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Table 3. Scalar products o f  the six projected vectors in 
E~ appearing in the three top rows of  m(~3), equation 

(13), multiplied by 2 

1 2 3 4 5 6 

1 1 cs  cs  c 2 - s 2 - cs cs 

2 l cs  cs  c 2 - s 2 - cs  

3 1 - c s  cs c 2 - s 2 

4 1 - cs  - cs  

5 1 - c $  

6 1 

higher dimension, the ones compatible with a point- 
group symmetry. The present use of a Schur rotation 
shows that many symmetry elements may be pre- 
served even when going from periodic to non-periodic 
order. It is tempting to think of other Schur rotations 
which might unify the understanding of the new 
phases of condensed matter and of their relation to 
known periodic phases. 

tion preserves the tetrahedral symmetry and hence 
three twofold and four threefold axes. This may be 
part of the answer to the question why Guyot & 
Audier (1985) and Audier & Guyot (1986) in their 
models find a smooth connection of the cubic and 
icosahedral structure along a threefold axis. Note that 
the vectors corresponding to columns 4, 5, 6 of m(/3) 
in E 3 are in a plane for /3 =0  and span the thin 
rhombohedron for/3 = 13.28 °. Clearly a study of the 
diffraction pattern is required as a function of/3. 

The group-subgroup analysis given in the second 
part does not depend on the choice of the face-centred 
cubic lattice in E 3. The same Schur rotation applies 
to other cubic lattices in E 3 and their parent lattices 
in E 6. The Schur rotations could be considered in the 
Landau theory for the stability problems as analysed, 
for example, by Bak (1985). In this relation we note 
that Birman (1966) has proposed and applied group- 
subgroup techniques for second-order phase transi- 
tions. The scheme of equation (8) suggests the 
extension of this approach to higher point groups. 

It was proposed by Kramer & Neri (1984) to select, 
among the many possible projections from spaces of 
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Abstract 

A package of programs has been developed for 
efficient restrained least-squares refinement of 
macromolecular crystal structures. The package has 
been designed to be as flexible and general purpose 
as possible. The process of refinement is divided into 
basic units and an independent computer program 

* Present address: 79521 Highway 99N, Cottage Grove, Oregon 
97424, USA. 

handles each task. Each functional unit communi- 
cates with other programs in the package by way of 
files of well defined format. To modify or replace any 
program, the user need only understand the function 
of that particular element. Stereochemical restraints 
are defined in a general way that can be applied to 
proteins, nucleic acids, prosthetic groups, solvent 
atoms and so on. Guide values for bond lengths and 
bond angles are specified in a straightforward direct 
manner. Designated groups of atoms can be held 

0108-7673/87/040489-13501.50 O 1987 International Union of Crystallography 



490 A R E F I N E M E N T  PROGRAM FOR MACROMOLECULAR STRUCTURES 

constant or constrained to behave as a rigid body 
during refinement. In order to make the package as 
efficient as possible, the fast Fourier transform 
algorithm is used for all the crystallographic transfor- 
mations. To highlight potential errors in the refined 
structure the user can list those atoms that have the 
worst bond lengths and angles, or have the largest 
positional, temperature-factor or occupancy gra- 
dients. It is also possible to check that protein and 
solvent atoms do not sterically clash with symmetry- 
related neighbors. Applications of the program 
package to a bacteriochlorophyll-containing protein, 
thermolysin-inhibitor complexes and mutants of bac- 
teriophage T4 lysozyme are described. 

Introduction 

There are a number of potential difficulties with the 
refinement of macromolecular structures including 
the unfavorable ratio of observations to parameters, 
the magnitude of the computational requirements, 
and deficiencies in the starting model ranging from 
small errors in the coordinates to gross errors arising 
from misinterpretation of the electron density map. 
These difficulties have led to the development of 
different refinement strategies, each of which has its 
own advantages and disadvantages (e.g. Diamond 
1971; Watenpaugh, Sieker, Herriott & Jensen, 1973; 
Freer, Alden, Carter & Kraut, 1975; Sussman, Hol- 
brook, Church & Kim, 1977; Jack & Levitt, 1978; 
Korlnert & Hendrickson, 1980; Agarwal, 1978; Jones 
& Liljas, 1984). In order to increase the number of 
observations it is usual to include knowledge of the 
stereochemistry of the protein. Bond distances, bond 
angles, planarity and limits on the approach distances 
of non-bonded atoms can all be specified. It can also 
be profitable to incorporate additional information, 
as in the co-refinement of bovine pancreatic trypsin 
inhibitor with X-ray and neutron data (Wlodawer & 
Hendrickson, 1982). If other data are available, such 
as independent phase information from isomorphous 
replacement, anomalous scattering, or phase informa- 
tion from molecular replacement, it might be desir- 
able to include this information as well. 

The package of programs described uses the prin- 
ciple of restrained least-squares refinement. The pack- 
age is designed to be as general purpose as possible. 
Stereochemistry, for example, is defined in a general 
way that can be applied to proteins, nucleic acids, 
prosthetic groups, solvent atoms and so on. The pack- 
age has been made as efficient as possible by using 
the fast Fourier transform algorithm to carry out all 
the crystallographic transformations. 

One limitation of many refinement programs is 
their inflexibility; portions cannot be replaced nor 
new functions added without extensive modification 
of the existing code. This limits the ability of the user 
to experiment with different refinement strategies. In 

order to modify the refinement program one must 
understand the data structure and algorithms of the 
entire program. The refinement package described 
here was designed to avoid this limitation. The pro- 
cess of refinement is broken down into basic units 
and an independent computer program handles each 
task. Each functional unit communicates with the 
other programs in the package by way of files of well 
defined format. To modify or replace any program 
only requires that the user understand the function 
of that program; the rest of the programs will function 
as before. In this manner calculations which can be 
optimized by space-group-specific algorithms (such 
as fast Fourier transforms) can be calculated 
differently for different crystal structures by a simple 
substitution of the appropriate program. 

Features and organization 

The package of computer programs was designed to 
meet five specific objectives which will be briefly 
discussed below. 

(i) It should be possible to replace existing func- 
tions or add new functions without modifying existing 
code. 

(ii) The programs should have a common mechan- 
ism for reading data. 

(iii) It should be easy to define standard geometry 
for new and unusual chemical groups. 

(iv) It should be possible to constrain specified 
groups of atoms to behave as rigid bodies or to be 
held constant during refinement. 

(v) The program should provide tools to aid the 
user in the detection of errors in the model that are 
beyond the ability of the refinement package to 
correct. 

Because of the ability to replace easily the programs 
performing specific calculations, the most efficient 
algorithms for a particular problem can be used. This 
feature has resulted in a package with great flexibility 
and speed. 

Overall organization 

The need to partition a refinement program into 
independent functional units was mentioned in the 
Introduction and has shaped the overall organization 
and structure of the package. The different functions 
that are minimized in the refinement are treated as 
separate 'terms' where each term is defined on the 
basis of the calculations required to evaluate the term 
and its gradient. Most commonly, two terms are 
included: a crystallographic and a stereochemical 
term. The programs required to calculate a term and 
its gradient are collectively referred to as a 'module'.  
The overall refinement package consists of the control 
program plus a variable number of modules. The 
control program combines the information presented 
by all the modules to determine the direction in which 
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to shift the parameters of the model, and, eventually, 
to determine the magnitude of the shift. This program 
'knows' nothing about the specifics of the terms that 
are handled by the various modules. The 
stereochemical module is implemented as a single 
program. Because it involves several Fourier trans- 
forms, the crystallographic module is broken up into 
five different programs. This fractionation allows 
appropriate space-group-specific fast Fourier trans- 
form (FFT) programs to be used for different projects. 

