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Abstract 

Substantial highly correlated differences sometimes 
exist between a series of heavy-atom derivatives of a 
macromolecule and the native structure. Use of such a 
series of derivatives for phase determination by multiple 
isomorphous replacement (MIR) has been difficult 
because MIR analysis has treated errors as independent. 
A simple Bayesian approach has been used to derive 
probability distributions for the phase in the case where 
a group of MIR derivatives have correlated errors. The 
utility of the resulting 'correlated-phasing' method has 
been examined by applying it to both simulated and real 
MIR data sets that contain sizeable correlated errors and 
it has been found that it can dramatically improve MIR 
phase estimates in these cases. Correlated phasing is 
applicable to situations where derivatives exhibit 
substantial correlated changes in protein conformation 
or crystal packing or where correlated errors in 
heavy-atom models are large. Correlated phasing does 
not substantially increase the complexity of phase 
computation and is suitable for routine use. 

I. Introduction 

In the method of multiple isomorphous replacement 
(MIR), the phase problem of crystallography is solved 
using information from X-ray diffraction data on 
crystals of the 'native' macromolecule and on several 
'derivative' crystals that differ from the native through 
binding of heavy atoms at a small number of sites in 
each asymmetric unit. An electron-density map that 
shows the locations of atoms in the native structure can 
then be obtained in four steps. First, heavy-atom 
locations are deduced by difference Patterson or direct 
methods. Next, a detailed model for the heavy-atom 
positions in each derivative is built and refined. The 
refined heavy-atom models are then used to obtain an 
estimate of the phase of each structure factor for the 
native crystals. Finally, the phases and measured 
amplitudes of structure factors for the native crystals 
are used in a Fourier synthesis to obtain an electron- 
density map. It is the third step, phasing, with which 
this paper is concerned. Over the past several decades 
MIR has proven spectacularly useful in phasing 
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macromolecular data sets. Despite the recent successful 
applications of multi-wavelength anomalous diffraction 
phasing techniques (Karle, 1980; Hendrickson, 1991) 
and direct methods (e.g., Miller et al., 1993) to this 
problem, MIR remains the workhorse of new macro- 
molecular structure determinations. 

MIR is limited by the requirement that the derivatives 
be highly isomorphous and that the heavy-atom sites be 
well modeled. If the derivative structures differ 
substantially from the native or if many of the heavy 
atoms in a derivative cannot be located, then phasing 
may prove impossible. Defects in the heavy-atom 
models or any lack of isomorphism between native 
and derivative crystals will contribute to uncertainty in 
the resulting phase in much the same way as do errors in 
measurement (Terwilliger & Eisenberg, 1987). A 
serious lack of isomorphism that leads to differences 
between amplitudes of native and derivative structure 
factors of 40%, for example, makes the derivative 
almost worthless for MIR. 

It is both common and disappointing to obtain non- 
isomorphous derivatives, and it would be very helpful if 
some way were available to use such derivatives in 
phasing. One scenario in which even poorly isomor- 
phous derivatives could be useful in phase determina- 
tion is when the derivatives all have the same 
non-isomorphism with respect to the native. In such a 
case, the differences among the derivatives, which 
would be due almost entirely to the different arrange- 
ments of heavy atoms, could yield substantial phase 
information, although in general practice it has been 
difficult this information except by ignoring the native 
structure altogether and simply defining one of the 
derivatives as the 'native'. Although the problem can be 
addressed in this way, such a procedure will be missing 
any phasing information that is present in the differ- 
ences between the native and the derivative structures. 

Lack of isomorphism is only one type of correlated 
error that could exist among derivatives. Others could 
arise from undetected sites of heavy-atom substitution 
that are present in each crystal but missing in the heavy- 
atom models, errors in data collection or scaling in 
common for all derivatives, or (since MIR phase 
calculations involve differences between each derivative 
and the native amplitude for each structure factor) 
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errors in the measurement of the native diffraction data. 
The correlated error as a result of measurement errors 
in the diffraction data from the native crystals was 
analyzed some time ago (Einstein, 1977) and improved 
methods of carrying out phase calculations to account 
for this effect were developed. A more general 
treatment, however, that can account for correlated 
lack of isomorphism, correlated scaling errors, and 
correlated errors in heavy-atom models has not been 
available up to now. 

