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A method for improving crystallographic phases is presented

that is based on the preferential occurrence of certain local

patterns of electron density in macromolecular electron-

density maps. The method focuses on the relationship between

the value of electron density at a point in the map and the

pattern of density surrounding this point. Patterns of density

that can be superimposed by rotation about the central point

are considered equivalent. Standard templates are created

from experimental or model electron-density maps by

clustering and averaging local patterns of electron density.

The clustering is based on correlation coef®cients after

rotation to maximize the correlation. Experimental or model

maps are also used to create histograms relating the value of

electron density at the central point to the correlation

coef®cient of the density surrounding this point with each

member of the set of standard patterns. These histograms are

then used to estimate the electron density at each point in a

new experimental electron-density map using the pattern of

electron density at points surrounding that point and the

correlation coef®cient of this density to each of the set of

standard templates, again after rotation to maximize the

correlation. The method is strengthened by excluding any

information from the point in question from both the

templates and the local pattern of density in the calculation.

A function based on the origin of the Patterson function is

used to remove information about the electron density at the

point in question from nearby electron density. This allows an

estimation of the electron density at each point in a map, using

only information from other points in the process. The

resulting estimates of electron density are shown to have

errors that are nearly independent of the errors in the original

map using model data and templates calculated at a resolution

of 2.6 AÊ . Owing to this independence of errors, information

from the new map can be combined in a simple fashion with

information from the original map to create an improved map.

An iterative phase-improvement process using this approach

and other applications of the image-reconstruction method

are described and applied to experimental data at resolutions

ranging from 2.4 to 2.8 AÊ .
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1. Introduction

Electron-density maps corresponding to macromolecules such

as proteins have features that differ in fundamental ways from

those found in maps calculated with random phases. These

differences have been used in many ways, ranging from

improving the accuracy of crystallographic phases to evalu-

ating the quality of electron-density maps. For example, maps

corresponding to proteins often have large regions of



relatively featureless solvent and large regions containing of

polypeptide chains, while a map calculated with random

phases has similar ¯uctuations in density everywhere

(Bricogne, 1974). This observation is the basis of the powerful

solvent-¯attening approach (Bricogne, 1974; Wang, 1985) as

well as methods for evaluating the quality of macromolecular

electron-density maps (e.g. Terwilliger & Berendzen, 1999).

Similarly, the presence of non-crystallographic symmetry in

macromolecular electron-density maps has been useful in

phase improvement (Bricogne, 1974; Rossmann, 1972; Kley-

wegt & Read, 1997). Additionally, maps corresponding to

macromolecules can be interpreted in terms of atomic models,

providing a powerful basis for map-quality evaluation and

improvement (Agarwal & Isaacs, 1977; Lunin & Urzhumtsev,

1984; Lamzin & Wilson, 1993; Perrakis et al., 1997, 1999, 2001;

Morris et al., 2002). On a statistical level, the density in the

protein region of a macromolecular electron-density map has

a distribution that is very different to that in a map calculated

with random phases. This has been extensively used in histo-

gram matching and related methods for phase improvement

(Harrison, 1988; Lunin, 1988; Zhang & Main, 1990; Zhang et

al., 1997; Goldstein & Zhang, 1998; Nieh & Zhang, 1999;

Cowtan, 1999).

In this work, the focus is on local patterns of density that are

common in macromolecular protein structures. Macro-

molecules are built from small regular repeated units and the

packing of these units is highly constrained owing to van der

Waals interactions. Owing to the regularity of macromolecules

on a local scale, their electron-density maps have local

features that are distinctive and very different from those

of maps calculated from random phases (Lunin, 2000;

Urzhumtsev et al., 2000; Main & Wilson, 2000; Wilson & Main,

2000; Colovos et al., 2000). This property has been used to

evaluate the quality of electron-density maps and to improve

phases at low resolution. Lunin (2000), Urzhumtsev et al.

(2000), Main & Wilson (2000) and Wilson & Main (2000) use

histogram and wavelet analysis to improve electron density in

low-resolution maps by requiring the wavelet coef®cients to

be similar to those of model structures. Colovos et al. (2000)

analyze the local features of high- and medium-resolution

electron-density maps and compare them with those of model

maps to evaluate the quality of the maps and suggest that their

approaches may also be useful for phase improvement.

We recently developed a method for density modi®cation

that consisted of the identi®cation of the locations of helical or

other highly regular features in an electron-density map,

followed by statistical density modi®cation using an idealized

version of this density as the `expected' electron density

nearby (Terwilliger, 2001). This method was shown to yield

some phase improvement, but suffered the serious disadvan-

tage that after an initial cycle the features that were initially

identi®ed became greatly accentuated and few new features

could be found. We suspect that this is a consequence of the

inherent feedback in the method, where a feature in the

original electron density that partially matches a helical

template is restrained to look like this template, making it an

even better match for the template in the next round (even if

the true density in the region is not helical). We have therefore

developed a very different approach to using the information

inherent in local features of an electron-density map which

does not have this feedback and which therefore might have

substantially improved capability for phase improvement.

