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Abstract

The standard method of refining a macromolecular model uses both
automated and manual methods. This combination allows the best abili-
ties of both the computer and the human to be applied to the problem. At a
basic level, however, both methods are examining the same indicators of er-
ror. This paper discusses some of the properties of these indicators which
limit the investigator’s ability to identify errors in their models.

Introduction

Our automated refinement packages are limited in that they cannot
alter the basic form of the models they are optimizing. Initially the model
must be constructed . Interspersed with the automated refinement are
sessions of manual intervention. During these sessions at the computer
graphics workstation the crystallographic information is presented in the
form of density and difference density maps. To properly interpret these
maps you must have an understanding of the way errors are represented
in these maps and kinds of information not shown by them.

Usually one examines a Fo-Fc map to identify errors in a model and
a 2Fo-Fc map to guide the construction of the new model. Since the Fo-Fc
map is used to detect the error most of this paper will be devoted to a de-
scription of the appearance of these maps.

The first order description of the signal in a Fo-Fc map is know to
all crystallographers. Locations in space where there should be electrons
show positive features in the map while locations where the model inap-
propriately contains electrons show negative features. For example, if the
model is missing a bound water molecule the Fo-Fc map will show a posi-
tive peak at the location where the water molecule should be placed.

A more complicated signal is expected when an atom is modeled but
1s slightly misplaced. In this case you will expect to see a positive peak
next to a negative peak with the atom’s current location between. This
feature indicates that the atom should be moved toward the positive peak.

These are the signals that all crystallographers are taught to iden-
tify. The real situation is more complicated. There are peaks in Fo-Fc
maps which do not indicate that atoms should be added to the model and



sometimes atoms have errors in their positions which are not marked by
pairs of peaks. The proper interpretation of a Fo-Fc map requires that you
be familiar with these limitations.

Fo-Fc Map Theory and Limitations

It was shown some time ago (Crukshank, 1951) that least squares
minimization and flattening a Fo-Fc map are closely related tasks. This
relationship is what allows us to use Fo-Fc map refitting side-by-side with
least squares refinement. It was later shown that a relatively simple
transformation can convert a Fo-Fc map to the gradient of the least
squares’ residual (Agarwal, 1978). In fact, this is the way many refine-
ment packages calculate the gradient today. Agarwal’s result allows us to
treat the Fo-Fc map and the gradient of the least squares’ residual func-
tion as equivalent.

Therefore, moving atoms to cause the Fo-Fc map to become flat is
the same as moving the parameters of the model down the gradient vector.
This describes the steepest descent method of function minimization
(Leuenberger, 1971). While the steepest descent method is quite robust it
1s also quite limited.

The principle omission from the steepest descent method is the lack
of consideration of any second derivative information. The second deriva-
tive of the least squares expression contains several types of information
about the model, including

e The precision or “significance” of each parameter, and
e The correlation and anticorrelation of pairs of parameters.

While the Fo-Fc map does not present any second derivative infor-
mation all refinement packages incorporate some or all of it either directly
or indirectly. XPLOR (Brtinger, 1987) only includes the second derivative
information indirectly via the conjugate gradient procedure (Fletcher and
Reeves, 1964, Konnert, 1975). PROLSQ (Hendrickson and Konnert, 1980)
uses the precision part (diagonal) of the second derivatives as well as some
of the correlation part (off-diagonal) but uses this data ineffectively by
using the conjugate gradient method of minimization in roughly the same
fashion as XPLOR. TNT (Tronrud, et al, 1987) uses the precision part of
the second derivatives with the preconditioned conjugate gradient method
(Axelsson, 1985, Tronrud, 1990). While SHELXL (Sheldrick, and Schnei-
der) can use all of the second derivative information the size of the compu-
tation required to determine the shift limits its use to small proteins.



The Effect of Parameter Correlation on the Fo-Fc
Map

To demonstrate the effect of correlated errors in the parameters of a
model I have constructed the following test case.

This is one section of a Fo-Fc map.
Positive density is white and negative den-
sity is black. Regions with no difference
density appear neutral gray. The length of
each edge is 40A. The full unit cell contains
10 atoms, all of which are in their correct po-
sition except for the atom in this section
which is placed in error by 1.5A. While the
expected pair of peaks is quite evident there
are a considerable number of other features
in this section. Despite the complications
the pair of peaks are sufficiently clear to indicate the error in the atom’s
position.

For comparison I have created another
Fo-Fc map where I have simply added nine
more atoms to the section, each of which are
positioned in error by 1.54 in the same direc-
tion. In this case there is not a pair of peaks
for each atom but a single pair for the entire
group of atoms. If you did not consider this
group of atoms as a block you would be
tempted to simply add a water molecule in
the positive peak on the right and increase
the B factor of the furthest atom on the left.
Since some of the difference density (the three positive peaks on the far
right) is fairly strong you might add water molecules there as well. These
incorrect modifications of the model would lock the positions of these at-
oms in the wrong position. This map is very easy to misinterpret.