In this work, we use a Bayesian approach (Box & 
Tiao, 1973; Box, 1980) to obtain phase information in 
the presence of errors that are correlated among a set of 
MIR derivatives. The usefulness of a Bayesian approach 
to this problem is that it allows a detailed description of 
the possible sources of error to be used in calculating 
probability distributions for the native phase. In 
particular, this approach allows the explicit incorpora- 
tion of information on the extent of correlation of the 
errors in each derivative• We previously used a 
Bayesian approach to derive expressions for phase- 
probability distributions for a single native-derivative 
pair (Terwilliger & Eisenberg, 1987). The phase- 
probability distribution we obtained was similar to the 
one proposed by Blow and Crick (Blow & Crick, 1959) 
and in general use at the time, but the derivation led to a 
more detailed interpretation of the lack-of-closure 
errors in terms of lack of isomorphism and errors in 
the heavy-atom model. At that time we found it 
necessary to assume that if more than one derivative 
was included in phase-probability calculations, errors 
were not correlated among the derivatives. This allowed 
the calculation of independent native phase-probability 
distributions based on each derivative, and a simple 
multiplication of these to yield the overall probability 
distribution for the native phase. In the present 
derivation, we take advantage of correlations among 
errors in a way that can substantially improve estimates 
of phases. 

2. The correlated phasing model 

We begin by developing a model for the derivative 
structure factors that includes the correlated and non- 
correlated sources of error, and we estimate the 
parameters of the error distributions from the data. 
We then integrate over the error distributions to obtain 
an expression for the probability distribution for the 
native phase• As in our previous treatment of the single 
isomorphous replacement case (Terwilliger & Eisen- 
berg, 1987), the spirit of these calculations will be along 
the lines of the Blow-Crick formulation, and we shall 
be approximating many of the component probability 
distributions and complex sums to first order (that is, by 
normal distributions). 

2.1.  Corre la ted  and  uncorre la ted  errors 

We describe the effects of X-ray diffraction from the 
arrangement of atoms in the asymmetric unit of the 
native protein crystals by a (complex) native structure 
factor, Fl,, for a particular reflection. For the jth 
derivative crystal, the corresponding derivative 
structure factor, FpH, is given by the native structure 

• J . 

factor plus a contribution arising from the total changes 
due to the heavy atoms, which we write as, 

FpH j = Fp + (F~j + R + Sj). (1) 

The first term in the change, F~j, is the calculated 
structure factor of the heavy atoms based on the 
current model, which describes the heavy-atom posi- 
tions, occupancies, and Debye-Waller factors. The 
second change term, R describes the error in the change 
that is correlated across all derivatives, so R is not 
indexed by j.  The last change term, Sj, represents the 
error in the change that is specific to the jth derivative• 

The sum R+Sj accounts for all errors due to 
inadequacies of the model, whether arising from non- 
isomorphism or errors in the heavy-atom model, but it 
does not include experimental errors in the measure- 
ment of ]Fp]. We account for the errors in measurement 
of the native amplitudes by writing the observed 
amplitude of the native structure factor Fp as the sum 
of the amplitude of Fp and a measurement error 3p. 

This leads to an expression for the (complex) 
structure factor for derivative j of 

FpH j = (F~, - 6p) exp(i~o) + I~nj + R + Sj, (2) 

where ~o is the crystallographic phase of the native 
protein, the quantity that we are trying to determine in 
the phasing step. Note that (2) is an expression for the 
derivative structure factor itself, not our measurement 
of it. Although in principle it is possible to proceed 
farther from this expression without additional assump- 
tions, calculations can be greatly simplified if we allow 
that the amplitude of the native structure factor, Fp, is 
measured accurately enough that ap << F~, and also that  
the total difference between native and derivative 
structure factors is small compared to Fp. These 
assumptions are used in the Blow-Crick treatment of 
phasing and experience has shown them to be generally 
quite good. We can then write FpH j, the magnitude of 
Fpn j , as approximately given by 