Data input and data transfer 

Because of the number and independence of the 
programs in the package it is very desirable that the 
input format for all programs be the same. Although 
some data files are created by the computer and others 
by the user, the style of input has been designed with 
emphasis on the benefit of the user. All input is token 
based. The input is read in free format, each token 
being separated from the next by a delimiter such as 
a space or a comma (see Tables 1 and 2 for examples). 
The first token on the card is the keyword. Keywords 
fall into two classes: data keywords and command 
keywords. The order of data cards is unimportant. 
When a command card is encountered, the required 
operation is performed on whatever data have been 
read to that point. Input and output is handled by a 
set of library routines which perform the basic 
operations of reading in cards, separating tokens, and 
building numbers from particular tokens. 

A related objective was to allow the constituent 
programs to be easy to write and understand. Sets of 
common routines have been placed in libraries that 
are used by most of the programs. These libraries 
contain routines that process data cards and build 
the internal data structures. Also there are other 
routines that locate required information within the 
data structures. By not having to rewrite these routines 
one can implement a new program in a very short 
time and, by having a common internal structure, the 
existing programs can be understood more easily. On 
the other hand, although these library routines are 
available, they do not have to be used when one 
wishes to add a new program to the refinement 
package. 

Geometry definition 

Because one often needs to include unusual 
inhibitors or cofactors in the refinement, it is very 
desirable that the definition of geometry should be 
general. Often the structures of these small molecules 
have not been determined and their "ideal' geometry 
must be constructed from the fragments whose struc- 
tures are known. In the present package, standard 
geometry is defined by breaking the structural model 
into components, such as amino acids, nucleotides 
or cofactors. The geometry restraints are then defined 

Table 1. Definition of the general data cards 

These are the definitions for the cards used to define the standard geometry 
for a molecular model. Each atom card contains the name, type and coordi- 
nates of the atom as well as the names of the residue and chain in which it 
resides. Each chain has its type defined on a C H A I N  card. The sequence 
and connectivity of  that type of  chain is defined on several RESIDUE cards 
and the restraints associated with each residue type and linkage type are 
defined on GEOMETRY cards. Table 2 gives a specific example. 

The nomenclature is: 

(name) is a word or number 
A IB means A or B 
{A} means A is repeated 0 or more times 
" ["  means that the [ is to be taken literally 

Data Cards: 

(Atom card) := = 
(Atom keyword) (Atom type) (Atom parameters) 

(Atom name) (Residue name) (Chain name) 

(Chain card) : -  = 
CHAIN (Chain name) (Chain type) 

{(Chain name) " ["  (Residue name) ~Linkage type)} 

(Residue card) := = 
RESIDUE (Chain type) "1" (Residue name) (Residue type) 

{(Residue name) (Linkage type)} 

(Geometry card) := = 
GEOMETRY (Cluster type) (Restraint type) (Standard value) 

(Value's sigma) (Atom name) {(Atom name)} 

where 

(Atom keyword) := = ATOM [ ATOMCIATOMG 
(Cluster type) := = (Residue type)[(Linkage type) 
(Restraint type) := = BOND [ ANGLE [ TORSION 

TRIGONAL]  PLANE I C H I R A L  

Table 2. Definition of the structure of Cro repressor 

First in the example comes the CHAIN cards which define that all four 
chains O, A, B and C are of type CRO. Next come the cards (not all of  
which are shown) which define the meaning of type CRO. A type is given 
for each amio acid in CRO along with the targets and types of  any linkages 
between this residue and other residues. The residue types and linkage types 
are defined by obtaining the restraints associated with each through the 
geometry restraint library. The GEOMETRY cards are representative 
examples from the deposited restraint library.* 

C H A I N  O CRO 
C H A I N  A CRO 
C H A I N  B CRO 
C H A I N  C CRO 

CROI1 MET 2 PEPTIDE 
CRO[2 GLU 3 PEPTIDE 
CROI3 GLN 4 PEPTIDE 
CRO[4 ARG 5 PEPTIDE 
CROI5 ILE 6 PEPTIDE 

RESIDUE 
RESIDUE 
RESIDUE 
RESIDUE 
RESIDUE 

GEOMETRY PEPTIDE BOND 1.45 
GEOMETRY PEPTIDE A N G L E  112 
GEOMETRY PEPTIDE PLANE 5 
GEOMETRY PEPTIDE TORS 2180 
GEOMETRY MET BOND 1.81 
GEOMETRY MET 

0.02 N, CA 
3 N, CA, C 
0.02 C, CA, O, +N,  +CA 
10 CA, C, +N,  +CA 
0-02 CG, SD 

A N G L E  100.4 3 CG, SD, CE 

* See deposition footnote. 

in a general way for each component and for the 
linkages between components. 

There are two ways in which stereochemical infor- 
mation can be incorporated into the refinement pro- 
cess; the information can be added as additional 
observations (restraints) (cf Hermans & McQueen, 
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1974; Konnert & Hendrickson, 1980) or the model 
can be parametrized (constrained) in such a way that 
the stereochemistry is always 'ideal' (cf Diamond, 
1966; Warme, G6 & Scheraga, 1972). Although the 
use of constraints rather than restraints does result 
in a more favorable ratio of observations to param- 
eters, we have chosen the latter approach. There 
are several reasons for this, the first being that a 
restrained model is physically more realistic than a 
constrained one, as constraints are usually imple- 
mented (e.g. Ten Eyck, Weaver & Matthews, 1976). 
A second reason is that different types of restraint 
can be individually weighted. This allows the user to 
put a smaller weight on geometric restraints for which 
the 'ideal'  values are uncertain. Another reason is 
that the significance of deviations from ideality can 
be evaluated by calculating the standard deviation of 
all the observations within the same class of restraint. 
At the same time the library of standard values can 
be tested for accuracy. If there is an error, then there 
will be a systematic difference between the library 
value and the value obtained from the refined model. 
(The 'stereochemistry' program in the refinement 
package will perform both the above tests.) Finally, 
the use of restraints allows the stereochemical infor- 
mation to be incorporated into the refinement in a 
manner formally similar to the incorporation of the 
crystallographic observations (see below). This allows 
simpler and more efficient code. 

Rigid-body refinement 

It is often desirable to have the option of holding 
portions of the structure fixed, or constraining a group 
to move as a rigid body (e.g. Sussman, Holbrook, 
Church & Kim, 1977). Because these options do not 
depend on the nature of the function being minimized 
they have been implemented in the control program. 

The control program also allows one to limit the 
range of values that the temperature factors and 
occupancies can assume and, in addition, to constrain 
a group of atoms to have the same temperature factor 
or occupancy (e.g. to allow for partial occupancy by 
an inhibitor). 

