theorem because it is complicated to formulate with the tools we have developed thus
far; easy formulation requires the concept of a differential form, which we shall not introduce
in this book.

1.11.1 Conservation of Charge

We can use integration over a 3-dimensional region (3-surface) in 4-dimensional spacetime
to construct an elegant, frame-independent formulation of the law of conservation of electric
charge:

We begin by examining the geometric meaning of the charge-current 4-vector J. We
defined J in Eq. (1.112) in terms of its components. The spatial component J* = J, = J(&,)

' This peculiar behavior gets replaced by a simpler description if one uses one-forms rather than vectors
to describe 3-volumes; see, e.g., Box 5.2 of Misner, Thorne, and Wheeler (1973).
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is equal to the x component of current density; i.e. it is the amount ) of charge that flows
across a unit surface area lying in the y-z plane, in a unit time; i.e., the charge that flows

— -

across the unit 3-surface ¥ = é,. In other words, J(X) = J(€,) is the total charge Q that
flows across ¥ = €, in X’s positive sense; and similarly for the other spatial directions. The

—

temporal component J° = —Jy = J(—¢p) is the charge density; i.e., it is the total charge
(2 in a unit spatial volume. This charge is carried by particles that are traveling through
spacetime from past to future, and pass through the unit 3-surface (3-volume) ¥ = —éj.

- — =

Therefore, J(X) = J(—¢éy) is the total charge Q that flows through ¥ = —éy in its positive
sense. This is precisely the same interpretation as we deduced for the spatial components of
J.

-

This makes it plausible, and indeed one can show, that for any small 3-surface i, (i) =
J*Y, is the total charge Q) that flows across X in its positive sense.

t f*AA
//’

v /

N =

x =

Fig. 1.14: The 4-dimensional region V in spacetime, and its closed 3-boundary 9V, used in for-
mulating the law of 4-momentum conservation. The dashed lines symbolize, heuristically, the flow
of 4-momentum from past toward future.

This property of the charge-current 4-vector is the foundation for our frame-independent
formulation of the law of charge conservation. Let V be a compact, 4-dimensional region
of spacetime and denote by 0V its boundary, a closed 3-surface in 4-dimensional spacetime
(Fig. 1.14). The charged media (fluids, solids, particles, ...) present in spacetime carry
electric charge through V, from the past toward the future. The law of charge conservation
says that all the charge that enters V through the past part of its boundary 0V must exit
through the future part of its boundary. If we choose the positive sense of the boundary’s
infinitesimal 3-volume d¥ to point out of V (toward the past on the bottom boundary and
toward the future on the top), then this conservation law can be expressed mathematically
as

/ JdSe =0 (1.125)
ov

When each tiny charge ¢ enters V through its past boundary, it contributes negatively to the
integral, since it travels through 0V in the negative sense (from positive side of dV toward
negative side); and when that same charge exits V through its future boundary, it contributes
positively to the integral. Therefore its net contribution is zero, and similarly for all other
charges.

This global law of charge conservation can be converted into a local law with the help of
the 4-dimensional Gauss theorem (1.124):

/ J“dza:/J“;adE. (1.126)
(2% %
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Since the left-hand side vanishes, so must the right-hand side; and in order for this 4-volume
integral to vanish for every choice of V, it is necessary that the integrand vanish everywhere
in spacetime:

J%=0; ieV-J=0. (1.127)

In a specific but arbitrary Lorentz frame, the local conservation law (1.150) for charge
takes the form

aJ° oJk B

ot * oxk

This is the usual form in which one writes conservation laws in Newtonian physics: the time

derivative of the density of the conserved quantity, plus the 3-divergence of its flux, vanishes.

In special relativity this usual form remains valid, but we also have elegant, frame-invariant
formulations of conservation laws, such as Eq. (1.125).