Fen , "" II~vHj I -- ~p + g + Sj, (3) 

where ~ n j  = F~, exp(icp) + l~nj, 3p = Fp - F~, and R 
and Sj refer to the components of R and Sj along the 
direction of l~pn j. Finally, noting that 3p and R 
are the same for all derivatives and that Sj is unique 
to derivative j ,  rewriting I~nj I, the calculated ampli- 
tude of the derivative structur~ factor, as F~,Hj (¢p), and 
the observed derivative structure factor F~,t. 1 as the sum 
of Fpn j and a measurement error, 6pn ' . we 'obtain 
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F'~H j ~_ F'pnj(cp) + A + Sj + 8PHj, (4) 

where A =-~p qt_ R. The amplitude of the derivative 
structure factor therefore differs from that calculated 
based on the measured amplitude of the native structure 
factor and the heavy-atom model by a term correlated 
across all derivatives, A, and terms unique to the jth 
derivative, Sj and 3Pn. The utility of the present 

J 

approach will largely depend on whether ,6 is sizeable 
relative to the Sj and 3eHj. 

2.2. Probabilit 3' distribution for  the native phase 

To obtain a probability distribution for the native 
phase q9 we begin by using Bayes' rule (Box & Tiao, 
1973) to write an expression for the posterior prob- 
ability distribution for 99 given that we have made a 
measurement F~, of the native structure factor and 
measurements Fin  , . . .  F~,H, of the n derivative structure 
factors, 

p(~olF~, F~H, . . . F~,H,) o¢ p(F~, F~,I-I, . . . F~H. I~O)Po(~P). 

(5) 

The prior probability distribution for the native phase, 
po(~O), is usually flat and uninformative because we do 
not know anything beforehand about the native phase ~0. 
However, if there is information available from another 
experiment, such as a multi-wavelength anomalous 
diffraction experiment, this probability distribution 
should reflect this prior information. 

We do not know the distribution on the right hand 
side of (5), but using (3) to calculate the F~, n we 
can obtain the related probability distribhtion 
p(F~,, F~,nl . . .  F~t.l, Iqg, Fp, R, S 1 . . .  S,)  assuming that the 
errors in measurement are normally distributed, 

p(F~,, F°pH, . . . F~ ,H.  ICp, F p ,  R ,  S1  . . . S n )  

o¢ ./V'(F~ - Fp, a 2) ~. ./V'(F~,nj - FpH ' , a2nj ), 
J 

(6) 

where A/'(x, a 2) = 1/a(2zr) U2 exp( -x2 /2a  2) represents 
a normal distribution with variance a 2, and ap and 
aeq ~ are the uncertainties in measurement of the 
natwe andjth derivative structure factors. (6) states that 
if we knew the values of F e, ~0, R, and the Sj, then the 
probability that we would measure a value F~; H is 

• . J 

normally distributed about Fro. 1 and F~, would be 
• . J . . . 

normally distributed about Fp. If we obtain mformatmn 
about distributions for Fp, R and the Sj, we can obtain 
an estimate of p(F~,, F~,I.1,... F~,t-l, I~o) by integrating (6) 
over the 'nuisance' variables Fp, R and Sj in a process 
known as 'marginalization' (Box, 1980). Assuming that 
R and Sj are independent of the native phase ~o, we can 
write, 

p(F; ,  F ; n . . .  F;n" Iqg) 

cx .]'p(F~,, F~,n, . . .  F~,t.I, Iqg, Fe. R, S, . . . S,)  

× po(Fe)dFpp, , (R)dR 1-IP,,(Sj)dSj, 
J 

(7) 

where po(Fp), po(R) and p,,(Sj) are estimates of the prior 
probability distributions for Fp, R and Sj and the 
integrations are over all possible values of these 
variables• We will assume that the native structure- 
factor amplitude Fp is measured with sufficient 
accuracy that the prior probability distribution p,,(Fp) 
does not contribute a substantial amount of additional 
information and may be ignored. 

2.3. Prior probabili ty distributions 

We now make estimates of the prior distributions 
p,,(R) and po(S1) . . . po (S , ) .  R is the component along the 
direction of the native structure factor of the correlated 
portions of the errors from lack of isomorphism, 
modeling, and other sources. We assume that 
F~H j, ~p, R, and Sj are independent of each other in the 
sense that the value of any of their products averaged 
over many reflections would be zero. This assumption 
implies that the probability distributions that govern the 
magnitudes of ~e, R and the S i will be independent of 
each other. So long as the previous assumption about 
6p, R and Sj being small relative to Fp holds, this should 
not be a problem. However, as extensively discussed by 
Read in a related context, the part of the errors present 
because of lack of isomorphism are not truly indepen- 
dent from the native structure factor (Read, 1986). 
Moreover, while the assumption of independence is 
reasonable if the errors in the heavy-atom model are due 
to heavy-atom sites not included in the model at all, it 
will be a poor assumption if the occupancies of heavy- 
atom sites are overestimated. In the latter case, the 
component of R due to the heavy-atom model error will 
be negatively correlated with F~, n . 

