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Abstract

A novel method of function minimization which combines the power of

the diagonal approximation to the normal matrix with conjugate directions

is described. This method approaches closer to the local minimum than

the methods which are commonly used in macromolecular refinement. The

weaknesses of the current methods are analyzed to explain the advantage of

the conjugate direction method.



1 Introduction

A persistent problem with macromolecular refinement is that the R-factors of

the final models are higher than those obtained in small molecule structures.

Over the last ten years, even though the same basic type of model is used

to represent the molecule, average R-factors have decreased from about 20

percent to 16 percent. The difference is the sophistication of the refinement

methods used. It seems likely that further improvement could be achieved if

more powerful techniques were available.

In pursuit of this goal a modification of the conjugate gradient method of

function minimization (Fletcher, 1964) has been developed which uses more

information about the function being minimized than any method currently

used. In particular, it uses explicit knowledge of the diagonal elements of the

normal matrix together with implicit knowledge of the off-diagonal terms

learned from the history of the refinement to determine better directions in

parameter space to search. This method can determine a set of parameters

which agree better with the observations in a shorter amount of computer

time than the methods described previously.
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2 Overview of Function Minimization

The theoretical underpinnings of all refinement methods used in the latter

stages of high resolution refinement are the same. The analysis begins by

making a Taylor series expansion of the function being minimized about the

current guess for the values of the parameters of the model (x0). The Taylor

series expansion is

f(x) = f(x0) + gt(x0)d +
1

2
dtN(x0)d + · · · , (1)

where g(x) is the gradient of the function, N(x) is the second derivative or

normal matrix, and d is the shift vector which takes x0 to x. The higher

order terms are always assumed equal to zero.

To find the value of x where f(x) is minimal we take the derivative of

Equation (1) with respect to x and solve for d when g(x) is 0. The result is

d = −N−1(x0)g(x0), and (2)

x = x0 + d. (3)

x defines the minimum in all cases where the higher order terms are, in

fact, zero, and when N is positive definite, which is always the case in this

application.
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3 The Macromolecular Problem

Equations (2) and (3) require that the normal matrix be calculated and

inverted. This matrix is of size n×n where n is the number of parameters in

the model. For many macromolecular structures this number is of the order

of 10,000. The calculation and inversion of this matrix is still impractical.

To refine large models a method must be chosen which avoids these steps.

The authors of the several refinement packages in common use have cho-

sen different ways to avoid this problem. The program X-PLOR (Brunger,

1987) uses the method of simulated annealing in the early stages of refine-

ment. TNT (Tronrud, 1987) and X-PLOR (in later stages) both use the

conjugate gradient method. SFRF (Agarwal, 1978) and EREF (Jack, 1978)

both use a diagonal approximation to the normal matrix, while CORELS

(Sussman, 1977) and PROLSQ (Hendrickson, 1980) use a sparse matrix ap-

proximation.

4 Review of the Conjugate Gradient Method

Without complete knowledge of the normal matrix, minimization of a quad-

ratic function would require repeated cycles. In each cycle a shift vector

is chosen (dk for cycle k) and the minimum along that direction is found
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with a line search. The minimization of a function along a direction reduces

the problem to one parameter, named α. The new values for the full set of

parameters (for cycle k + 1) are

xk+1 = xk + αk+1dk+1. (4)

The value of αk+1 is set to that value which minimizes f(xk + αk+1dk+1). It

defines the minimum along the shift vector dk+1.

The particular set of directions searched determines the rate of conver-

gence. For example, if one chooses to search along the axes of parameter

space, first varying the x parameter of the first atom, then the y parameter

and so on, the minimum can only be found after a number of cycles many

times n.

Many cycles are required when one parameter at a time is varied because

the parameters (and therefore the shift directions) are interdependent; thus,

in subsequent cycles previously searched directions must be searched again.

The number of cycles could be reduced if a series of directions could be identi-

fied which were independent. This independence is described mathematically

as the direction vectors being conjugate to the normal matrix (Luenberger,

1973), which is defined explicitly as dt
lNdm = 0 when l 6= m.

A conjugate direction method is one in which a series of directions are
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devised which are conjugate with respect to the normal matrix but do not

require the normal matrix in order for them to be determined. In the par-

ticular conjugate direction method called conjugate gradient, the direction

vector for cycle k + 1 is determined from

dk+1 = −gk + βk+1dk, and (5)

βk+1 =
gt

kgk

gt
k−1gk−1

, (6)

where βk+1 is chosen to ensure that dk+1 is conjugate to all previous direc-

tions. d0 and β1 are defined to be 0 and 0, respectively, which results in the

first cycle being a steepest descent cycle (d1 = −g0).

5 Limitations of Conjugate Gradient

The fundamental limitation of the conjugate gradient method is that it re-

quires, in general, n cycles to reach the minimum. We need a procedure

which will perform most of the function minimization in the first few cycles.