0. (1.128)

1.11.2 Conservation of Particles, Baryons and Rest Mass

Any conserved scalar quantity obeys conservation laws of the same form as those for electric
charge. For example, if the number of particles of some species (e.g. electrons or protons
or photons) is conserved, then we can introduce for that species a number-flur 4-vector S
(analog of charge-current 4-vector J ): In any Lorentz coordinate system S° is the number
density of particles and S/ is the particle flux. If 3 is a small 3-volume (3-surface) in
spacetime, then J (i) = J*Y, is the number of particles that pass through ¥ from its
negative side to its positive side. The frame-invariant conservation law for these particles

says

S =0 where 0V is the closed 3-surface boundary of an arbitrary 4-volume V.

v
(1.129)
The corresponding differential conservation law for particles says
28° oSk
S*.=0; 1ie,in a Lorentz coordinate system — + —- =0. (1.130)
’ ot Oxk

When fundamental particles (e.g. protons and antiprotons) are created and destroyed
by quantum processes, the total baryon number (number of baryons minus number of an-
tibaryons) is still conserved—or, at least this is so to the accuracy of all experiments per-
formed thus far. We shall assume it so in this book. This law of baryon-number conservation
takes the forms (1.129) and (1.130), with S the number-flux 4-vector for baryons (with an-
tibaryons counted negatively).

It is useful to reexpress this baryon-number conservation law in Newtonian-like language
by introducing a universally agreed upon mean rest mass per baryon mpg This mp is often
taken to be 1/56 the mass of an °Fe (iron-56) atomic nucleus, since 5°Fe is the nucleus
with the tightest nuclear binding, i.e. the endpoint of thermonuclear evolution in stars. We
multiply the baryon number-flux 4-vector S by this mean rest mass per baryon to obtain a

rest-mass-flux 4-vector
Srm = mpS (1.131)
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which (since mp is, by convention, a constant) satisfies the same conservation laws (1.129)
and (1.130) as baryon number.

For media such as fluids and solids, in which the particles travel only short distances
between collisions or strong interactions, it is often useful to resolve the particle number-
flux 4-vector and the rest-mass-flux 4-vector into a 4-velocity of the medium 4 (i.e., the
4-velocity of the frame in which there is a vanishing net spatial flux of particles), and the
particle number density n, or rest mass density p, as measured in the medium’s rest frame:

—

S=noii, Sum=poi. (1.132)

See Exercise 1.21.

We shall make use of the conservation laws V-5 = 0 and V - Smm = 0 for particles
and rest mass later in this book, e.g. when studying relativistic fluids; and we shall find the
expressions (1.132) for the number-flux 4-vector and rest-mass-flux 4-vector quite useful. See,
e.g., the discussion of relativistic shock waves in Chap. 16 [KIP: NOT YET WRITTEN!],
and the nonrelativistic limit of a relativistic fluid in Sec. 23.4 [KIP: DOUBLE CHECK IT
HAS NOT BEEN MOVED].
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EXERCISES

Exercise 1.20 Practice: Evaluation of 3-Surface Integral in Spacetime

In Minkowski spacetime the set of all events separated from the origin by a timelike interval
a® is a 3-surface, the hyperboloid t? — 22 — y? — 22 = a?, where {t,z,y,2} are Lorentz
coordinates of some inertial reference frame. On this hyperboloid introduce coordinates

{x,0, ¢} such that

t=acoshy, x=asinhysinfcos¢, y=asinhysinfsing;, z=asinhycosf .
(1.133)
Note that y is a radial coordinate and (6, ¢) are spherical polar coordinates. Denote by V3
the portion of the hyperboloid with y < b.

(a) Verify that for all values of (x, 8, ¢), the points (1.133) do lie on the hyperboloid.

(b) On a spacetime diagram, draw a picture of Vs, the {x,0,¢} coordinates, and the
elementary volume element (vector field) dX.

¢) Set A = &, (the temporal basis vector), and express |, A-dY as an integral over
V3
{x,0, ¢}. Evaluate the integral.

(d) Consider a closed 3-surface consisting of the segment V5 of the hyperboloid as its top,
the hypercylinder {z? + y? + 22 = a®sinh®b, 0 < t < acoshb} as its sides, and the
sphere {z% + y% + 2?2 < d? sinh?b |, t = 0} as its bottom. Draw a picture of this closed
3-surface on a spacetime diagram. Use Gauss’s theorem, applied to this 3-surface, to
show that ng A-dY s equal to the 3-volume of its spherical base.
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Exercise 1.21 FEzxzample: Rest-mass-flux 4-vector, Lorentz contraction of rest-mass density,
and rest-mass conservation for a fluid

Consider a fluid with 4-velocity «, and rest-mass density p, as measured in the fluid’s rest
frame.