Here, we show that the local patterns of density surrounding

any point in a map can be used to estimate the electron density

at that point. This observation makes it possible to begin with

an electron-density map with errors, to obtain a new estimate

of the density at each point in the map without using the

density at that point and thereby to construct a new estimate

of electron density that has errors which are nearly uncorre-

lated with the errors in the original map. This recovered

`image' of the electron density has many uses, including phase

improvement and evaluation of map quality.

2. Methods

2.1. Estimation of electron density from local patterns in a
map

The central approach of this work is to use the density

surrounding each point in a map to construct a new estimate of

electron density at that point. There are three overall steps.

The ®rst two create templates and evaluate statistics of these

templates using data from experimental or model maps, with

and without additional errors. The third applies these results

to other maps. In the applications described here, we have

used density-modi®ed experimental maps obtained from

MAD or SAD data at a resolution of 2.6 AÊ to create the

templates and histograms, but a similar procedure could be

carried out using either experimental or model maps at any

resolution. In the ®rst step, N templates of averaged density

are created. These templates were based on the local density

in a density-modi®ed experimental protein electron-density

map and are grouped by correlation coef®cient. Secondly, the

relationship between the density at point x and the template

which has the highest correlation with the density near x is

tabulated using additional density-modi®ed experimental

electron-density maps. Finally, the method is applied to other

experimental maps. The density near each point x in a map is

used to construct a new estimate of the density at x. In this

process, the local density is corrected in a way that removes

the information about the density at x from all its neighbors.

2.2. Removal of information about density at x from local
density

In our approach, the goal is to obtain an estimate of the

value of the electron density at a point x in the unit cell in such

a way that the new estimate has errors that are not correlated

with the errors in the original electron-density map at x. To do

this, the method uses information from the electron density at

points surrounding the point x in obtaining a new estimate of

the value of the electron density at x. One way to remove the

information about the electron density at x would simply be to

consider the electron density in a spherical shell around the

point x. If the inner radius of the shell were large enough, then
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the values of electron density inside the shell would be rela-

tively uncorrelated with the electron density at x. The choice

of an inner radius, however, is not obvious because the

electron-density map is a Fourier sum of terms with widely

varying spatial frequencies. Consequently, there is signi®cant

correlation between values of electron density at point x with

points even as far away as the resolution of the map. Addi-

tionally, it is disadvantageous to exclude all density close to x

in the calculations because the patterns to be considered are

very local.

An alternative method is to create a local density function

for points near x that has values that are similar to the electron

density near x, but that are adjusted in such a way that the

values are uncorrelated with the electron density at x. This

modi®ed local density gx(�x) will depend on the coordinate

difference �x between each point near x and x. The function

gx(�x) is a function of both x and �x and therefore must be

calculated separately for each point x and offset �x in the

map. We would like the value of the function gx(�x) to be

generally similar to the value of the electron density at x + �x,

which we will represent by �(x + �x). As �x is increased, we

would like gx(�x) to become very close to �(x + �x). That is,

we would like

gx��x� ' ��x��x�; �1�

gx��x� ! ��x��x� for large �x: �2�
We would also like the function gx(�x) to be uncorrelated

everywhere with the value of the electron density at x, given

by �(x). The function gx(�x) gives modi®ed values of the

density at x + �x. We would like to be able to say that if we

compare the modi®ed density at x + �x [given by gx(�x)] with

the density at x [given by �(x)], these quantities should be

unrelated [that is, gx(�x) does not contain information about

the value of �(x)]. One way to specify this is to require that for

any offset �x, if we go through the entire map and calculate

gx(�x) for each point x, then gx(�x) and �(x) are to be

uncorrelated,

hgx��x���x�ix � 0 8 �x: �3�
A ®nal desirable property of gx(�x) for the current purpose is

to have its value at �x = 0 be equal to the mean value of

gx(�x) for nearby points �x. The reason this is desirable is

that we would like to compare local patterns to a template

based on the correlation of densities and have no contribution

from the mean value of local density. Setting the value of

gx(�x) to any ®xed value (e.g. zero) at �x = 0 would introduce

a contribution that comes from the mean value of local density

�(x) to the correlation between gx(�x) and a template. A way

to remove information about the mean value of local density is

to specify the requirement that

gx��x � 0� � hgx��x�i�x; �4�
where all values of �x in the region to be used later in

calculations of correlations of densities are considered in the

averaging.

A function gx(�x) that has all these properties is

gx��x� � ��x��x� ÿ ���x� ÿ h��x��x�i�x�W��x�; �5�
where the weighting function W(�x) is given by

W��x� � U��x�=�1ÿ hU��x�i�x�; �6�
and where the function U(�x) is the normalized value of the

Patterson function near the origin, calculated from the

electron-density map itself using the relation

U��x� � h��x���x��x�ix=h�2�x�ix: �7�
In essence, gx(�x) is equal to the value of the electron density

at x + �x, after correction for the difference between �(x), the

value of the electron density at x, and h�(x + �x)i�x, the mean

of nearby values, all using the weighting function W(�x). It

can be veri®ed by substitution that both (3) or (4) are satis®ed

by this function. Additionally, (1) and (2) are satis®ed because

the normalized rotationally averaged Patterson function is

normally quite small everywhere except near the origin and

normally becomes very small for points far from the origin.