Detection of errors in the model 

Finally, in order to highlight potential errors in the 
current model of the structure, each module can list 
those atoms that most seriously violate the restraints 
of the refinement. The stereochemistry module lists, 
for each class of geometrical restraint, the worst dis- 
crepancies between the model and the 'ideal'  values. 
Similarly, the crystallographic module can list those 
atoms with the largest positional, temperature-factor 
or occupancy gradient. Experience has shown that 
these lists are particularly helpful in pointing out 
areas of the model that are likely to be in error and 
may need to be corrected manually. 

Theoretical background 

The goal is to minimize a suitable function of the 
observations in terms of a structural model specified 
by variables such as coordinates, thermal factors and 
occupancies. The function used in least-squares 
refinement is 

M = E  w(j)[Oo(j ) -Qc( j ,p)]  2, (1) 
J 

where Qo(j) is the experimental value for observation 
j, Oc(j, p) is a corresponding value calculated from 
the coordinate and thermal parameters p that specify 
the structural model, and W(j) is the desired weight- 
ing function. The sum in (1) is over all observations, 
but can be separated into different terms based, for 
example, on the crystallographic observations s and 
the stereochemical observations b (see Appendix B 
for additional details): 

M = E W(s)[ Qo(s ) -  Q~(s, p)]2 
s 

+~ W(b)[Qo(b)-Qc(b,p)] 2. (2) 
b 

More terms could be added if other classes of observa- 
tion were available. The gradient of M can also be 
separated into similar terms. This means that the 
calculations for the crystallographic term can be kept 
completely separate from calculations for the other 
terms. 

The computational problem is to determine a set 
of parameters which minimizes M. There exist func- 
tion minimization methods which use no derivatives, 
which use only first derivatives, and which use second 
derivatives, in order of increasing power of con- 
vergence and increasing computational cost. In the 
present case there are several reasons for using first- 
derivative methods. 

(i) The radius of convergence of first-derivative 
methods is larger than that of second-derivative 
methods, and in these problems one often starts far 
from the minimum. 

(ii) The computational cost of first-derivative 
methods is proportional to N (the number of par- 
ameters) instead of N 2. For large N this is very 
important. 

(iii) Implementation of parameter constraints for 
holding variables constant, or for requiring variables 
to behave as rigid groups, is particularly simple for 
first-derivative methods (see below). 

In order to hold a parameter constant, one simply 
sets the derivative of this parameter equal to zero 
before calculating the parameter shifts. This prevents 
the corresponding parameters from changing. To treat 
a set of atoms xi as a rigid group one redefines these 
atoms in terms of a chosen origin x0 and three orienta- 
tion parameters at, i.e. 

x, = g(xo, at). (3) 
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Similarly, the residual M is redefined as 

M(xi)=f(xo,~). (4) 

Then by the chain rule 

aM/axi=(of/axo)(axo/aX,)+(of/aot)(oet/axi), (5) 

which gives an overdetermined system of equations 
for the derivatives off.  This system of equations can 
be solved by least squares and the solution used to 
calculate values of aM/axi consistent with the rigid- 
body constraint. This has the virtue of always operat- 
ing in the original parameter space, but has the fault 
that nonlinearities can distort the rigid group. A more 
correct method is to perform the parameter shift steps 
in the (Xo, eL) space and expand to the original space 
for all other calculations. 

First-derivative methods all use the same general 
strategy, namely calculation of the shift direction 
followed by a line search for a minimum in the chosen 
direction. The present package uses the conjugate 
gradient method (Fletcher & Reeves, 1964). In this 
procedure the changes in the gradient vector from 
cycle to cycle are used to approximate the second 
derivative without actually having to compute this 
quantity. 

By using the method of Agarwal (1978) the amount 
of computer time required to calculate the gradient 
of the crystallographic term is only slightly longer 
than the calculation of a FFT of the structure. The 
time to calculate the gradient of the stereochemi- 
cal term is, in comparison, minuscule. The 
stereochemical and crystallographic gradients are 
combined with the shift vector of the previous cycle 
to give the direction (but not the magnitude) of the 
shift for each parameter. The search along the shift 
vector for the optimum shift magnitude requires at 
least three calculations of M, i.e. three FFT's plus 
some additional calculations. Thus the overall com- 
puter time required for a single cycle of refinement 
is approximately four times that required for one 
FFT. It is apparent that space-group-specific FFT's 
can substantially reduce the required computer time 
per cycle. Included in the refinement package is a 
program (to be described elsewhere) that will calcu- 
late space-group-specific FFT's for most noncen- 
trosymmetric space groups. 

Crystallographic term 

The function that we have chosen to minimize is 

M=Y~ W(s)Eklfo(S)l-lF~(s,p)l] 2, (6) 
s 

where Fo and F~ are the observed and calculated 
structure factors and k is a scale factor. Note that no 
exponential factor is applied to the Fc's. This will 
force the thermal factors of the individual atoms to 

include any 'overall' mismatch between the observed 
and calculated data sets. 

At the beginning of each cycle of refinement the 
scale factor k is determined by minimizing 

M(k, W(s)[klFo(s)l 
s 

-exp(-Bs2/4) lFc(s ,p)[]  2 (7) 

where s =sin0/,X and Fc(s) is treated as a constant. 
Equation (7) includes an overall thermal factor B, 
which is necessary to allow for an initial overall 
discrepancy between the Fo's and Fc's. Although both 
k and B are treated as variables in the minimization 
of (7), only k is substituted in (6). As the refinement 
proceeds, the discrepancy represented by B is ab- 
sorbed within the thermal factors of the individual 
atoms and, during successive cycles, rapidly 
approaches zero. 

Each module of the refinement package is able to 
calculate both the value and the gradient of its term. 
For the crystallographic term the structure factors are 
calculated by a space-group-specific FFT (Ten Eyck, 
1977). The gradients are calculated by a modified 
version of the procedure outlined by Agarwal (1978). 
This modified version was devised by A. Lifchitz 
(Agarwal, Lifchitz & Dodson, 1981; Isaacs, 1982) and 
is described in detail in Appendix A. In outline, the 
procedure is as follows. An (Fo-Fc) map is calcu- 
lated for the molecular volume. For each parameter 
in the model a convolution, evaluated at the atomic 
position, is calculated between this map and the 
derivative of the calculated atomic electron density 
function for the atom involved. Because the extent 
of the electron cloud of a single atom is small, the 
calculation of this convolution is rapid. Usually the 
calculation of the convolutions takes about a quarter 
of the time required to calculate the difference map. 

Stereochemical term 

The major goal in the implementation of this part of 
the package was to make it as easy as possible for 
the user to specify 'ideal' bond lengths and angles. 
Stereochemical restraints are usually introduced 
either as energy terms (e.g. Jack & Levitt, 1978) or 
by expressing all types of stereochemical restraints 
as distances (e.g. Ten Eyck, Weaver & Matthews, 
1976; Dodson, Isaacs & Rollet, 1976; Konnert & 
Hendrickson, 1980). There are drawbacks to both 
approaches. In the first case it may be difficult to 
obtain reliable energy parameters, especially for novel 
chemical groups. Also the introduction of an inap- 
propriate energy term might mask interesting and 
unexpected features of the structure. On the other 
hand, if one attempts to define standard geometry in 
terms of interatomic distances, then such distances 
must be determined indirectly from a known example 
with ideal geometry. There are obvious difficulties if 
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no known structure exists for the chemical group in 
question. In addition, restraints on interatomic dis- 
tances as a means of specifying bond angles can lead 
to very distorted planarity of trigonal atoms and aro- 
matic rings. 