J .  . 

We have argued before (Terwllhger & Eisenberg, 
1987) that as long as the structure factor R is due to 
scattering or changes in scattering at a number of 
locations in the unit cell of the derivative crystals, its 
prior probability distribution can be quite reasonably 
described by Wilson statistics (Wilson, 1949). In this 
case the component R along the direction of the native 
structure factor will have a normal prior probability 
distribution with a variance dependent on the resolution 
of the reflection. We can write that 

po(R) = .Af(R, o~E2), (8) 

where u is equal to the expected intensity factor 
(Stewart & Karle, 1976) for centric reflections and 
half this value for acentric reflections (Terwilliger & 
Eisenberg, 1987), and E 2 is a measure of the total 
correlated error. 
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A very similar analysis may be applied to the variable 
Sj, representing errors unique to the derivative j. 
Assuming again a normal distribution of errors and 
that the mean-square amplitudes of these errors for this 
derivative are given by o~A~, this leads to the 
prior probability distribution for Sj of, 

po(Sg) = N'(S/,  ~A~). (9) 

We can estimate the correlated error E 2 and the 
uncorrelated errors A~ for each derivative using a 
method similar to the one we previously developed for 
estimation of errors for single isomorphous replacement 
(Terwilliger & Eisenberg, 1987). From (4), if we 
knew the native phase, qg, we could use the part 
of F~.uj--FCpnj(Cp) t h a t  is correlated between any 
two derivatives j and k to estimate the mean-square 
value of the correlated error `6 in a range of resolution, 
because the mean-square value of SjS k is zero i f j  :/: k. 
Referring to (4), this leads to an estimate of `62 given by 

A 2 "~  ( [ F ~ H  j - -  gCpl4j(qg)][F~,Hk -- g~Hk(qg)] ) , (10) 

where centric and acentric reflections are treated 
separately, a is as defined above, and the averages are 
taken over reflections in a range of resolution. Further, 
noting that ,4 = R - ,~ and that (R e) = orE 2 and 
(,~2) = cr 2, we can write that ( A  2) = c~E 2 + a 2. We do 
not know the value of ~o in (10), so our best estimate of 
(A z) for each reflection is obtained by averaging over 
all values of qg, weighted by the probability of obtaining 
qg, to be developed below. This yields, 

g 2 ~" ( 1 ~or f[F~,u, - F~,Hj (qg)][F~,H~ -- F~,u~ (~o)] 

x p(~o)d@ - ( a 2 / @ .  (11) 

Because each pair of derivatives gives one estimate of 
E 2 and because the extent of correlation may vary 
between pairs, we choose to use the minimum value of 
(11) for any pair of derivatives as our estimate of E z. A 
similar argument leads to the relation 

([F~;~° _ Fe~(,p)lC z) ..~ (`6z + Sf + ,~2enj) 

"~ orE 2 -+-ffA 2 n t- (Op//y) + ( 4 ) ,  (12) 

and an estimate for A 2 of 

A~ = (1/tr  f[F ° c 2 j ell+ -- F~'t- 6(~o)] po(~o)d@ 

2.4. The correlated phasing equation 

Substituting (6), (8) and (9) into (7), and using (3) and 
the relation 3 -- /7~,  _ Fp to replace Fpn  ~ w i t h  
F~% + (F~, - Fp) + Sj, we obtain 

p(F~, F~,t4, . . .  F~,H. [¢P) 

(x .]'N'(F~ - Fp, @ ) d F  e f N'(R, ote2)dR 

x 1-!Y/(F~.j - [F~., + g + (F~ - Fp) + Sj], 4,,j) 
J 

x / (S j ,  ~Ay)dSj. (14) 