2.3. Local pattern identification

The ®rst step in the procedure for density modi®cation by

pattern matching is to obtain templates that correspond to

common patterns of local electron density. These templates

are generated using the local electron density near each point

x in density-modi®ed experimental electron-density maps,

modi®ed to remove information from the central point x, as

described in the previous section. The maps can be calculated

at any resolution, but a set of templates is normally associated

with a particular resolution (typically dmin = 2.6 AÊ ). The

approach used here to obtain templates is hierarchical. First,

three separate sets of Nmax (typically 40) templates are

generated using only points in an electron-density map that

have low, medium or high electron density. A subset (typically

40) of these templates that have low mutual correlation is then

selected. Finally, an even smaller subset of N®nal (typically 20)

templates is chosen from this group in order to maximize the

predictive power of the templates while maintaining a ®xed

number of total templates.

To generate a set of templates, each grid point in an

electron-density map is considered, one at a time, only

including points that are associated with either low

(� < � ÿ 0.8�), medium (� ÿ 0.2� < � < � + 0.2�) or high

electron density (� + 1.5� < �), where � and � are the mean

and standard deviation of the map, depending on the set of

templates to be created. For each appropriate grid point (x),

the modi®ed local electron density gx(�x) is calculated for all

neighboring points within a radius rmax (typically, rmax = 2 AÊ

when dmin = 2.6 AÊ ). This modi®ed electron density is

compared with all existing templates using the correlation

coef®cient of density in the template with the modi®ed local

density as a measure of similarity. The grid used is normally

the same grid as is used for all FFT, NCS-averaging and other

density calculations and is typically between 1/6 and 1/4 of the

resolution of the map. The number of points typically used in a

template is approximately 100. For each existing template, Nrot

different rotations of the template are considered so as to



attempt to match the modi®ed local density in any orientation

and the highest correlation coef®cient of the match for all

rotations of the template is noted. In the examples considered

here, we use a total of Nrot = 158 rotations to sample the

possible three-dimensional rotations of an object with a

rotation of about 50� relating neighboring orientations. If the

correlation coef®cient of the local modi®ed electron density at

this point x with an existing template k is greater than CCmin

(typically, CCmin = 0.85), then the local modi®ed density at this

point is included in the de®nition of template k by rotating the

density to match the current template k and including the

rotated local modi®ed density in the average density for this

template. If the local modi®ed electron density does not have a

correlation with any existing template greater than CCmin,

then the local modi®ed density is used to start a new template.

Once Nmax templates have been created (typically, Nmax = 40),

then the local modi®ed density at each subsequent point is

included in whichever template it matches most closely.

By repeating the generation of templates using points in the

electron-density map that have low, medium and high density,

a relatively diverse set of templates is created. Next, a subset

(typically 1/3) of these is chosen based on mutual correlation

coef®cients in order to obtain a set of templates with the

minimum possible similarity to each other. To do this, the

correlation coef®cients of all pairs of templates are calculated

and the template with the highest correlation to another

template is eliminated. The process is repeated until the

desired number of templates is obtained. The ®nal selection of

templates based on predictive power is carried out after

analyzing the statistics associated with each of the Nmax

templates obtained at this stage, as described in a later section.

2.4. Statistics of local patterns: general approach

The second overall step in this process is to identify the

relationships between the correlation of each template with

local modi®ed density in a map and the value of the electron

density at x. This is peformed for experimental maps both with

and without added errors. There are many possible ways to

describe these relationships, but a simple approach used here

is to break it down into two parts.

The ®rst part consists of an examination of the statistics of

high-quality experimental maps. We have found that the

electron density at a point x in a map is quite strongly

dependent on the two templates k and l that have the highest

(k) and next-highest (l) correlation coef®cients with the local

modi®ed density at x. That is, for electron-density maps of

proteins, the probability distribution p(�|k, l) can be very

informative about the electron density � at x.

The second part is to consider the relationship between

maps with and without added errors. The approach is to begin

with the observed correlation coef®cients of all the templates

at a point x to a map that contains errors and then to use these

in a calculation of the probability that a particular pair of

templates k and l would have the highest two correlation

coef®cients in the corresponding high-quality map. In this

case, the statistics of density for the high-quality maps p(�|k, l)

obtained above can then be applied.

To carry this process out, a second set of probabilities are

needed. These are the probabilities p(CCk|CCobs,k) that the

correlation coef®cient for template k to a point x in a high-

quality map would have the value CCk, given the observation

that this template has a correlation coef®cient of CCobs,k to the

same point in a map with additional errors. To account for

differing levels of error in the experimental map, these

probabilities are tabulated as a function of the overall ®gure of

merit of the map with errors.