The method used in this package is to include 
stereochemical restraints as 'observations' but to 
specify such restraints in a form that is most con- 
venient for the user, i.e. as bond lengths, bond angles 
and so on. There are six classes of stereochemical 
information with which the structural model can be 
restrained: bond lengths, bond angles, torsion angles, 
trigonal planarity, general planarity and contacts 
between non-bonded atoms. (Chirality is monitored 
but not restrained because the chirality function is 
discontinuous and has no derivatives.) Because the 
program deals directly with the stereochemical infor- 
mation, some of the derivatives are difficult to derive, 
and, for the planarity restraints, certain assumptions 
were used to simplify the calculation. The derivations 
of the gradients for the stereochemical term are given 
in Appendix B. 

To apply the stereochemical restraints the contents 
of the asymmetric unit are broken up into different 
hierarchical units. Each unit can be broken up into 
small subgroups of atoms in whatever manner is 
appropriate for the problem at hand. For example, 
consider the crystal structure of Cro repressor (Ander- 
son, Ohlendorf, Takeda & Matthews, 1981). The 
asymmetric unit consists of four chemically identical 
polypeptides, each with 66 amino acids. The first 
hierarchical unit is defined by CHAIN cards. In this 
example we specify that there are four chains, named 
O, A, B and C, each chain being of type 'CRO'  (see 
Table 2 for representative data cards). The makeup 
of a 'CRO'  chain is then defined by RESIDUE cards. 
A series of such cards is used to define the sequence 
of units in the chain (in this case, amino-acid residues) 
and the types of linkages between successive units 
(in this case peptide bonds). In this example, the 
units of the chain are named GLY, ALA, T H R , . . .  
etc., and the linkages PEPTIDE, SS , . . .  etc. The geo- 
metric restraints associated with each unit or linkage 
type are defined with GEOMETRY cards. Each 
restraint (bond length, bond angle, torsion angle, 
p l a n e , . . . )  is specified in a straightforward manner. 
There is no particular order in which these cards must 
be given and they can be arranged into different files 
in any desired manner. 

The enumeration of all the stereochemical 
restraints in this manner may seem to be time consum- 
ing, but most of the files, once created, can be transfer- 
red from one application to another. Also it is easy 
to inspect and alter the ideal values of the restraints 
since they appear in the program in the same form 
as in everyday usage. A table which gives the library 
of 'ideal' stereochemistry that has been adopted in 
this laboratory, primarily from Bowen, Donohue, 

Jenkin, Kennard, Wheatley & Whiffen (1958) and 
Vijayan (1976), has been deposited.* 

Interactions between non-bonded atoms cannot be 
defined in the manner described above because one 
does not know in advance which atoms may approach 
each other. Close contacts are discovered by generat- 
ing a list of all pairs of atoms which are closer to 
each other than specified values and discarding from 
consideration any pairs which are bonded, or are 
involved in 1-3 or 1-4 type contacts. The 1-3 and 
1-4 contacts are better dealt with as bond angles and 
torsion angles. The standard value for the closest 
distance allowed before any action is taken is defined 
in terms of the elemental types of the two atoms. This 
method of definition allows a closer approach 
between atoms which have the potential of forming 
a hydrogen bond or a salt bridge than the distance 
allowed for atoms in van der Waals contact. The 
program will prevent non-bonded atoms from moving 
too close together but no attractive force is applied 
to atoms that are beyond the specified approach dis- 
tance. 

One novel feature of the program is the ability to 
avoid steric clashes between adjacent molecules in 
the crystal. By specifying the appropriate symmetry 
operators the list of potential non-bonded contacts 
can be extended to include molecules that surround 
the reference structure. This procedure is particularly 
useful in avoiding 'duplicate'  or 'overlapping' solvent 
atoms. 

The program that implements the stereochemistry 
module has a number of additional features. It can 
list the worst discrepancies in the model for each type 
of geometry restraint and provide overall statistics 
for each class. Also it can produce a table which 
compares the 'ideal' value of each restraint with the 
average value in the present model. This table is useful 
when looking for potential errors in the geometry 
library. 

The control program 

The control program has two major functions: (1) to 
determine the overall direction of shift for each 
parameter, and (2) to determine the optimum magni- 
tude (fraction of the shift) to be applied along the 
shift vector. 

In an initial cycle of refinement, the overall gradient 
is obtained by combining the contributions from the 
crystallographic, stereochemical and any other terms 
and the direction of shift is obtained by the method 
of steepest descent. For second and subsequent cycles 
of refinement one can combine the overall gradient 

* The geometry restraint library has been deposited with the 
British Library Document Supply Centre as Supplementary Publi- 
cation No. SUP 43532 (8 pp.). Copies may be obtained through 
The Executive Secretary, International Union of Crystallography, 
5 Abbey Square, Chester CH1 2HU, England. 
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Table 3. Examples of  parameter editing cards 

(a)  Specification of  r igid-body refinement 

COMBINE XYZ 360-361 
COMBINE XYZ 362-363  
COMBINE XYZ 364-365  
COMBINE XYZ 366-367  
COMBINE XYZ 368-369  
COMBINE XYZ 370-371 
COMBINE XYZ 372-373  

(b) Refinement of  the occupancy of  a bound inhibitor 

FIX OCC 1 - C O O H  
FIX OCC SOL1 
FIX OCC Z I N C : Z I N C  
FIX OCC C A L l : C A L  
FIX OCC C A L 2 : C A L  
FIX OCC CAL3 :CAL 
FIX OCC C A I A : C A L  
COMBINE OCC INHIBITOR 
FIX B 
FIX XYZ 

Part (a)  shows the cards required to command the control program to treat 
the seven bacteriochlorophyll  a molecules as seven rigid bodies. Each 
molecule contains two residues: the ring and the phytol tail. The first card 
is read as 'combine the positional parameters for all residues between residue 
360 and residue 361'. The operat ion 'all residues between' is defined as 
taking the first residue and then following the linkage definitions in the 
RESIDUE cards including all residues until the last residue is found. 

Part (b) shows the cards required to refine a single occupancy parameter  
for an inhibitor of  the protein thermolysin. The first card fixes the occupancy 
of  all of  the protein atoms. COOH is the residue name used in this project 
for the extra oxygen at the carboxyl terminus. The next card fixes the 
occupancy of  all of  the solvent atoms. They are defined in a single residue 
to make operations such as this simple. Then the occupancies for the zinc 
atom and the four calcium atoms are fixed. Finally the occupancy parameters 
for the inhibitor, presumed to be defined as a single residue called 
INHIBITOR,  are combined. The last two cards simply state that the posi- 
tional and thermal parameters for all atoms in the model should be held 
constant. 

with the direction of shift used in the previous cycle 
and determine the new shift direction by the conju- 
gate-gradient technique. The control program also 
determines the optimal shift magnitude by searching 
along the shift direction as described previously. 