The integrations over the Sj can be carried out 
independently, leading to 

p(F~,, F'~H, . . . F~,H, [qg) 

o, .f/(V~, - rp, o~)drp f / ( R ,  aE2)dR 

×l - I / IF;% - EF~,,j + R + (V;, - r~)],  4 , , j  +'~A~/.  
J 

(15) 

Substituting ,6  = R + (F~, - Fp) and noting that in the 
integration over R, Fp is fixed so that d,6 = dR, this can 
be rewritten as 

p(F~,, F~,. . . . F°e~l. lq)) (x f N" (F~, - Fp, a2e)dFp 

× f N ( a  -[F;~ - Fp], ~E2)dA 

x I-IN'(F~,uj-[F~,Hj + A], O'2Hj) + otA2). (16) 
J 

Reversing the order of integration and integrating over 
Fe leads to, 

p ( F ~ , r ~ , n . . .  V~u, [q9 ) cx f N ' ( A , o t E  2 + o2)dA 

× l--I N'(F~,n,-IVY% + `6], cr2u, + uA~). (17) 
J 

Finally, integration over ,6 and substitution of the result 
into (5), yields the correlated phasing equation, 

p(qg) cx po(qg) e x p -  ½ ( ~{[F~% - F~,H~(qg)]2/(a21t ~ + A2)} 
\ j 

- ~2[ ,,~-F~,,,,(~o)l/(,,~,,j +A~) / [1/(E ~ +,,g)] 
J 

+ ~ 1/(,,g,,, + A~)). (18) 
J 

The first term in the exponent corresponds to Blow- 
Crick phasing, that is, phasing based on independent 
derivatives. The second term accounts for the correla- 
tion between errors in the derivatives. Note that if 
E 2 + ~r2p = 0 - if there is no correlated error - then the 
second term will equal zero. 

The correlated-phasing method described here can be 
thought of in much the same way as difference 
refinement, a method first used by Fermi, Perutz, 
Dickinson & Chien (1982) and recently examined in 
detail by us (Terwilliger & Berendzen, 1995), if the 
'model error '  terms of difference refinement are 



replaced by the 'correlated errors' of correlated 
phasing. In Blow-Crick phasing, each derivative is 
used independently in phasing. In correlated phasing, 
the difference between the observed amplitude of a 
structure factor for one derivative and the correspond- 
ing calculated amplitude is used as an estimate of the 
correlated error for that reflection. This estimate of the 
correlated error is then subtracted from the measured 
amplitude of a structure factor for other derivatives that 
share correlated errors. The 'corrected' amplitudes for 
these other derivatives then can be used with the native 
amplitude to form a more accurate phasing estimate 
than could be obtained with independent phasing. Of 
course, the correlated phasing formulation does all this 
at once, not in sequential subtraction steps. 

3. Evaluation of correlated phasing using test data 

0.65 

We constructed model data to find out in what 
circumstances correlated phasing is useful. We exam- 
ined how high the correlation among errors in the 
derivatives must be before correlated phasing has a 
substantial effect, and we examined the use of 
correlated phasing in cases where there were substantial 
errors in the measurement of the amplitude of the native 
structure factor. In each case, correlated phasing was 
compared with Blow-Crick (independent) phasing using 
the same heavy-atom parameters. 

Model data were constructed based on a 'native' 
peptide structure with 51 atoms (in seven residues) in 
space group P222. Known model native structure 
factors were calculated from this structure, and 
'measured'  native structure factors were obtained 
from these by additional normally distributed random 
variable to simulate a measurement error of 5 %, except 
as noted below. Derivative structure factors were 
constructed by adding three additional terms to the 
native structure factors. The first was a structure factor 
of a heavy-atom partial structure with one heavy-atom 
site in the asymmetric unit of each derivative. The 
second and third were terms representing non-iso- 
morphism between native and derivatives that was 
either correlated or not correlated among derivatives. 
Each of the non-isomorphism terms were two-dimen- 
sional normal distributions for acentric reflections and 
one-dimensional normal distributions for centric reflec- 
tions (Wilson, 1949). The correlation of errors among 
the derivatives was adjusted by varying the r.m.s. 
values of these non-isomorphism terms. Three deriva- 
tive data sets were used in each case. 