To apply these probability distributions to data near the

point x in a new (`observed') electron-density map, the

correlation coef®cient of each template k to the local modi®ed

density near x is ®rst determined (once again, after trying

many rotations and choosing the one for each template that

maximizes the correlation coef®cient). This set of correlation

coef®cients {CCobs} and the two probability distributions

p(�|k, l) and p(CCkCCobs,k) can then be combined as follows to

obtain an estimate of the electron density � at x in a high-

quality version of the same map.

If we somehow knew which two templates k and l have the

highest correlation coef®cients to the local modi®ed density

near x in a high-quality version of the new `observed' map,

then we could use our probability distribution p(�|k, l) directly

to estimate the probability distribution for �. We do not know

the identity of k and l, but suppose instead that we had

probabilities, p(k, l|{CCobs}), for each possible pair k and l

based on the correlation coef®cients observed for the

`observed' map. Combining these, we could write that

p��jfCCobsg� �
P

p��jk; l�p�k; ljfCCobsg�; �8�
where the sum is over all possible pairs of templates k and l.

An estimate of the electron density at x can then be obtained

from the weighted mean

�est �
R
� p��jfCCobsg� d�: �9�

The probability, p(k, l|{CCobs}), that the pair k and l have the

highest correlation coef®cients to the local modi®ed density

near x in a high-quality version of the `observed' map can in

turn be estimated from the observed correlation coef®cients of

all the templates to this map, {CCobs}, in several steps. We

separate the probability into two parts, one for the probability

that template k has the highest correlation and one for the

probability that template l has the next highest, given that

template k has the highest correlation,

p�k; ljfCCobsg� � p�ljk; fCCobsg�p�kjfCCobsg�: �10�
We can now estimate the probability that template k has the

highest correlation with the (non-existent) high-quality

version of the `observed' map. We will integrate over all

possible values of CCk, the correlation of template k with the

high-quality map. For each value of CCk, we will calculate the

probability that this is indeed the value of the correlation of

template k, given by p(CCk) = p(CCk|CCobs,k), and the prob-

ability that all other templates have a correlation coef®cient

less than CCk,
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p�kjfCCobsg� �
R

p�CCk�
Q
j6�k

p�CCj < CCk� dCCk; �11�

where the integral is over all values of CCk. The probability

that template l has the next-highest correlation is given by

p�ljfk;CCobsg� �
R

p�CCl�
Q

j 6�k;l

p�CCj < CCl� dCCl: �12�

2.5. Statistics of local patterns: tabulating histograms

An important part of this step consists of generating

histograms of values for the electron density at x as a function

of the correlation coef®cients of the Nmax templates with the

local modi®ed density at x. Each of the Nmax templates is

compared with the modi®ed local density at all points in a set

of high-quality maps. At each point x, the two templates k and

l that have the highest and next-highest correlation coef®-

cients, respectively, with the local modi®ed density at x are

identi®ed (after rotation to maximize this value). The value of

the (unmodi®ed) electron density �(x) is then tabulated as a

function of k and l. These histograms are then normalized to

yield an estimate of the probability distribution, p(�|k, l).

The second part of this step is to obtain probability distri-

butions, p(CCk|CCobs,k), relating the correlation coef®cient

value, CCobs,k, observed for a particular template at a point x

in a map that contains added errors to the correlation coef®-

cient, CCk, that would be observed for the identical template

at the identical point x in the corresponding map without any

added errors. These probability distributions are calculated by

using paired sets of high-quality experimental maps with and

without added errors. At each point in a map, the correlation

coef®cient of each template k to the map without added

errors, CCk, and the correlation to the map with added errors,

CCobs,k, are noted. Normalization of the resulting histograms

leads to an estimate of the probability, p(CCk|CCobs,k), that

CCk is the correlation to the map without added errors if the

value CCobs,k is observed in the map with added errors. This

calculation is repeated for maps with varying levels of addi-

tional errors by creating simulated phase sets with Gaussian

distributions of phase errors with varying overall values of the

cosine of phase error, hcos�'i, ranging typically from 0.5 to

0.8. In application to new `observed' map, the probability

distribution obtained using data with added phase errors with

a mean cosine hcos�'i similar to the ®gure of merit of the

experimental map is used.

2.6. Selection of templates based on predictive power

The ®nal selection of N®nal templates is based on predictive

power. A subset of N®nal templates is selected from the Nmax

templates obtained earlier using high-quality electron-density

maps. The subset is selected to maximize the correlation

between the electron density calculated using (9) and the

electron density in the maps. The histograms that form the

basis of (9) are calculated from experimental density for one

set of proteins and the correlation is calculated for another.

The pair of templates that yields the highest correlation is ®rst

identi®ed. Then, one by one, the template that increases this

correlation by the largest amount is added to the group, until

N®nal templates are chosen.