A number of options exist for modifying the shift 
vector before the shift is applied. One can combine 
all or part of the structure into units within which all 
the atoms are treated identically (e.g. Table 3). If the 
atoms within an amino acid are combined, the tem- 
perature-factor shift applied to each atom will be the 
average of the individual shifts. Positional parameters 
can be treated as though the group were a rigid body. 
This is done by fitting an overall rotation and transla- 
tion to the individual shifts of the atoms by a least- 
squares fitting procedure. It is also possible to place 
upper and lower limits on the values of the thermal 
factors and the occupancies. 

Applications 
The package of programs has been in productive use 
(while being developed) for four years. It has been 
applied to a number of different refinement tasks in 
this laboratory and elsewhere. Up to the present it 
has only been used on VAX/VMS systems. In this 
section we briefly review some of the applications. 

Bacteriochlorophyll a protein 

The first extensive use of the package was in the 
refinement of the bacteriochlorophyll a protein (Bchl 
protein) from the photosynthetic bacterium Pros- 
thecochloris aestaurii (Tronrud, Schmid & Matthews, 
1986). This molecule (molecular weight 150 000 dal- 
tons) consists of three identical subunits related by 
a threefold axis of symmetry. Each of the subunits 
consists of a polypeptide chain of approximately 350 
amino acids that enclose seven bacteriochlorophyll a 
molecules (Fenna & Matthews, 1975; Matthews, 
Fenna, Bolognesi, Schmid & Olson, 1979). During 
the course of the refinement the amino-acid sequence 
of the protein was not known, but has been reported 
subsequently (Daurat-Larroque, Brew & Fenna, 
1986). 

There were several factors that led to the adoption 
of the present refinement package. The first was the 
size of the computational problem. As summarized 
in Table 4, the asymmetric unit contains 3086 atoms 
and there are 43 598 reflections to 1.9 A, resolution. 
In addition, the space group (P63) precludes full use 
of the crystallographic symmetry to reduce the size 
of the FFT calculations. Experience with other pro- 
jects in the laboratory suggested that the Hendrickson 
refinement program (Hendrickson & Konnert, 1980) 
would require about 48 h of c.p.u, time per refinement 
cycle on our VAX 11/780 (subsequent improvements 
to the Hendrickson program have substantially 
improved its computational efficiency). We had also 
had experience in the laboratory with EREF (Jack 
& Levitt, 1978). This program is substantially faster, 
on a per cycle basis, than the Hendrickson program. 
A disadvantage of using EREF for the refinement of 
the Bchl protein arose from the presence of the Bchl 
rings. Because of the diversity of bond lengths and 
bond angles in the seven bacteriochlorophylls, as well 
as uncertainties in their energetics, the definition of 
standard geometry for use by EREF appeared to be 
quite difficult. 

As discussed previously, the definition of standard 
geometry in the present refinement package is very 
flexible, and readily adaptable to 'unusual' situations. 
In particular, in the present situation it was not 
necessary to force all the conjugated atoms in the 
Bchl rings to lie in a single plane. Rather, we divided 
the conjugated atoms into appropriate sets of overlap- 
ping sub-planes (Tronrud, Schmid & Matthews, 
1986). This method of restraint maintained local pla- 
narity, but allowed larger-scale deformations. This 
procedure led to the finding that the seven Bchl rings 
exhibit two distinct classes of bending, one of which 
is also observed in the structure of ethyl chlorophillide 
a (Tronrud, Schmid & Matthews, 1986). An inap- 
propriate application of restraints to the Bchl rings 
could well have masked this small but significant 
effect. 
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Table 4. Representative refinements of macromolecular structures 

Protein Bchl prote in  Thermolys in*  T h e r m o l y s i n t  T4 lysozyme~: 

Space group P63 P6122 P6t22 P3221 
Cell dimensions 

a, b (/~,) 111.9 94.1 94.1 61.2 
c (/~) 98.6 131.4 131-4 97.4 

Number of atoms 3086 2637 2643 1429 
Resolution (~)  1.9 2.3 1.6 1.7 
Number of reflections 43 598 13 523 31 627 15 791 
Final R value 18.9% 17-4% 17.7% 17.4% 
Deviations from ideal values: 

bond lengths (/~) 0.02 0.02 0.02 0-02 
bond angles (°) 3.2 2.9 2.8 2.6 

Cycles of refinement 120§ 16 28 29 
Time per cycle (c.p.u. hours) 2.0 0.8 1.5 0.75 

* Thermolysin: phosphoramidon-inhibitor complex (Tronrud, Monzingo & Matthews, 1986). 
t Complex of thermolysin with carbobenzoxy-GlyP(OH)-L-Leu.L.Leu (Tronrud, Holden & Matthews, 1987). 
~t Bacteriophage T4 lysozyme mutant Thr 157-~Glu (unpublished results of Alber, Wilson, Matthews et al.). 
§ Includes cycles used to test and debug various components of the refinement packages. 

In the initial refinement of the Bchl protein the 
refinement package used analytical summations to 
calculate the gradient of the crystallographic term. 
With this method each cycle of refinement required 
8 h of c.p.u, time on our VAX 11/780. The present 
version of the program requires 2.0 h for the same 
problem. 

The general strategy of refinement that we have 
adopted for the Bchl and other proteins is first to 
refine for several cycles with weak geometry restraints, 
then to run a few cycles of temperature-factor 
refinement, then restore the model to good 
stereochemistry by refining for several cycles with 
strong geometry restraints and finish with several 
additional cycles of thermal factor refinement. At this 
stage the resulting difference electron density map 
and '2Fo-Fc' map are inspected on the graphics 
system in the usual way. Potential problem areas are 
highlighted by inspecting the lists of worst bond 
lengths, bond angles, departures from planarity, ther- 
mal factors and largest derivatives of the crystallo- 
graphic term. In the case of the Bchl protein it was 
also necessary to consider possible errors in the 
assumed amino-acid sequence. In this instance the 
cycles of refinement followed by inspection of the 
model were repeated seven times to achieve the final 
refined structure and 'X-ray' amino-acid sequence. 
The overall refinement statistics are summarized in 
Table 4. 

Thermolysin- inhibitor complexes 

The refinement package has been used extensively 
to study a number of complexes of inhibitors with 
the thermostable endopeptidase thermolysin (e.g. 
Holmes, Tronrud & Matthews, 1983; Tronrud, 
Monzingo & Matthews, 1986). In different instances 
the resolution ranges from 2.3 to 1.6 A. 

Because of the hexagonal space group and the size 
of the problem (Table 2), calculation of structure 
factors and crystallographic derivatives by conven- 
tional methods is time consuming. [Refinement of the 

native structure at 1.6 A resolution by the method of 
Hendrickson & Konnert (1980) required 21 c.p.u. 
hours per cycle (Holmes & Matthews, 1982). The 
present program package requires 0.7 to 1.5 h per 
cycle, depending on the resolution. The ability of the 
present program package to specify the geometry of 
chemically unusual inhibitors is an advantage. In 
addition, it is also possible to define appropriate 
stereochemistry for inhibitors that are covalently 
bonded to the enzyme (e.g. Holmes, Tronrud & Mat- 
thews, 1983). 