The model data sets were analyzed with the HEAVY 
package of programs using origin-removed difference 
Patterson refinement of heavy-atom parameters (Ter- 
williger & Eisenberg, 1983) and either Blow-Crick 
phasing or correlated phasing. The same set of heavy- 
atom parameters and scaling factors was used for each 
phasing method. The resulting phases were compared to 

the 'true' native phases used to generate the model data 
sets, and a map using these phases and their figures of 
merit were calculated and evaluated at the positions of 
atoms in the 'true' native structure. 

Fig. 1 compares Blow-Crick and correlated- 
phasing applications for a series of model data sets 
where the r.m.s, total lack-of-isomorphism error for 
each derivative was fixed at 20% of the r.m.s. 
native amplitude, and where the correlated part of 
these errors was varied from 0 to 100% of the 
total. When the mean-square correlated errors were 
less than about 50% of the total mean-square error, 
correlated phasing yielded only slight improvement 
over Blow-Crick phasing in accuracy of native 
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% Correlated errors (of constant total error) 

(b) 

Fig. 1. Correlated and Blow-Crick phasing with constant total errors 
and varying correlated errors. Data sets consisting of a native and 
three derivatives were analyzed as described in the text. Native and 
derivative errors in measurement were 5%. The r.m.s, total lack- 
of-isomorphism error for the amplitudes of structure factors for 
each derivative was 20% of the r.m.s, amplitude of the native 
structure factor. The correlated lack of isomorphism was varied 
from 0 to 100% of the total lack-of-isomorphism error. The abscissa 
is the percentage of mean-square errors in amplitudes of structure 
factors that are correlated among the three derivatives. (a) 
Agreement between phases calculated with Blow-Crick (triangles) 
and correlated (squares) phasing. The value of the mean effective 
figure of merit of the map, (cos(A~p)), where A is the error in native 
phase, is shown. (b) Mean value of electron-density maps at 
positions of atoms in the native structure calculated using Blow- 
Crick (triangles) and correlated (squares) phasing. The electron- 
density values are normalized to the r.m.s, electron-density value of 
the maps averaged over the asymmetric unit. 
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phases and the quali ty of the resulting electron- 
density map. When  the correlated errors were above 
80% of  the total, however ,  correlated phasing 
resulted in a marked improvement  in phase accuracy 
and quali ty of the map. The mean effective figure of 
merit  of  the map was improved from 0.44 to 0.60 
and the mean value of  p/0. at coordinates of atoms 
in the structure increased from 2.7 to 3 .70  using 
correlated phasing when the correlated errors were 
95% of  the total, for example.  In contrast,  as the 
fraction of correlated error  increases,  the quali ty of 
phasing obtained using B low-Cr ick  phasing holds 
fairly constant. Correlated phasing takes advantage 
of the correlat ion of errors so that the effective 
figure of  merit  and mean p/0" of the map 
dramatical ly  increase when the errors are highly  
correlated,  even though the same total error  is still 
present. 

Fig. 2 further examines when correlated phasing 
might  be useful. It shows that if  all derivatives in a 
data set have completely  correlated lack-of- isomorphism 
errors,  both correlated and B low-Cr ick  phasing 
methods yield progress ively  poorer  phasing estimates 

as this error  is increased, but the worsening of  
phasing is far less using corelated phasing. As in 
Fig. 1, correlated phasing yields the most improve- 
ment over B low-Cr i ck  phasing when the correlated 
errors are large. 

Correlated phasing can also yield substantial 
improvements  over B low-Cr ick  phasing in cases 
where the errors in the native ampli tudes of  
structure factors are very  large (Einstein, 1977). 
Fig. 3 illustrates a case with three derivative data 
sets where the native ampli tude is measured with 
errors varying from 2 to 16%. Because the native 
amplitude is used with all three derivatives in phase 
calculation, errors in measurement  of  the native 
amplitude are correlated. Increases in measurement  
errors decrease the phasing quali ty using either 
method, but the decrease is far smaller  using 
correlated phasing than with B low-Cr i ck  phasing. 
Although it would be out of  the ordinary  to attempt 
to calculate phases using a native data set with a 
measurement  error of 16%, many  of  the weaker  
data in an ordinary data set will have measurement  
errors of this size. Consequent ly  these weak 
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Fig. 2. Blow-Crick and correlated phasing with varying correlated 
errors. Data sets similar to those described in the legend to Fig. 1 
were constructed, except that the lack-of-isomorphism error was 
entirely correlated among all derivatives, and the r.m.s, value of 
this error was varied from 0 to 20% of the r.m.s, native amplitude. 
Panels (a) and (b) are as in Fig. 1. 
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Fig. 3. Blow-Crick and correlated phasing with varying errors in 
measurement of amplitudes of native structure factors. Data sets 
were constructed as in Figs. 1 and 2, except that the error in 
measurement of the native amplitude was varied from 0 to 16%. 
The measurement errors for each derivative amplitude was 5 %, and 
each derivative had an uncorrelated 2 % lack-of-isomorphism error. 