2.7. Indexing the rotations for each template to reduce
computational requirements

The slowest step in applying the procedures described here

consists of calculating the maximum correlation of local

modi®ed density with each of the N®nal templates, considering

as many as 158 rotations of each template (or local density) for

each point. We have developed a simple indexing system that

reduces the number of rotations that need to be considered for

each template. The index for a point x is based on the density

at M points near x (typically, M = 9 and the points are chosen

to be approximately uniformly distributed on a sphere of

radius 0.9rmax centered at x). Point m is given an local index im
from 0 to 3, based on the local density at that point (� � ÿ�,

ÿ� < � � 0, 0 < � � � or � > �), where � is the r.m.s. of the

entire map. An overall index I is then calculated for the local

density from the relation

I �P im4�mÿ1�;

where the sum is over the M nearby points. Next, the rela-

tionship between the index I and the best rotation is tabulated

for each of the templates using high-quality experimental

maps containing added errors. For each point in each map

used above to calculate statistics of the correlation of

templates with local modi®ed density, the index I is calculated

and the optimal rotation is noted for each template. An

indexing table is then constructed in which each index I is

associated with a list of preferred rotations for each template.

The table is constructed so that about 95% of the time the

optimal rotation for a given template is contained in the list.

This indexing procedure reduces the number of rotations that

need to be considered by about a factor of ®ve. Other indexing

methods could be applied that might further reduce the

number of rotations to be considered (e.g. Funkhouser et al.,

2003).

2.8. Using local patterns to create a new estimate of electron
density

The pattern of density near a point x in an electron-density

map can be analyzed using (8) to produce a probability

distribution, p(�|{CCobs}), for the electron density at x. The

estimate from (9) of density at x, �est (and the uncertainty in

this estimate, �est, if desired), can then be used to construct a

new estimate of the electron density in the map. This `recov-

ered image' of the electron-density map can be visualized with

or without smoothing, can be used as a target for statistical

density modi®cation (Terwilliger, 2000) or can be combined

directly with the original electron-density map to obtain an

improved map.

We have used an iterative procedure to combine the

information from the recovered image with the information

present in an experimental electron density (Fig. 1). In the ®rst

cycle, the starting phase probabilities are experimental values



and in all cycles the amplitudes are experimental values. In

each cycle, the starting phases and amplitudes are subjected to

density modi®cation (e.g. statistical density modi®cation or

other related methods) to obtain the best possible electron-

density map without using any pattern-based information.

This density-modi®ed map is then analyzed for local patterns

and an image of the map is recovered. Thirdly, the density in

the recovered image is used all by itself to estimate phase

probabilities. This third step is carried out here using statistical

density modi®cation (Terwilliger, 2000) as described below,

but could be performed using �A-based methods (Read, 1986).

Finally, the phase probabilities from the recovered image are

combined with the original experimental phase probabilities

to yield the starting phase probabilities for the next cycle. The

process is iterated until changes in the density-modi®ed map

from cycle to cycle are small (typically one to ®ve cycles). The

density-modi®ed map from the ®nal cycle is then suitable for

interpretation.

2.9. Using statistical density modification to estimate phases
based on a target electron-density function

Statistical density modi®cation (Terwilliger, 2000) is a

procedure for calculating crystallographic phase probabilities

based on the agreement of the map resulting from these

phases with prior expectations. Any set of prior expectations

about the map can be included in this procedure. In particular,

if an estimate of electron density is available for all points in

the map (e.g. the recovered image obtained in the procedure

described above), then this estimate can be used as prior

information about the map. In this procedure, observed values

of the amplitudes of structure factors are used and an estimate

of uncertainty in the electron density is required. This

procedure is used to estimate phase probabilities from a

recovered image, where the expected electron density is

simply the best estimate from (9) and the uncertainty is taken

to be a constant everywhere given by the r.m.s. of a map

calculated with the observed structure-factor amplitudes.

3. Results and discussion

3.1. Removing information about electron density at x from
the local electron density

An important aspect of the pattern-matching density-

modi®cation method presented here is that it is designed to

yield an estimate of the electron density that has errors

uncorrelated with the errors in the original map. This is

accomplished by using only information from the region

around a point x to estimate the density at x and not including

any information about the density at x in the process, as

described in x2. Fig. 2 illustrates this process of removing

information about electron density at x. Fig. 2(a) shows a

section of a density-modi®ed MAD electron-density map for

initiation factor 5A (IF5A; Peat et al., 1998) in the region near

a particular point x (the point x is designated by a star at the

center of the ®gure). Note that the density at x is positive in

this case. In Fig. 2(b), the density is adjusted to remove the

information about the density at x from x and from all

neighboring points. This calculation essentially consists of

subtracting the origin of a normalized Patterson function

corresponding to this map, multiplied by the value of the

density at x minus the mean local density, from all neighboring

points, as described in x2. This calculation has the effect of

setting the value of the density at x to the mean density in the

local region, setting the density very near x to intermediate

values and leaving the value of points far from x unchanged.