The refinement of an inhibitor complex normally 
requires 10-30 cycles of refinement. Little manual 
intervention is required because thermolysin nor- 
mally does not change its conformation very much 
when inhibitors are bound. It is, of course, always 
necessary to monitor the configuration of the inhibitor 
during refinement and to check for changes in solvent 
structure concomitant with inhibitor binding. 

Bacteriophage T4 mutant structures 

As part of a program to determine the roles of 
individual amino acids in stabilizing protein struc- 
tures, the structures of a series of mutant T4 phage 
lysozymes have been determined (e.g. Griitter, 
Weaver, Gray & Matthews, 1983; Alber, GriJtter, 
Gray, Wozniak, Weaver, Chen, Baker & Matthews, 
1986). The refinement of each mutant (unpublished 
results) is in principle very similar to the refinement 
of an enzyme-inhibitor complex. One starts with the 
refined structure of the native protein, locally 
modified to correspond to the structure of the mutant. 
In the early stages of the refinement the 
stereochemical restraints are kept weak to allow the 
starting model to relax to conform to the diffraction 
data observed for the mutant structure. When there 
appear to be no systematic shifts in the coordinates 
from one refinement cycle to the next, the stereo- 
chemical restraints are strengthened in order to 
enforce the 'ideal' geometry. Some representative 
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refinement statistics are summarized in Table 4.  
Experience with refining these mutant structures at 
resolutions in the range 1.9-1.7/~ suggests that the 
refinement procedure is capable of successfully mov- 
ing both main-chain and side-chain atoms through 
distances of 1.0 A. 

Several of our colleagues have contributed to the 
development of the refinement package by applying 
it to their own problems and suggesting modifications 
and improvements; in particular, we thank Drs M. A. 
Holmes and M. F. Schmid. Dr Holmes also suggested 
'TNT' as the name for the package. We also thank 
Dr N. Isaacs for providing detailed information on 
the Lifchitz modification of the Agarwal fast Fourier 
transform algorithm. The work was supported in part 
by grants from the National Institutes of Health 
(GM 20066; GM 21967; GM 35114), the National 
Science Foundation (DMB 8611084) and the Mur- 
dock Charitable Trust. 

APPENDIX A* 

Efficient calculation of gradients by means of the fast 
Fourier transform algorithm 

Definitions 
The following symbols are used in both the main 

paper and the Appendices. 
p The vector consisting of all refinable 

Xi 

Xi, Yi, 2i 
Bi 
Oi 
f, 
S 

Qo(j) 
Q~(J, p) 

W(j) 
Fo(s) 

Fc(s, p) 

T 
T-1  

(L) 

parameters in the model. 
The vector of all parameters of atom i. 
The vector of all positional parameters 
in the model. 
The vector of the positional parameters 
of atom i. 
The coordinates of atom i. 
The thermal factor for atom i. 
The occupancy of atom i. 
The atomic scattering factor for atom i. 
The vector (h, k, l); s = sin 0/A. 
The observed value for observation j. 
The value calculated for observation j 
from the parameters p. 
A weighting factor for observation j. 
The observed structure factor for reflec- 
tion s. 
The structure factor for reflection s calcu- 
lated from the parameter p. 
A Fourier transform. 
An inverse Fourier transform. 
A convolution. 
The value of the convolution evaluated 
at xi. 

* By Dale E. Tronrud. 

Lifchitz variation of the FFT algorithm 
To refine a structural model against crystallo- 

graphic data both the function (A1) and its gradient 
(A2) must be evaluated. 

M(p) =E W(s)[klFo(s)l-IF (s,p)l] = (A1) 
s 

d M ( p ) / d p =  - 2  Y~ W(s)[klFo(s)l-lF~(s,p)l] 
s 

× d[ F~(s, p) I/dp. (A2) 

Because the evaluation of the gradient involves a sum 
over all reflections for each parameter of the model, 
the calculation would be very time consuming if per- 
formed as in (A2). 

Agarwal (1978) showed that (A2) can be expressed 
as follows: 

oM(p)/ox, = T- '{2 W(s)UklFo(s)l-IF~(s, P)I] 
xexp[i~o(s,p)](27rih)g,(s)} (A3a) 

OM(p)/Oy, = T-~{2  W(s)[klFo(s)l-I F~(s, p)l] 
xexp[i~pc(s,p)](27rik)g,(s)} (A3b) 

aM(p)/az,= T-'{2 W(s)EklFo(s)l-lFc(s, P)I] 
xexp[i~pc(S,p)](27ril)g,(s)} (A3c) 

aM(p)/aB,= T-'{-2W(s)[klFo(s)l-lF~(s,p)l] 
xexp[i~p~(s,p)](-s2/4)g,(s)} (A3d) 

where 

g,(s) = O,f/(s) exp (B,s2/4). 

This formulation requires a Fourier transform for 
each parameter and is also impractical. However, 
Agarwal separated the portions of (A3) that depend 
on the atom (subscript i) from the rest of the factors 
and applied the convolution theorem to arrive at the 
following equations: 

OM(p)/Ox,= T-'{ W(s)EklFo(s)l-IF~(s, P)I] 
x exp [ i~(s,  p)] (2"rrih)} 

(~,) T- ' [2g(s)]  (A4a) 

OM(p)/Oy,= :r-'{ W(s)[klFo(s)l-lFc(s, p)l 
x exp [i~c(S, p)](27rik)} 

(~,) T-'[2g,(s)] (A4b) 

oM(p)/oz,= T-'l W(s)[klFo(s)l-lF~(s,p)l] 
x exp [ i~p~(s, p)](27ril)} 

(~,) T- l [2g~ (s) ] (A4c) 

OM(p)/OB~ = T-l{ W(s)[k[Fo(s)l-[F~(s, p)[] 

x exp [ i~(s ,  p) ] ( -  s2/4)} 

(~,) T- ' [  - 2g,(s)]. (A4d) 
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If the atomic scattering factor is modeled as a sum 
of Gaussians the second Fourier transform can be 
calculated analytically. For a given model, the first 
transform in each of (A4a)-(A4d) can be calculated 
with the FFT algorithm. In the form given in (A4), 
it is necessary to perform three Fourier transforms to 
determine the positional derivatives. 

Lifchitz (see Agarwal, Lifchitz & Dodson, 1981; 
Isaacs, 1982) has pointed out that the gradient can 
be calculated more efficiently by factoring (A3) so 
that the first Fourier transform is the same in all the 
equations. The refactoring results in the following 
equations: 

OM(p)/ax,= T-'{ W(s)[klFo(s)l-lFc(s, p)l] 
x exp [iq~(s, p)]} 

(x~) T-~[2(2zrih)g~(s)] (A5a) 

OM(p)/Oyi= T-'{W(s)[klFo(s)l-lFc(s,p)[] 

x exp [i~pc(s, p)]} 

(~,) T-~[2(27rik)g,(s)] (A5b) 

OM(p)/Oz,= T-'{W(s)[klFo(s)l-lF~(s,p)l] 
x exp [ i~(s ,  p)]} 

(;¢,) T-l[  2(2 ~ril)g,(s)] (A5c) 

OM(p)/OB,= T-'{W(s)[klFo(s)l-lF~(s,p)l] 

x exp [iq~c(s, p)]} 

(~,)T-l[-2(-s2/4)g,(s)]. (ASd) 