The eigenvalues of the normal matrix (Leunberger, 1973) provide infor-

mation about how a method will refine parameters in the early cycles. The

normal matrix describes the shape of the minimum of the function, and its

eigenvalues define how oblong the neighborhood of the minimum is. Because

the normal matrices for the functions usually minimized in macromolecular
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refinement are nearly diagonal there is a close correspondence between the

eigenvectors and the parameters of the model. For a perfectly diagonal nor-

mal matrix, the eigenvectors are the axes of parameter space and the diagonal

elements, or curvatures, are the eigenvalues.

The method of steepest descent works best when all the eigenvalues or

diagonal elements are equal. If they are not equal the parameters with the

largest curvatures dominate. The conjugate gradient method must infer the

differences in curvature from the history of the search but this takes more

cycles than we give the method in practise.

This problem is especially serious when positional parameters are com-

pared to thermal parameters. The curvatures for positional parameters are

much larger than those for thermal parameters; therefore, refinement of ther-

mal parameters is blocked by the influence of the positional parameters. This

effect is usually avoided by refining thermal parameters with the positional

parameters held constant and vise versa.

A more intractable problem arises because the curvatures associated with

numerically large thermal parameters are much smaller than those of smaller

thermal parameters. In all models produced by refinement using the conju-

gate gradient method and methods which simplistically incorporate curva-
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tures, the large thermal factors are poorly refined and probably should have

even larger values than those obtained during the refinement process. In

addition atom types with many electrons, such as sulfur and iron, have large

curvatures. The thermal factor shifts of these atoms will be overestimated,

resulting in an oscillation about the correct value.

6 Improvements in the Conjugate Gradient

Method

The conjugate gradient method uses the steepest descent method to produce

its first shift direction, or “seed” direction. The rate of convergence of early

cycles can be improved if a seed that incorporates as much information as

practical about the function is used. We would like a direction which will

include compensation for the differences in the eigenvalues of the normal

matrix. Because in X-ray crystallography the diagonal terms of the normal

matrix dominate, a diagonal approximation to the normal matrix provides a

powerful and quick alternative to the steepest descent method of generating

shift directions. In this procedure the search direction is calculated by

dk+1 = −N−1
d,k gk, (7)
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where Nd,k is the diagonal approximation to the normal matrix for the pa-

rameters of cycle k. For the fastest rate of convergence, this shift vector

should be used as a seed for conjugate direction searches. It is not clear,

however, how one should calculate β of Equation (6).

The refinement problems that we address are the wide range of magnitude

of the eigenvalues of the normal matrix and the existence of off-diagonal

terms. If we could choose a different set of parameters, for which the normal

matrix was simpler, the rate of convergence would improve. Ideally one would

choose a system of parameters such that all the eigenvalues were equal and

all the off-diagonal elements were zero; then one cycle of steepest descent

minimization would suffice.

Let us assume that we have determined a matrix (M) which will transform

the usual crystallographic parameters into such a set of parameters (x′). The

transformations between the familiar parameters and the new ones will be

x′ = Mx x = M−1x′

g′ = M−1tg g = Mtg′

N′ = M−1tNM−1 N = MtN′M
(8)

We can perform Fletcher–Reeves conjugate gradient minimization on the

function using this new parameter space. The equations will be as before,

Equations (4) thru (6), but with primes added:

x′
k+1 = x′

k + αk+1d
′
k+1, (9)
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d′
k+1 = −g′

k + β′
k+1d

′
k, and (10)

β′
k+1 =

g′t
kg

′
k

g′t
k−1g

′
k−1

. (11)

Instead of working with the x′ parameters we can substitute back to the

original x parameters. The resulting equations are

xk+1 = xk + αk+1M
−1d′

k+1, (12)

M−1d′
k+1 = −M−1M−1tg′

k + β′
k+1M

−1d′
k, and (13)

β′
k+1 =

gt
kM

−1M−1tgk

gt
k−1M

−1M−1tgk−1

. (14)

In these equations the shift vectors, d′, are all premultiplied by M−1. It would

be simpler to eliminate this complication by simply defining d = M−1d′. The

final equations for conjugate direction refinement, derived from recombined

parameters, but operating on the “native” parameters are

xk+1 = xk + αk+1dk+1, (15)

dk+1 = −M−1M−1tg′
k + β′

k+1dk, and (16)

β′
k+1 =

gt
kM

−1M−1tgk

gt
k−1M

−1M−1tgk−1

. (17)

At this point the matrix M is undefined. The optimal choice for M

would require that M−1tNM−1, the normal matrix for the new parameters,

be equal to the identity matrix. To calculate the optimal M we need both
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the normal matrix and its inverse; thus, we made no gains in computational

efficiency over the full matrix method. However, if we recognize that in

crystallography N is almost diagonal we can set M = N
1/2
d . Then M−1M−1t

in the Equations (15), (16) and (17) will be replaced by N−1
d . Making this

substitution we obtain

dk+1 = −N−1
d gk + β′

k+1dk, and (18)

β′
k+1 =

gt
kN

−1
d gk

gt
k−1N

−1
d gk−1

. (19)

The seed direction (d1 when β′
k+1 = 0 and d0 = 0) is now the shift calculated

from the diagonal approximation to the normal matrix, as we desired. In

addition, however, we have an equation for β.