Since the refinement packages usually do not include second deriva-
tive information either they will not usually correct the error in this model
either. When there is a concerted shift of a number of atoms you must
specifically instruct the refinement package to look for such a shift. How-
ever, you will not be able to recognize the existence of this problem from
looking at the map and if you perform automated refinement without pre-
cautions the computer will make inappropriate shifts and trap your model
in error forever.

The lack of consideration of the second derivatives of most refine-
ment packages results in the requirement that you perform rigid body re-



finement whenever it is possible that your model contains such errors.
Usually a model constructed by reference to an m.i.r., s.i.r., or m.a.d. map
will not contain errors of this type. However models generated by mo-
lecular replacement or molecular substitution (isomorphous mutant or in-
hibitor structures) often do. In these cases you must perform rigid body
refinement with first each entire molecule in a group, then each domain in
a rigid group, and perhaps finishing with significant portions of domains
defined as rigid groups. Only then can you proceed to individual atom re-
finement.

You will not see clear indications in your Fo-Fc map that such er-
rors are present even if they are present. To be safe you must perform the
rigid body refinement in all cases.

Correlation of Parameters for a Single Atom

While the difference map signals mentioned above, a pair of peaks
of opposite sign indicating a positional error and a peak centered on the
atom indicating a B factor error, are the form generally taught they are
rarely observed in refined difference maps. This is because there is a cor-
relation between the position and B factor of each atom.

If a model 1s refined and, for some reason, an atom cannot move to
accommodate the diffraction data the difference map will develop a pair of
peaks. However the atom does not lie halfway between the two peaks — it
will be a little closer to the negative peak. Since we have assumed that the
atom cannot move to correct the error the only option available to the pro-
gram 1is to raise the B factor to attempt to remove the negative peak. By
the time the map 1s examined all that is left to see is a positive peak near
an atom. The B factor may be unusually large but that may not be recog-
nizable given the expected fluctuation of this type of parameter.

The most common difference density feature in a refined difference
map is positive density near a atom. If there is any density at the position
of the atom it is due to restraints preventing the B factor from changing.
The response to this density is to search for the restraint which is pre-
venting the atom from moving. If you simply move the atom manually
whatever restraint caused the problem will pull the atom back to its origi-
nal location.

The density of a difference map calculated with an unrefined model
will exhibit the classical features.

Series Termination in Fo-Fc Maps

The maps above each contain two principle peaks which indicate
the error in position of the group of atoms. Each map also contains a
number of other peaks. These peaks are caused by series termination —



The lack of certain Fourier terms in the calculation of the maps. All den-
sity maps will contain a certain amount of series termination.

The principle cause of series termination is the incompleteness of
the observed data set. While the incompleteness of a data set could have
many forms usually it is described by an inner (or low) resolution and
outer (or high) resolution limit. While the outer resolution limit usually
exists because the crystal does not diffract with sufficient intensity to ac-
curately measure (or the structure factors cannot be phased well enough)
the inner limit is either chosen arbitrarily or imposed by the technical
limitations of the data collection procedure (e.g. the beam stop). The sig-
nificance of a resolution limit is determined by the amount of intensity
lost from the calculation. If the outer resolution limit is caused by the
weak diffraction of the crystal at that resolution this limit will not cause
significant artifacts in the maps.

If the outer resolution limit is imposed because of phasing errors, as
in a m.1.r. map with a breakdown of isomorphism at high resolution, there
can be significant series termination errors. In addition the low resolution
limit always excludes significant reflections and causes more errors. Since
these limits are simple shapes in reciprocal space their effects are simple
in real space as well. They cause every feature to be surrounded by rip-
ples. The wavelength of the ripple will be somewhat beyond the resolution
limit of the data. For example, a 34 outer resolution limit will cause all
features in a map to be surrounded by ripples with a wavelength some-
what shorter than 3A. A 6A inner resolution limit will cause ripples
somewhat longer than 6A.

To demonstrate the affect of series termination on the appearance of
a 2Fo-Fc map I will show the results of some model calculations. The z=10

section of a calculated electron density map for the protein Thermolysin
(Holland, et al, 1992) is



The crystal is hexagonal which explains the gray triangles on the maps
sides. Since this map is simply calculated from the atomic positions it
does not exhibit any defects due to resolution limits. The bulk solvent re-
gions are devoid of density and the atoms are as resolved as well as can be
expected for atoms with B factors of ~15.

A 2Fo-Fc map will never look this good. It will always be missing
some of the low resolution data and most likely some of the high resolu-
tion data as well. If we recalculate the map shown above with the resolu-
tion limits 20 to 1.8A the result is




You will note that while the solvent region now appears to contain density
the principle features of the protein are still quite recognizable. This map
could be used to build a model of the protein without much difficulty.