(a) From the physical meanings of i, p,, and the rest-mass-flux 4-vector §rm, deduce Eq.
(1.132).

(b) Examine the components of S in a reference frame where the fluid moves with ordi-
nary velocity v. Show that S° = p,y, S7 = p,yv?, where v = 1/4/1 — v2. Explain the
physical interpretation of these formulas in terms of Lorentz contraction.

(c) Show that the law of conservation of rest-mass V - Sim = 0, takes the form

dp, -
=—p,V -1, 1.134
dr P “ ( )

where d/dr is derivative with respect to proper time moving with the fluid.

(d) Consider a small 3-dimensional volume V' of the fluid, whose walls move with the fluid
(so if the fluid expands, V' goes up). Explain why the law of rest-mass conservation
must take the form d(p,V')/dr = 0. Thereby deduce that

V-a=(1/V)(dV/dr) , (1.135)
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1.12 The Stress-energy Tensor and Conservation of 4-

Momentum 2

We conclude this chapter by formulating the law of 4-momentum conservation in ways anal-
ogous to our laws of conservation of charge, particles, baryons, and rest mass. This task
is not trivial, since 4-momentum is a vector in spacetime, while charge, particle number,
baryon number, and rest mass are scalar quantities.

1.12.1 Stress-Energy Tensor

We begin by introducing the stress-energy tensor T: a geometric object that describes the
density and flux of 4-momentum in the same way as the charge-current 4-vector J describes
the density and flux of electric charge.

12For further detail on the topics of this section, see, e.g., Chapter 5 of Misner, Thorne, and Wheeler
(1993).
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Suppose that a continuous medium (e.g., a gas) or a continuous field (e.g., electromag-
netic waves) flows through a small 3-volume (3-surface) S in spacetime, carrying with it
4-momentum. If ¥ points in the negative time direction of some chosen Lorentz frame, so
> = —AV&, [cf. Fig. 1.13(a)], then the total 4-momentum carried through ¥ in the positive
sense (from past toward future) is readily seen to be the total 4-momentum that an observer
in the chosen Lorentz frame measures to lie in 5 (i.e. in the volume AV') at the moment
t = 0 of ¥s brief existence. Similarly, if the 3-volume is that of Fig. 1.13(b), > = —AAAtE,,
then the total 4-momentum carried through ¥ in the positive sense (from +x toward —z)
is the 4-momentum that an observer in the chosen Lorentz frame would see cross the area
AA, from +x toward —zx, during time At.

It is easy to convince oneself on physical grounds that the total 4-momentum carried
through these and any other tiny 3-volumes is linear in the 3-volumes. More specifically, if
the size of a tiny 3-volume is doubled, then the amount of 4-momentum that flows through
it will double; and if a new 3-volume is constructed as the sum of two old 3-volumes, then
the total 4-momentum that flows through the new one will be the sum of that which flows
through the two old ones. This means that we can define a second-rank stress-energy tensor
T as that real-valued linear function with two slots such that, if we insert into the second
slot a volume vector 3. and leave the first slot empty, we will get out the total 4-momentum
that flows through 3 from negative side toward positive:

T(_,%) = (total 4momentum P that flows through X); ie., T°°S; = P*.  (1.136)
This is the 4-momentum analog of J(3) = (total charge that flows through 33). Of course,
this stress-energy tensor is different at different locations in spacetime; i.e., it is a tensor
field: if one wants to know the 4-momentum which flows through a 3-volume located at
an event P, one must do the calculation (1.136) using the value of T appropriate to that
location, T(P).