When these equations are used to calculate the 
gradient of M(p),  only a single FFT is required. If 
one remembers that g,(s) is simply a sum of 
Gaussians, the Fourier transforms on the right can 
be determined analytically by using the following 
rules: 

T-~[exp ( -  Bs2)] = (Tr/B)3/2exp(-Tr2/Br 2) (A6) 

T-l[ 2 7rihF(s)] = - 0 T-l [  F(s) ]/Ox (A7) 

T-~[s 2 exp ( -  Bs2)] = (rr/B)3/2(1/2B) 

x exp (-rr2r2/B) 

x[3-2(rr2/B)r2]. (A8) 

data. However, the functions on the extreme right- 
hand side of (A5) are not of limited resolution and 
therefore, at least in principle, must be sampled on 
a very fine grid. This problem existed in the original 
equations (A4) but is much more serious with the 
new form of (A5) because the high-resolution com- 
ponents are enhanced by the inclusion of the crys- 
tallographic indices (h, k, l). This problem is most 
severe in the calculation of the temperature-factor 
derivatives (A5d) because of the s 2 factor. A mechan- 
ism to allow these functions to be calculated using a 
somewhat coarser grid has been devised by recogniz- 
ing that the errors introduced by a coarse grid are 
fundamentally the same as those encountered in the 
calculation of structure factors using the FFT method 
(Ten Eyck, 1977). The solution involves 'smearing' 
or 'blurring' the function of interest so that it is 
sampled by a larger number of grid points. The 
'smearing' must be compensated elsewhere in the 
calculation. In this case the compensation is achieved 
by 'sharpening' the difference map. This can be done 
without introducing additional errors because no new 
high-resolution terms are introduced into the 
difference map. The final equations, as used in the 
program ADERIV, are 

OM(p)/Ox, 

= T - ' { W ( s ) [ k l F o ( s ) l - J F ~ ( s , p )  ] 

x exp [ igor(s, p)] exp (B °s2/4)} 

(x~)T-l[2(2zrih)g~(s)exp(-B°s2/4)] (A9a) 

OM(p)/Oy, 

= T - ' { W ( s ) [ k l F o ( s ) l - l F ~ ( s , p ) l ]  

x exp [ kp~(s, p)] exp (B °s2/4)} 

(~)  T- 1 [2(2 zrik) g~ (s) exp (- B °s2/4)] (A9b) 

OM(p)/Ozi 

-- T- '(W(s)[klFo(s)l-lFc(s,p)l] 
x exp [ kp¢(s, p)] exp (B °s2/4)} 

(x~) r -~[  2(2 7ril)g~(s) exp ( -  B ° s 2/4)1 (A9c) 

The reduction of series termination errors 
The calculation of the convolutions in (A5) in- 

volves sampling each of the functions at discrete 
points, multiplying the values point by point, and 
summing all the products. The sampling interval 
required to represent a function with a given accuracy 
depends on the magnitude of the high-resolution 
components of that function. There is no problem 
determining the sampling interval for the function on 
the left of the convolution because it contains no 
components of resolution higher than the measured 

aM(p)/aB, 

= T - ~ ( W ( s ) [ k l F o ( s ) [ - l F ~ ( s , p ) l ]  

x exp [ i~p~(s, p)] exp (B °s2/4)} 

(x,) T-l[  - 2 ( -  s2/4)g, (s) exp (- B °s2/4)1. 

(A9d) 

Generalized uses of the algorithm 
What was not clear in Agarwal's original paper was 

that this computational short cut can be used in many 
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cases other than the evaluation of (A2). If the deriva- 
tion is carried out for the general case we discover 
that the identity (A10) holds whenever E(s) is a 
symmetric function. 

Y~ E(s)0 Fc(s, p)/Ox, 
s 

= - T-l{ E (s) exp [ iq~(s, p) ]} 
* - - 1  • (xi)T [(27nh)gi(s)] (A10a) 

E E(s)OIF<(s,P)/Oy, 
s 

= - T-I{E(s)  exp [ i~ (s ,  p)]} 
* - - 1  • (x,)T [(27rlk)g,(s)] (A10b) 

E E(s)OIF~(s,p)l/Oz, 
s 

: - T-I{E(s)  exp [ i~pc(s, p)]} 
* 1 (xi) T- [(27ril)gi(s)] (A10c) 

E E(s)OIF~(s,p)I/OB, 
$ 

= T-~{E(s) exp [i~p~(s, p)]} 

(~,) T-t[ ( -  s2/ 4)g, (s)]. (A10d) 

We can use (A10) to speed up the calculation of the 
gradient of almost any function involving structure 
factors. 

Let us develop an example. Suppose that we wish 
to minimize not the usual function of the X-ray data 
(A1), but the negative of the correlation coefficient 
r(p) between the observed and calculated structure 
factors, which can be cast as in (Al l ) ,  where the bar 
indicates the mean value. 

r'(p) = - r ( p )  

=[IF---3~ IF~(s,p)l- Fo(s)llFc(s,p)] 
x {[ Fo(s) 2_ F - - ~  2] 

x [  Fc(s, p) 2_ F~(s, p) 2]}-1/2. (311) 

The gradient is given by 

d r ' ( p ) -  r '(p)[I F--3-61Y  dlFc(s,P)l/dP 
dp n $ 

- Z l Fo(s) l d l F (s, p)l/dP] 
s 

x[ F-F-~I [F~(s,P)l-lFo(s)l IFc(s, P)l] -1 

- {[Y, I F~(s, p) I d I F~(s, p) /dp 
s 

-IFc(s,p)lY, d Fc ( s ,p ) /dp ]  
s 

x[  F¢(s, p) 2-1F~(s,p) 2]-1}, (A12) 

where n is the number of structure factors included. 
To calculate this gradient we need a number of means 

and three complicated summations, (A13), (A14) and 
(315): 

~'. d F~(s, p) /dp  (313) 
$ 

Y, lFo(s)ldlFAs, p) /dp (314) 
s 

Y F~(s, p) I d I F~(s, p) I/dp. (A15) 
$ 

From the generalized derivation we can see that these 
three quantities can be calculated from the same 
convolution, and, in fact, with the same program as 
the original calculation but substituting the three 
transformations given in (A16)-(A18): 

T-l{exp [ iq~c(s, p)]} (A16) 

7-1{I Fo(s)lexp [ iq~(s, p)]} (A17) 

T-l{[fc(s,p)lexp[i¢c(s,p)]}. (A18) 

Therefore with three FFT's we can calculate the 
required gradient of the correlation coefficient. 

This particular function has not been implemented 
in TNT. To do so would only require the creation of 
the code to calculate the means, the coefficients for 
the transformations, and a program which would 
combine the means with the results of the convolu- 
tions to produce the final gradient. To perform 
refinement a program would have to be written to 
calculate r' for any given model. None of these pro- 
gramming tasks is difficult. 

APPENDIX B* 

Evaluation of  the gradients of the terms necessary for 
the implementation of  stereochemical restraints 

Introduction 
In this Appendix we present the equations for the 

gradients of the stereochemical terms. Most of these 
are derived by straightforward algebra and no details 
will be given. Because of the assumptions used in the 
case of the planarity restraints these equations are 
derived explicitly. 