If the map is calculated again, this time with the resolution limits 6
to 1.84, the result is

In this map considerable density appears in the bulk solvent regions.
While the core of the protein still exhibits sufficient detail to allow the po-
sitions of the atoms to be recognized the superposition of the false solvent
density on the surface regions of the protein could cause regions with high
B factors to be difficult to interpret. In addition there is a great tempta-
tion to interpret the “features” in the bulk solvent region as structured
solvation.

One must be very cautious when interpreting weak density. There
are many explanations for weak features in a map that do not involve the
presence of ordered atoms.

Series Termination in Fo-Fc maps

The example shown above mimics a 2Fo-Fc map but series termina-
tion also affects Fo-Fc maps. Any error in the protein model will result in
features in the Fo-Fc map. These features will be of the classical form — a
pair of peaks of opposite sign for positional errors, a peak centered on the
atom for a B factor error, and positive density for unmodeled protein — but
will be modified by the series termination ripples.

When interpreting a Fo-Fc map you should only attempt to model
the strongest features. The weaker features will be distorted by the rip-
ples from the stronger and cannot be reliably interpreted. Once you have



corrected the major problems with your model you can calculate a new Fo-
Fc map which will show a clearer image of the remaining problems.

Reducing the Parameter Uncertainty

The parameters of your final model will contain uncertainties.
These uncertainties arise from the uncertainties in the measurement of
the data and are modulated by the mathematical transformation required
to calculate the model from those data. Since we do not know how to cal-
culate the model from the data (we can only calculate what the data
should be given a model.) the calculation of the uncertainties of our final
parameters is quite difficult.

We do know the character of these uncertainties. While we usually
talk about the uncertainty of a parameter by estimating a standard de-
viation, this list of “sigmas” does not tell the whole story. The more trou-
blesome aspect of the uncertainty is the covariance.

The covariance of two parameters quantifies the extent that one pa-
rameter can change to compensate for a change in another. Whenever a
pair of parameters have a large covariance their values have a much
larger uncertainty than their individual standard deviations would indi-
cate.

While it is quite difficult to calculate the covariance of every pair of
parameters in a model there are steps which can be taken to reduce the
uncertainty. The most powerful is to change the parameters of the model
to another set which exhibit less correlation. Usually proteins are mod-
eled by supplying a position and B factor for each atom. When the diffrac-
tion data only cover low resolution the parameters for neighboring atoms
become highly correlated and their positions quite difficult to refine and
their final values quite uncertain. If we knew the basic fold of the protein
from some other source (say molecular replacement) we can redefine the
parameters of the model. An example of this would be to define the pa-
rameters to be the position, orientation, and B factor of each domain in the
protein and refine these parameters. Since the electron density of each
domain does not overlap the covariance of these parameters will be much
smaller.

This example is simply rigid body refinement and is a commonly
used means of aiding refinement convergence. While these types of pa-
rameter changes are quite powerful current refinement packages are quite
limited in their ability to allow parameterizations other than individual
atoms and rigid groups.

Usually a new parameterization is devised to make use of some ad-
ditional source of information. An analogy between the current structure
and one solved in another space group provides the information used in
the rigid body parameterization. The analogy from one crystal form to an-



other is usually only considered valid at low resolution and the rigid body
model is abandoned when refining against high resolution diffraction
data.

It would seem reasonable that an analogy between two very similar,
isomorphous, structures would be valid to high resolution. If true one
could redefine the parameters of the models to be more sensitive to the dif-
ferences between the two structures. Terwilliger & Berendzen, (1995)
have proposed a means of redefining the refinement process to emphasize
the differences between the “derivative” and “native” structures (be they
mutant verses wild type or inhibited verses uninhibited). While their ap-
proach appears promising it does not change the parameterization of ei-
ther model. The next step would be to define a set of parameters which
express the structural details of the two structures in a minimalist form.

Summary

The best source of information about the quality of your model is
your maps. If a detail of the structure is not visible in the 2Fo-Fc map and
a trial change in this feature of your model does not affect the Fo-Fc map
then that detail is probably artifactual. You must be very careful, how-
ever, because these maps will contain features which do not arise from the
true structure of the protein but are artifacts due to series termination,
phase errors, incomplete data, and other sources. To achieve the best
maps you must include all available data in their calculation (no omission
of the low resolution data) and model all aspects of the structure, includ-
ing the bulk solvent.

If you are interested in the fine details of your structure you will
have to carefully choose the parameters of your model. You should not
allow the model to violate facts about the structure such as the conforma-
tion of related structures. The parameters of the model should be con-
trived to allow variability in only those aspects which are believed to differ
from known quantities. The fewer parameters the better.
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