From this definition of the stress-energy tensor we can read off the physical meanings of
its components on a specific, but arbitrary, Lorentz-coordinate basis: Making use of method
(1.52) for computing the components of a vector or tensor, we see that in a specific, but
arbitrary, Lorentz frame (where Y = —&, is a volume vector representing a parallolepiped
with unit volume AV =1, at rest in that frame, with its positive sense toward the future):

a-component of 4-momentum that
—Tho = T(€,, —€y) = P(€,) = flows from past to future across a unit
volume AV =1 in the 3-space t = const

= (a-component of density of 4-momentum ) . (1.137)

Specializing « to be a time or space component and raising indices, we obtain the specialized
versions of (1.137)

T% = (energy density as measured in the chosen Lorentz frame),

T7° = (density of j-component of momentum in that frame). (1.138)
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Similarly, the ax component of the stress-energy tensor (also called the al component since
x = z1 and €, = €}) has the meaning

a-component of 4-momentum that crosses

a unit area AyAz = 1 lying in a surface of

constant z, during unit time At, crossing
from the —x side toward the 4z side

Tor = Tow = T(E0, E) =

B « component of flux of 4-momentum (1.139)
~\ across a surface lying perpendicular to €, '
The specific forms of this for temporal and spatial « are
0r _ [ energy flux across a surface perpendidular to e,
™ =—Tw= ( from the —x side to the +x side ' (1.140)

Ti _ T, = ( flux of j-component of momentum across a surface ) (1.141)

perpendicular to €, from the —x side to the +x side

The ay and az components have the obvious, analogous interpretations.
These interpretations, restated much more briefly, are:

T% = (energy density) , 7Y% = (momentum density) ,
T% = (energy flux) , T7% = (stress) . (1.142)

The stress deserves special attention: Corresponding to a specific Lorentz frame there is
a specific 3-space of simultaneity ¢ = const, and in that 3-space lives the stress tensor T
of 3-dimensional (Newtonian) physics. That Newtonian stress tensor is defined, in analogy
with the relativistic stress-energy tensor (1.136), by

T(_,>) = (total momentum p that flows through the 2-surface ¥ per unit time ).
(1.143)
It is straightforward to verify that the components T, of this stress tensor on the orthonormal
basis of a Cartesian coordinate system are identical to the spatial components of the 4-
dimensional stress-energy tensor: by analogy with Eq. (1.141)

j-component of momentum that crosses a unit
T, = T’% — | area which is perpendicular to &, per unit time,
with the crossing being from —z* to +z*

(1.144)

_( j-component of force per unit area
across a surface perpendicular to €,

As special cases, T, is the pressure in the z-direction, and T%* is the y-directed shear stress
across a surface of constant x.

Although it is not obvious at first sight, the 4-dimensional stress-energy tensor is sym-
metric; in index notation (where indices can be thought of as representing the names of slots,
or equally well components on an arbitrary basis)

T8 = TP (1.145)
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This symmetry can be deduced by a physical argument in a specific, but arbitrary, Lorentz
frame: Consider, first, the 0 and 0z components, i.e., the z-components of momentum
density and energy flux. A little thought, symbolized by the following heuristic equation,
reveals that they must be equal

qa0 _ ( momentum 1\ _ (A&)dx/dt — AE [ energy (1.146)
B density - AzAyAz AyAzAt flux ’ '

and similarly for the other space-time and time-space components: T7° = T%_ [In Eq. (1.146),
in the first expression A& is the total energy (or equivalently mass) in the volume AzAyAz,
(A€)dz/dt is the total momentum, and when divided by the volume we get the momen-
tum density. The third equality is just elementary algebra, and the resulting expression is
obviously the energy flux.|

Consider, next, the xy and yx components, i.e., components of the shear stress. One can
show by elementary torque arguments (Chap. 10) that, if these components were not equal
to each other, then on a tiny cube of material with side L and moment of inertia oc L there
would be a net torque (7% —T%*) L3 that induces an angular acceleration oc L~%; this angular
acceleration would become infinitely large in the limit L — 0, which is physically ridiculous.
Correspondingly, it must be that 7% = T¥%"  and similarly for all other off-diagonal spatial
components, T7% = T,

Since, by the above arguments, 7% = 779 and T7% = T all components in our chosen
Lorentz frame are symmetric, 7% = T%*. This means that, if we insert arbitrary vectors
into the slots of T and evaluate the resulting number in our chosen Lorentz frame, we will
find

T(A, B) =T A,Bs = T’ A.Bs = T(B, A) . (1.147)

This shows that T is symmetric under interchange of its slots.