3.2. Common local patterns in protein electron-density maps

The analysis of local patterns in electron-density maps was

carried out using the density-modi®ed MAD electron-density

map from IF5A, calculated at a resolution of 2.6 AÊ (PDB code

1bkb; Berman et al., 2000; Peat et al., 1998). This was a very
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Figure 2
Creating the local modi®ed density function gx(�x). (a) Density in the
IF5A electron-density map is shown with contours at 1.5�. The atomic
model used to calculate the map is shown and the central point (`x') is
marked with an asterisk. (b) Modi®ed local density gx(�x) calculated
using (5) corresponding to the map in (a) is shown. All electron-density
maps were created with MAPMAN (Kleywegt & Jones, 1996) and O
version 8.0 (Jones et al., 1991).

Figure 1
Outline of procedure for density modi®cation using local patterns.
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clear map with a correlation coef®cient to the map calculated

from the ®nal re®ned model of IF5A of 0.82. Local patterns

were analyzed for regions centered on each point in this grid,

only considering points within 2.5 AÊ of an atom in the model.

Local patterns were identi®ed as described in x2 using the

modi®ed local density surrounding each point. This approach

removes information about the density at x from the nearby

density. The patterns are selected after considering rotations

about the central point, so any rotational differences between

templates are not signi®cant in determining their features.

The ®nal templates were chosen on the basis of their

predictive power. The Nmax = 40 templates that were initially

created using the model electron-density map for IF5A were

then compared with all points in two other density-modi®ed

experimental electron-density maps, the armadillo repeat of

�-catenin (Huber et al., 1997) and red ¯uorescent protein

(Yarbrough et al., 2001), and correlation coef®cients for each

template at each point were obtained. The same 40 templates

were then compared in the same way with the IF5A map.

Finally, subsets of the 40 templates were considered. For each

subset of templates, the �-catenin and red ¯uorescent protein

electron-density maps were used to generate histograms and

the IF5A map was used to compare the estimates of electron

density obtained using (9) with IF5A electron density. In the

®rst cycle of identifying templates, all pairs of templates were

considered and the pair yielding the highest correlation was

chosen. In subsequent cycles, the additional template that

yielded the greatest improvement in correlation was chosen.

Fig. 3(a) (open circles) shows the correlation of estimated and

model density as a function of the number of templates used.

Much of the information is contained in just two templates and

almost all the rest is in the ®rst 20. Based on this observation,

we have used 20 templates for the remainder of this work.

The fundamental property of macromolecular electron-

density maps that is used in our approach is that different local

patterns of density in these maps are associated with different

values of the density at their central point. The open circles in

Fig. 3(a) show that such an association exists and that only a

small number of templates are needed to describe it. We next

tested whether a similar association exists for random maps.

The closed triangles in Fig. 3(a) were obtained in the same way

the open circles, except that all the maps were calculated after

randomizing all the crystallographic phases. The closed

triangles in Fig. 3(a) show that there is essentially no asso-

ciation between local patterns of density and density at their

central points for the random maps. This means that the

correlations between patterns and densities at their central

points is a feature of protein-like maps and not a feature of

maps with random phases.

An important part of the present approach was the removal

of information about the density at a point x in the analysis of

the patterns surrounding x using (5). The reason for doing this

was to obtain an estimate of the density at point x that is

independent of the current value of density at that point.

Fig. 3(b) shows that this choice of methods is also important

for discriminating between patterns that arise from noise and

those that arise from protein-like features. Fig. 3(b) was

calculated in exactly the same way as Fig. 3(a), except that the

local density was not adjusted to remove information about

the value of the density at the central point and a completely

new set of templates and statistics was used, re¯ecting this

different approach. This was accomplished by not applying (5)

to the local density. The open circles in Fig. 3(b) show that if

the local density is not adjusted to remove information about

the central point, then templates can be obtained that give a

very high correlation between the value of the density calcu-

lated from (9) and the actual density. However, this correla-

tion is likely to be almost entirely due to the fact that

information about the central point is included in both the

Figure 3
Predictive power of templates. (a) Correlation of the recovered density
function with true density for the IF5A map (open circles) and for the
randomized IF5A map (closed triangles). The correlation of �est

calculated from (9) with model density � is plotted as a function of the
number of templates used. For the open circles, the templates were
derived from the IF5A map, the histograms from �-catenin and red
¯uorescent protein maps and the model density and recovered density
were from the IF5A map. For the closed triangles, phases were
randomized for all three maps before carrying out the calculations.
(b) As in (a), except that the local density was not adjusted to remove
information about the density at the central point, so that gx(�x) =
�(x + �x).



templates and the correlations.

Supporting this interpretation,

the closed triangles in Fig. 3(b)

show that randomized maps

give essentially the same

correlations as protein elec-

tron-density maps when the

information about the central

point is not removed from the

calculations.

Figs. 4(a) and 4(b) show

contours of positive density

corresponding to the Nmax = 20

templates obtained. The

templates are arranged in order

of decreasing contribution to

the estimates of density. The

patterns are very simple, typi-

cally containing one to three

spherical or extended regions

of positive density and one or

more rings or regions of nega-

tive density in various relations

to the central point. Some of

the pairs of templates are

similar (for example, Nos. 17

and 18) and, as shown in Fig. 3,

the number could be reduced

further with just a small reduc-

tion in predictive power. The

patterns found in some of the

templates are related in a

simple way to atomic coordi-

nates in the structures used to

generate the templates. For

example, Fig. 2 shows the

density surrounding a point

located near a C� atom, the

junction of three chains of

atoms. This density, after

removing the information

about the density right at this

point, is most closely similar to

pattern No. 12 in Fig. 3, which

consists of a curved lobe of

density adjacent to the origin.