The stereochemistry terms are of the following form 
[cf. equation (2) in the main text]: 

M(p)  = ~  W(b)[Qo(b)-Qc(b,p)] 2. (B1) 
b 

The gradients are of the form 

OM(p)/Ox,=-2 ~ W(b)[Qo(b)-Qc(b,p)] 
b 

xOQc(b,p)/Ox,. (B2) 

Only the portion of (B2) unique to each type of 
restraint (i.e. the derivative of the calculated quantity 

*By Dale E. Tronrud and Lynn F. Ten Eyck. 
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with respect to the parameters of the model) will be 
listed in each of the following sections. In each section 
the coordinates are assumed to be expressed in an 
orthogonal system. 

Bond lengths 

For bond lengths, Q~(x) is the distance between 
two atoms. Call these two atoms i and j. 

oQ~(x)/Ox, = [ 1/Q~(x)](xi-  xj) 

oQ~(x)/Oxj = [ -  1/Q~(x)l(x,-  x]) 

0 Q~(x)/Oy, = [ 1 / Q~ (x) ] (y , -  yj) 

oQ~(x)/oyj = [ -  1 / Qc(x)](y,-  y~) 

oQc(x)/Oz, = [ 1/Q¢(x)](z,-  z~) 

oQ¢(x)/Oz2 = [ -  1/Q¢(x)](z,-  zj). 

(B3) 

Let a be the vector from atom j to atom i, s the 
vector from atom j to atom k and b the vector from 
atom k to atom/. Also let r = s x a and q = s x b where 
r is the normal to the plane containing atoms i, j, k 
and q is the normal to the plane containing atoms 
j ,k,l.  

Q~(x) = cos- '  (r .  q~ rq). (B7) 

[Note: In Fortran the argument of the function ACOS 
is in radians. If Qc(x) is to be in degrees a conversion 
factor must be included.] 

Let 

e = [ - 1 / r q l s i n  Qc(x) l ] [q-cos  Qc(x)(q/r)r]  (B8) 

and 

f = [ - 1 / r q l s i n  Q~(x)l][r-cos Q~(x)(r/q)q].  (B9) 

Then 

Bond angles 

For bond angles, Q~(x) is the angle defined by three 
atoms, labeled i, j, k, with j being the central atom. 

Let a be the vector from atom j to atom i, b the 
vector from atom k to atom j and c the vector from 
atom i to atom k. Then 

Qc(x) = cos -l [a2+ b 2 -  c2/2ab]. (B4) 

[Note: In Fortran the argument of the function ACOS 
is in radians. If Q~(x) is to be in degrees a conversion 
factor must be included.] 

0Q~(x) 
0xi 

1 { [b  ]0a2 
2ab s~n Q~(x)l 1 - - c o s  Qc(x) a Oxi 

+ 1 - ~ c o s  Q~(x) 0x, 0x, J '  (B5) 

Oa21Oiw = 2(iw -jw) Ob21Oiw 
Oc21aiw=-2(k~-iw) Oa21Ojw 

Ob2/Ojw=2(jw-kw) Oc2/Ojw 
Oa2/Ok~=O Ob2/Ok~ 

Oc2/Okw=2(k~-iw), 

=0  

where: 

= -2(iw -jw) 

=0  

i, = xi j ,  = xj k, = Xk 

i2 = Yi j 2  = Yj k2 = Yk 

i3 = 7"i J3 = 7.j k 3 = Z k . 

(B6) 

= - 2 ( j w - k w )  

Torsion angles 

For torsion angles, Qc(x) is the angle defined by 
the four atoms labeled i, j, k, I. The quantity is the 
angle betwedn the normal to the plane defined by 
atoms i, j, k and the normal to the plane defined by 
atoms j, k, I. 

oQ~(x) / oxi = e x s  

oQ~(x)loxj = -oQ~(x) lox ,  + e x a + f x b 

(BIO) 

( B l l )  

oQ~(x)/oXk=-OQ~(x)/oxt-exa-fxb (BI2) 

oQ~(x)/0x, = f x s. (B13) 

Planarity 

For planarity, Qc(x) is defined as the root mean 
square (r.m.s.) deviation of the atoms from the best-fit 
plane. 

Let N be the number of atoms in the plane and 2 
the center of mass of the atoms. Consider 

1 
L }  ( , , - , ) ( y , - : )  (, ,  - , ) ( , ,  - , ) j  

(B14) 

Q is the moments matrix for the atoms of the plane. 
The eigenvectors of Q point along the directions of 
the principal axes of rotation of this group of atoms. 
The eigenvalues of Q are inversely related to the 
moments of inertia of rotation about the axis defined 
by the corresponding eigenvector. The axis of rotation 
with the largest moment (smallest eigenvector) is 
defined as the normal to the best plane for these 
atoms. 

Let u be the smallest eigenvalue of Q, n the eigen- 
vector of Q corresponding to u and m (= n/n)  be the 
normalized eigenvector. Then the r.m.s, deviation of 
the atoms from planarity is 

Q c ( x ) = { Y ~ [ m . ( x , - i ) ] 2 / N }  '/2 (B15) 
i 

oQc(x)/ox,  = [1/SQc(x)]{Y~ [m. (x~-,~)] 
J 
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x [am/axj.  ( x j - i ) ]  

+ [ 1 -  ( 1 / N ) ] [ m .  (x, - x)]m} (B16) 

Om/Oxi=(1/n)(On/Oxi)-(n/n 3) ^ (n. On/Oxi) (B17) 

where A is the outer product. It is defined, when a 
and b are column vectors, as a A b = a .  b T. 

The calculation of the derivative of the eigenvector 
with respect to the position of an atom is difficult 
because eigenvectors are usually determined 
algorithmicaUy. There is no general equation which 
expresses the components of the eigenvector of a 
matrix as a function of  the components of that matrix. 
However, if one assumes that the off-diagonal ele- 
ments of Q are non-zero one can derive an equation 
for the eigenvector: 

nl = Q31Q32 + Q21(u - Q3a) 

n2 = Q3, Q3I + (u - Q33)(u - Q,,) 

n3 = Q3IQ21 + Qa2(u-QI1). 

(B18) 

The derivatives of nl,/12 and n3 are simple to derive 
in terms of the derivatives of the elements of Q. 
Because of the complexity of its derivative we have 
made the assumption that the eigenvalue remains 
constant during refinement. 

F 2 ( x i - x )  (Yi-fi) (zi-~,)] 
OQ/Ox,=(1-1/N)I (y,-~) 0 0 

L (~,-e) o o 

(B19) 

0 (x~-20 0 1 ,gQ/,gy,=(1-1/N) ( x , - ~ )  2(y,-)7) (z,-~,) 
0 (zi - z) 0 

(B20) [ 0 0 (x,-~)] 
OQ/Oz,=(1-1/N) 0 0 (y, - 37) . 

(x , -£ ' )  (y,-y) 2(z , -g )  

(B21) 

The assumption that the off-diagonal elements of 
Q are non-zero makes the gradient calculation sensi- 
tive to the orientation of the plane. In the program 
which performs these calculations the problems 
which might arise are ignored. It is presumed that if 
by chance the plane lies in a special orientation the 
movement resulting from the first cycle of refinement 
will cause it to be displaced and subsequent 
refinement will function normally. 
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