1.12.2 4-Momentum Conservation

- —

Our interpretation of J(X) = J*¥, as the total charge that flows through a small 3-surface
Y from its negative side to its positive side gave rise to the global conservation law for charge,
Jo J¥d¥a = 0 [Eq. (1.126) and Fig. 1.14]. Similarly the role of T(—’_,E) (T84 in slot
naming index notation] as the total 4-momentum that flows through ¥ from negative to
positive side gives rise to the following equation for conservation of 4-momentum:

/ T°%dY5 =0 . (1.148)
ov

This equation says that all the 4-momentum that flows into the 4-volume V of Fig. 1.14
through its 3-surface dV must also leave V through 0V; it gets counted negatively when it
enters (since it is traveling from the positive side of OV to the negative), and it gets counted
positively when it leaves, so its contribution to the integral (1.148) is zero.

This global law of 4-momentum conservation can be converted into a local law (analogous
to V - J = 0 for charge) with the help of the 4-dimensional Gauss theorem (1.124). Gauss'’s
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theorem, generalized in the obvious way from a vectorial integrand to a tensorial one, says:

/ To‘ﬁngz/To‘ﬁ;ﬁdE. (1.149)
oV 1%

Since the left-hand side vanishes, so must the right-hand side; and in order for this 4-volume
integral to vanish for every choice of V), it is necessary that the integrand vanish everywhere
in spacetime:

T%5=0; ie,V-T=0. (1.150)

In the second, index-free version of this local conservation law, the ambiguity about which
slot the divergence is taken on is unimportant, since T is symmetric in its two slots: 7% 5 =
T 4.

In a specific but arbitrary Lorentz frame, the local conservation law (1.150) for 4-
momentum has as its temporal and spatial parts

aTOO aTOk
ot + oxk

i.e., the time derivative of the energy density plus the 3-divergence of the energy flux vanishes;
and

—0, (1.151)

oT’°  9TI*

o ot
i.e., the time derivative of the momentum density plus the 3-divergence of the stress (i.e., of
the momentum flux) vanishes. Thus, as one should expect, the geometric, frame-independent
law of 4-momentum conservation includes as special cases both the conservation of energy
and the conservation of momentum; and their differential conservation laws have the standard
form that one expects both in Newtonian physics and in special relativity: time derivative
of density plus divergence of flux vanishes.

0, (1.152)

1.12.3 Stress-Energy Tensor for a Perfect Fluid and an Electro-
magnetic Field

As an important example that illustrates the stress-energy tensor, consider a perfect fluid.
A perfect fluid is a continuous medium whose stress-energy tensor, evaluated in its local rest
frame (a Lorentz frame where 770 = T% = (), has the special form

T =p, T9*% = psit. (1.153)

Here p is a short-hand notation for the energy density (density of total mass-energy, including
rest mass) 7%, as measured in the local rest frame; and the stress tensor T7% as measured
in that frame has the form of an isotropic pressure P, and vanishing shear stress. From this
special form of 7% in the local rest frame, one can derive the following expression for the
stress-energy tensor in terms of the 4-velocity u of the local rest frame, i.e., of the fluid itself,
the metric tensor of spacetime g, and the rest-frame energy density p and pressure P:

T = (p+ P)uu’ + Pg* 5 ie, T=(p+P)i@i+ Pg . (1.154)
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See Exercise 1.23, below. In Part I1I of this book, we shall explore in depth the implications
of this stress-energy tensor.

Another example of a stress-energy tensor is that for the electromagnetic field, which
takes the following form in Gaussian units:

1
T = —
47

1
(F““Fﬁu — ZgﬁﬁFMVW) (1.155)

see Exercise 1.25
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EXERCISES

Exercise 1.22 Exzample: Global Conservation of 4-Momentum in a Lorentz Frame

Consider the 4-dimensional parallelopiped V whose legs are Atey, Axe,, Aye, Azé,, where
(t, z, y, z) = (2° ', 2%, 23) are the coordinates of some Lorentz frame. The boundary
dV of this V has eight 3-dimensional “faces”. Identify these faces, and write the integral
/. oy L 9535 as the sum of contributions from each of them. According to the law of energy
conservation, this sum must vanish. Explain the physical interpretation of each of the eight

contributions to this energy conservation law.