THOMAS C. TERWILLIGER AND JOEL BERENDZEN 755 

reflections could be analyzed more accurately using 
correlated phasing than using Blow-Crick phasing. 

4. Evaluation of correlated phasing using Trp-RS 
data 

Doubli6, Xiang, Gilmore, Bricogne & Carter (1994) 
recently described a very difficult determination of the 
structure of tryptophanyl tRNA synthetase (Trp-RS) 
from Bacillus stearothermophilus. This structure deter- 
mination was difficult in large part because the three 
derivatives used for a key stage in phasing were 
exceptionally non-isomorphous to the native. Data 
from a selenomethionine-containing derivative that 
was isomorphous to the native had been collected and 
was potentially useful for phasing, but the positions of 
the selenium atoms could not be identified with the MIR 
phases obtained from the three non-isomorphous 
derivatives. The deficiency of the MIR phases obtained 
with these derivatives was overcome only by applying a 
phase permutation and likelihood scoring procedure 
along with maximum-entropy solvent flattening after 
MIR phasing had been carried out. Although the three 
derivatives used were not isomorphous to the native, 
they were relatively isomorphous to each other. The R 
factors comparing each of the three non-isomorphous 
derivatives to the native were from 41 to 42%, while 
those between the derivatives ranged from 16 to 29%. 
This indicated that the lack-of-isomorphism errors for 
the three non-isomorphous derivatives were highly 
correlated and suggested that correlated phasing might 
improve the accuracy of the phases from this experi- 
ment. 

The MIR phasing using the three non-isomorphous 
derivatives was originally carried out using maximum- 
likelihood heavy-atom refinement procedures imple- 
mented in the program MLPHARE (Otwinowski, 1991), 
and including anomalous differences for all three 
derivatives (Doubli~ et al., 1994). The resulting phases 
were used to calculate a difference Fourier synthesis for 
the positions of selenium atoms in the selenomethionine 
derivative using coefficients of (Fse - Fn~t), and subse- 
quently these phases were used as the input for phase 
permutation and maximum-entropy solvent flattening. 
To compare correlated and Blow-Crick phasing meth- 
ods directly using this as a test case, heavy-atom 
parameters for the three derivatives were re-refined by 
origin-removed difference Patterson refinement 
(Terwilliger & Eisenberg, 1983), and the newly refined 
parameters were used for either correlated or Blow- 
Crick phasing of difference Fourier syntheses based 
again on (Fse - F,,m). Because the structure of TrpRS is 
now solved, the positions of the Se atoms in the 
selenomethionine derivative are known and the differ- 
ence electron density at these positions could be used as 
a measure of the quality of the phasing. The mean value 

of p/a  (electron density at positions of Se atoms, 
normalized to the r.m.s, value of the map) using Blow- 
Crick phasing was 4.3. Using correlated phasing, the 
mean p/a  was increased to 5.3 and the difference 
electron density at each of the ten selenium positions 
was improved. In the original structure determination 
using maximum-likelihood heavy-atom refinement, the 
mean value of p/a was only 3.2 (Doubli6, et al., 1994), 
probably due to the difficulties of using phase refine- 
ment of heavy-atom parameters in the presence of 
extreme non-isomorphism. 