The core of the method

described here is the associa-

tion of different templates with

different expected values of

electron density at the point

that is at the center of the

templates. The electron density

near a point x in a map is

compared with the 20 templates

and the two templates that

match the density most closely
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Figure 4
Templates of local density calculated at a resolution of 2.6 AÊ . The templates are arranged in order of
decreasing contribution to the information about the density at the central point. The sections shown are
8 � 8 AÊ ; only the spherical region 4 AÊ in diameter at the center of each ®gure is used in the pattern-matching
process. Contours at +1.5� (a) and ÿ1.5� (b, templates in the same orientation as in a) are shown.
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are identi®ed. The procedure is ®rst performed with high-

quality experimental maps to associate pairs of templates with

expected density and then with an observed map to estimate

the values of electron density in a high-quality version of the

observed map. In order to use as much information as

possible, the process is carried out in a probabilistic fashion,

considering the possibility that any pair of patterns might best

match the density in a high-quality version of the observed

map.

The 20 patterns are each associated with different average

values of density at their central points. For example, template

No. 1 contains two spherical regions of positive density situ-

ated on opposite sides of the origin. At locations where this

pattern is the one that best matches the density in model

maps, the mean density at the central point is aboutÿ0.3� 0.6

(on an arbitrary scale with the mean of the map equal to

zero). Template No. 12 contains a curved lobe of positive

density immediately adjacent to the origin. Template No. 12

is associated with mean density of about 0.6 � 0.9. Table 1

lists the density associated with locations where each of the

20 templates best match the local modi®ed density in

model maps.

3.3. Reconstructing model electron
density using correlations with local
patterns

The templates shown in Fig. 4 and

the density typically associated with

them listed in Table 1 can be used to

reconstruct an image of an electron-

density map. Fig. 5 shows an example

using model data so that errors can be

readily analyzed. Fig. 5(a) shows a

section of model electron density with

errors calculated using the structure of

gene 5 protein (PDB code 1vqb;

Skinner et al., 1994) at a resolution of

2.6 AÊ . The errors in the phases were

adjusted so that the map had a corre-

lation coef®cient to the perfect map of

0.81. The estimated electron density

reconstructed from this map is shown in

Fig. 5(b) and a version of this density,

smoothed with a radius of 1.5 AÊ , is

shown in Fig. 5(c). Finally, phases were

estimated using statistical density

modi®cation based on the model

structure-factor amplitudes from the

reconstructed density (Fig. 5d). The

reconstructed density has a correlation

coef®cient to the original (model) map

of 0.19, the smoothed image has a

correlation of 0.38 and the map calcu-

lated with phases obtained from the

reconstructed density and model

amplitudes has a correlation coef®cient

of 0.46.

Table 1
Templates of local electron density calculated at a resolution of 2.6 AÊ .

Template

Mean density at center
(arbitrary units, with mean
of map equal to zero)

Variance of
mean density

1 ÿ0.29 0.60
2 0.06 0.73
3 ÿ0.63 0.59
4 ÿ0.55 0.60
5 ÿ0.38 0.81
6 0.49 0.95
7 ÿ0.68 0.56
8 ÿ0.05 0.72
9 ÿ0.40 0.55
10 ÿ0.32 0.70
11 ÿ0.41 0.74
12 0.62 0.87
13 0.37 0.72
14 ÿ0.46 0.66
15 0.46 1.00
16 ÿ0.17 0.76
17 ÿ0.03 0.78
18 ÿ0.15 0.66
19 ÿ0.27 0.81
20 0.49 1.00

Figure 5
Template matching using model electron density with errors based on the structure of gene 5 protein
at a resolution of 2.6 AÊ . (a) Model map with Gaussian phase errors adjusted to yield a correlation to
the perfect map of 0.81. (b) Estimated electron density reconstructed from the map in (a). (c)
Density in (b) after smoothing with a spherical smoothing function with a radius of 1.5 AÊ . (d) Map
calculated with model structure-factor amplitudes and with phases estimated using statistical density
modi®cation based on the reconstructed density in (c). All contours are at 0.8�.