Exercise 1.23 Derivation and Example: Stress-Energy Tensor and Energy-Momentum Con-
servation for a Perfect Fluid

(a) Derive the frame-independent expression (1.154) for the perfect fluid stress-energy
tensor from its rest-frame components (1.153).

(b) Explain why the projection of V- T = 0 along the fluid 4-velocity, @-(V-T) = 0, should
represent energy conservation as viewed by the fluid itself. Show that this equation

reduces to p
p =
— = — P)YV-u. 1.1
W (s PV (1.156)
With the aid of Eq. (1.135), bring this into the form
d(pV) dv
=—P— 1.157
dr dr’ ( )

where V' is the 3-volume of some small fluid element as measured in the fluid’s local
rest frame. What are the physical interpretations of the left and right sides of this
equation, and how is it related to the first law of thermodynamics?

(c) Read the discussion, in Ex. 1.7, of the tensor P = g + @ ® @ that projects into the
3-space of the fluid’s rest frame. Explain why P,,T B 5 = 0 should represent the law of
force balance (momentum conservation) as seen by the fluid. Show that this equation

reduces to .
(p+P)a=—-P-VP, (1.158)
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where @ = di/dr is the fluid’s 4-acceleration. This equation is a relativistic version of
Newton’s “F = ma”. Explain the physical meanings of the left and right hand sides.
Infer that p + P must be the fluid’s inertial mass per unit volume. See Ex. 2.4 for
further justification of this inference.

Exercise 1.24 FExample: Inertial Mass Per Unit Volume

Suppose that some medium has a rest frame (unprimed frame) in which its energy flux
and momentum density vanish, 7% = 7Y% = 0. Suppose that the medium moves in the z
direction with speed very small compared to light, v < 1, as seen in a (primed) laboratory
frame, and ignore factors of order v2. The “ratio” of the medium’s momentum density 77"
as measured in the laboratory frame to its velocity v; = vd;, is called its total inertial mass
inert.

per unit volume, and is denoted plj;

i’0’ __inert
Show, using a Lorentz transformation from the medium’s (unprimed) rest frame to the
(primed) laboratory frame, that

p;r;ert — TOO(Sji + T‘]z ) (1160)

Show that for a perfect fluid [Eq. (1.154)] the inertial mass per unit volume is isotropic and
has magnitude p + P, where p is the mass-energy density and P is the pressure measured in
the fluid’s rest frame:

Pt = (p+ P)dji . (1.161)

See Ex. 1.23 above for this inertial-mass role of p+ P in the law of force balance (momentum
conservation) for a fluid.

Exercise 1.25 Example: Stress-Energy Tensor, and Energy-Momentum Conservation for
the Electromagnetic Field

(a) Compute from Eq. (1.155) the components of the electromagnetic stress-energy tensor
in an inertial reference frame in Gaussian units. Your answer should be the expressions
given in electrodynamic textbooks:

E? + B2 . . E x B
70 = B g, — Tite = X2
8 4
. 1
T = o~ [(E* + B)6;, — 2(E; Ey, + B;By)] (1.162)
(b) Show that for the electromagnetic field,
T 5= F*"],, (1.163)

where J, is the charge-current 4-vector.
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(c) The matter that carries the electric charge and current can exchange energy and mo-
mentum with the electromagnetic field. Explain why Eq. (1.163) is the rate per unit
volume at which that matter feeds 4-momentum into the electromagnetic field, and
conversely, —F“"J, is the rate per unit volume at which the electromagnetic field
feeds 4-momentum into the matter. Show, further, that (as viewed in any reference
frame) the time and space components of this quantity are

(Zé;nlattcr 07 . (lI)nlattcr .
=_FYJ] —FE. —— =p,E B, 1.164
dtdV ! I dtdV pels 1 x ( )

cf. Eq. (1.112). The first of these is ohmic heating of the matter by the electric field;
the second is the Lorentz force per unit volume on the matter.
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