In summary, we have a minimization method where the diagonal terms of

the normal matrix are explicitly included and the off-diagonal elements are

dealt with via a set of conjugate directions.

Agarwal (1978) suggested a similar method; however, his equation for β

was incorrect. In the present nomenclature, his proposal for β was

β =
dt

kdk

g′t
kg

′
k

. (20)

In conjugate gradient refinement β is equal to ratio of the length of the

gradient at point k divided by that length at point k − 1. Because k should
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be closer to the minimum than point k − 1, β should be less than unity.

An estimate of Agarwal’s β can be achieved by examining his β for cycle 2,

which is

β2 =
g′t

0g
′
0

g′t
1g

′
1

. (21)

As before, the parameters after cycle 1 should be closer to the minimum

than the starting parameters, resulting in β2 > 1. This value results in the

undesirable outcome that the previous cycle’s direction is considered more

important that the direction calculated from the current parameters. This

now explains why Agarwal found it necessary to place an empirical upper

limit of 0.4 on β. The value of β calculated with Equation (19) typically falls

between 0.5 and 0.9. The empirical value of 0.4 falls closer to the typical

value than either setting β to zero (and using the method of Equation (7))

or using the equation of Agarwal(1978).

7 Some Comparisons

Parallel refinement runs were performed to compare the convergence prop-

erties of the four types of function minimization described in the text. The

methods are steepest descent (SD), conjugate gradient (CG), diagonal ap-

proximation to the normal matrix (also called “gradient over curvature”
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or GC), and the new conjugate direction method (CD). The test structure

was the thermolysin-phosphoramidon inhibitor complex (Weaver, 1977) using

data collected between 20 and 2.3Å resolution (a total of 13,730 reflections).

The starting model was the “native” coordinates of thermolysin (Holmes,

1982) with a crude phosphoramidon model appended and displaced solvent

atoms removed. The starting model, which contained a total of 2637 atoms,

was known to contain a number of errors. The initial R-factor was 21.7

percent.

Refinement was carried out using the TNT refinement package (Tronrud,

1987), modified to include the new conjugate direction method as an option.

(The crystallographic portions of the diagonal elements of the normal matrix

were calculated by the method of Agarwal, 1978). All four methods were run

with the thermal parameters held constant because the refinement methods

which do not use curvatures cannot simultaneously vary both positional and

thermal parameters. Separate tests were made to compare GC and CD

refinement in which both positional and thermal parameters were allowed to

change simultaneously. The only differences between these test runs were

the set of parameters varied and the method used. All other aspects, such as

weights, were identical. The results of these tests are displayed in Figure 1.
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The methods which use curvatures (GC and CD) are superior to the

methods which do not (SD and CG). After 15 cycles of refinement the conju-

gate gradient run is similar to the “gradient over curvature” method because

the diagonal elements of the normal matrix for the positional parameters are

all approximately equal to each other and the conjugate gradient method

can accommodate their differences relatively quickly. However this is not the

case for all types of parameters; shifts in B-factors that are numerically small

and numerically large have different effects on the value of the function.

The comparison between the run of gradient over curvature refinement

and the run of conjugate direction refinement in which both XYZ’s and B’s

were varied shows the clear superiority of the new method. The R-factor

of the model produced by 20 cycles of conjugate direction refinement was

13.2 percent and still dropping, with good geometry (bond length rms error

0.027Å and bond angle rms error 3.5◦).

The reason the new method produces a lower value for f(x) is not be-

cause the other methods are stuck in higher local minima. For either con-

jugate gradient or conjugate direction to work they must be close enough

to a minimum that the higher order terms of Taylor’s series expansion are

insignificant. Each method will proceed to the minimum of the expansion,
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which is the local minimum. That minimum is the same for the two meth-

ods because the function itself is unchanged, only the set of directions to

be searched has been altered by the new method. Eventually the conjugate

gradient or steepest descent method will descend as low as the conjugate

direction method; it will simply take many more cycles to get there.

Figure (1) shows that even after 20 cycles the new method has not reached

a minimum either. Methods with even greater power of convergence should

be able to produce parameter sets where f(x) is even lower, using affordable

amounts of computer time.
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9 Figure Captions

Figure 1: This graph shows the drop in the value of the function that is min-

imized in refinement over 20 cycles of refinement. Four different methods of

minimization are compared. In some test runs (solid lines) only the positional

parameters were varied while in the rest (broken lines) both the positional

and thermal parameters were varied. The function is
∑

(Fo(hkl)− Fc(hkl))2

after the Fo’s and Fc’s have been scaled to each other, plus the sum of the

geometry deviation terms. The methods represented with triangles required

18.5 minutes of CPU time per cycle on a VAX 3600 computer. The methods

represented with squares required the additional calculation of curvatures

and took 22 minutes per cycle.

This plot demonstrates that the conjugate direction method produces a

lower function value for a given number of cycles of refinement.
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