A second indication of the quality of MIR phases is 
the presence or absence of +ghost' peaks at the locations 
of heavy-atom sites in these difference Fourier synth- 
eses. If the phases are of high quality, these ghost peaks 
should be small or not present, while they may be very 
substantial if the phasing is poor. The mean value of 
p/cr at these ghost heavy-atom sites was reduced from 
8.9 to just 3.8 by using correlated phasing. The effects 
of correlated phasing of the Trp-RS structure can be 
seen in another way in Fig. 4, which shows a portion of 
these difference Fourier syntheses in a region that 
contains four selenium locations and four of the six 
heavy-atom sites. Fig. 4(a) illustrates the difference 
Fourier synthesis obtained with Blow-Crick phasing. It 
would be difficult to identify the selenium sites even 
knowing that the very large peaks are simply "ghost' 
peaks at the heavy-atom sites. In contrast, using 
correlated phasing (Fig. 4b), the ghost peaks are almost 
eliminated and the locations of the four Se atoms are 
clear. 

Overall, Figs. 1-4 demonstrate that in cases where 
errors are highly correlated among derivatives in an 
MIR experiment, correlated phasing can result in a 
dramatic improvement in the quality of phases obtained. 
This improvement is possible because of the phasing 
information contained in the differences among the 
derivative amplitudes of structure factors that is used in 
correlated phasing but not in Blow-Crick phasing. 

5. Conclusions 

Our correlated phasing strategy is based on the fact that 
the errors for the various derivatives in a multiple- 
isomorphous replacement experiment are sometimes 
highly correlated. When errors are correlated in this 
way, the errors in the differences among derivatives can 
be substantially smaller than the errors for any one 
derivative. Correlated phasing is a way of using the 
phase information contained in the differences among 
derivatives as well as the usual information based on 
differences between each derivative and the native 
structure factors. 

Correlated phasing will be an important tool for 
the analysis of multiple isomorphous replacement 
X-ray diffraction data where a substantial correlation 
of errors exists among the derivative data sets. 
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There are a number of situations where such a In all of these cases, the key factor determining 
correlation of errors might arise. One is when the improvement in phasing that can be expected 
correlated non-isomorphism exists within a group of using correlated phasing is the extent of  correlation 
derivatives. In such a case, each of a group of of errors. If the errors are highly correlated, 
derivatives of a macromolecule changes conforma- correlated phasing will i m p r o v e  the quality of 
tion in the same way when the derivatives are phasing, but if  errors are not substantially corre- 
formed. This change could be movement of a lated, it will have little effect because there is little 
domain of the protein or movement of subunits additional information contained in the differences 
relative to each other. It could also simply be a among derivatives. It should be noted that if  some 
rotation of the entire protein relative to the crystal derivatives in a MIR experiment have highly 
lattice, or a change in the dimensions or angles of correlated errors and others do not, then the 
the crystal lattice. As long as whatever changes derivatives with correlated errors can be grouped 
occur are quite similar in each derivative, correlated together for correlated phasing, and the phase 
phasing is likely to substantially improve the quality probabilities obtained from this correlated phasing 
of phasing. Another situation where correlated errors group can be combined by simple multiplication 
can arise is i f  there are large errors in the native with the essentially independent probabilities 
data, or if  there are large and correlated errors in obtained from the uncorrelated derivatives. 
scaling of derivative data sets to the native. 
Similarly, correlated errors can be present if  a The authors would like to thank C. Carter for 
group of low-occupancy heavy-atom sites are present generously providing Trp-RS diffraction and heavy- 
in more than one derivative and are not included in atom data as a test case for correlated phasing. The 
the heavy-atom models for these derivatives, or if  authors are also grateful for support from the 
data for a particular derivative are measured more National Institutes of  Health, from the International 
than once and the duplicate derivatives are included Human Frontiers Organization, and from the 
in phasing. Laboratory Directed Research and Development 

(a) 

(b) 

Fig. 4. (Fse -];'nat) difference Four- 
ier syntheses for Trp-RS calcu- 
lated using (a) Blow-Crick (1959) 
or (b) correlated phasing. The 
region of the difference Fourier 
maps surrounding the Se atoms in 
selenomethionine residues 92, 
314, 318 and 322 is shown. 
Contours are at 3tr (grey net 
contours) and 4.5tr (solid red 
contours). Positions of Se atoms 
are indicated by yellow spheres if 
within the highest contour region 
or green spheres otherwise. Posi- 
tions of heavy-atom sites used in 
phasing are indicated by white 
spheres. 
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program of Los Alamos National Laboratory. 
Correlated phasing has been implemented in 
version 4 of the package HEAVY, available from 
TT to whom enquiries may be directed at 
te rwilliger @ lanl. gov. 
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