As model data were used to obtain the images in Fig. 5, it is

possible to analyze the errors in the recovered image and

determine whether they are in fact independent of the errors

in the original map. The errors in electron-density maps are

somewhat complicated as they come from errors in phase

angles. A simpli®ed error model in which the values of the

electron density in two maps y1(x) and y2(x) have correlated

errors is assumed for the present analysis. For convenience, in

this analysis the maps y1(x), y2(x) are each normalized to an

r.m.s. value of unity and a mean of zero. In this error model,

each map has a component that is related to t(x), the true

density in a perfect map (also normalized in the same way),

each map has a component c(x) that is an error term unrelated

to t(x) but that is the same in the two maps and each map has

an independent error term e1(x) and e2(x). As this is model

data, we know the values of t(x) as well as the values of y1(x)

and y2(x),

y1�x� � �1t�x� � c�x� � e1�x�; �13�

y2�x� � �2t�x� � c�x� � e2�x�: �14�
In this model case, the coef®cients �1 and �1 can be estimated

from the known maps t(x), y1(x) and y2(x),

�1 ' hy1�x�t�x�i; �15�

�2 ' hy2�x�t�x�i: �16�
We can then estimate the correlation of errors CCerrors with

the relation

CCerrors '
h�y1�x� ÿ �1t�x���y2�x� ÿ �2t�x��i

fh�y1�x� ÿ �1t�x��2ih�y2�x� ÿ �2t�x��2ig1=2
: �17�

Using (17), we ®nd that the correlation coef®cient of the

errors in the starting map with errors with the errors in the

recovered map in Fig. 5(b) is ÿ0.01. The same calculation for

the recovered smoothed map in Fig. 5(c) leads to a correlation

coef®cient of the errors of ÿ0.02. Similarly, the calculation for

the map in Fig. 5(d) obtained using phases calculated from the

recovered image and model amplitudes lead to a correlation of

errors of ÿ0.04. This indicates that the errors in the recovered

image are not correlated with the errors in the original map.

We have found that the independence of errors is not as

perfect when density-modi®ed phases are used. To examine

this, we started with model phases and amplitudes, introduced

errors into the phases, leading to an electron-density map with

a correlation to the perfect map of 0.6, and then carried out

statistical density modi®cation on this map (not including any

local pattern information), leading to a

density-modi®ed map with a correla-

tion to the perfect map of 0.83. This

density-modi®ed map was then

analyzed for local patterns as described

above. In this case the smoothed

recovered image had a correlation to

the perfect map of 0.50. The correla-

tion of errors with the density-modi®ed

map was 0.21, considerably higher than

in the case where the map used for

pattern identi®cation had completely

random errors. This suggests that the

method might not be quite as effective

when used on density-modi®ed maps

as on experimental maps.

3.4. Reconstructing electron density
from density-modified experimental
maps using correlations with local
patterns

The analysis described above was

carried out with electron density

calculated from models so that the

error analysis could be performed in

detail. We next applied the method to

electron density obtained from a MAD

experiment so that its utility with real

data could be examined. The electron

density obtained after applying statis-

tical density modi®cation (Terwilliger,

2000) to three-wavelength MAD data

from gene 5 protein (PDB code 1vqb;
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Figure 6
Template-matching using gene 5 protein MAD data. As in Fig. 5, but using experimental MAD data
instead of model data.
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Skinner et al., 1994) was used as the starting point for this

analysis. This RESOLVE electron-density map had a corre-

lation coef®cient of 0.79 to the model density calculated from

PDB entry 1vqb. Fig. 6(a) shows a section through this

density-modi®ed map. Local pattern analysis was applied to

this map as described above. Fig. 6(b) shows the image that

was recovered from this map, Fig. 6(c) shows a smoothed

version of this image and Fig. 6(d) shows the map obtained

using phases calculated from the recovered image and

observed structure-factor amplitudes. The recovered image in

Fig. 6(b) has a correlation of 0.25, the smoothed recovered

image in Fig. 6(c) has a correlation of 0.42 and the map

calculated using phases from the recovered image in Fig. 6(d)

has a correlation of 0.52.

An approximate version of the error analysis described in

the previous section for Fig. 4 was carried out for the maps in

Fig. 6. In this analysis, the `true' density was taken to be the

density calculated from the model of gene 5 protein (PDB

code 1vqb). The correlation of errors between the starting

RESOLVE map in Fig. 6(a) with the errors in the recovered

image in Fig. 6(b) was 0.15 and the correlation of errors

between the starting RESOLVE map with the errors in the

smoothed recovered image in Fig. 6(c) was 0.23. The corre-

lation of errors in the map calculated using phases from the

recovered image in Fig. 6(d) with the errors in the starting

RESOLVE map was 0.36. This means that the errors are not

highly correlated in this analysis, but that they are also not

completely independent. Part of the correlation of `errors'

could be because of the fact that the `true' density is not

known and the errors are estimated using model density for

gene 5 protein. Consequently, any errors in this model density

would lead to correlation of `errors' in all the maps in this

analysis.

3.5. Combination of phase information from local pattern
identification with experimental phase information

Fig. 6(d) shows an electron-density map calculated using

observed structure-factor amplitudes for gene 5 protein and

phase probabilities obtained using statistical density modi®-

cation on the reconstructed image in Fig. 6(b). These phase

probabilities were then combined with the original phase

probabilities from the three-wavelength MAD experiment to

yield a set of phase probabilities and a new electron-density

map. The original SOLVE electron-density map (Terwilliger

& Berendzen, 1999) using experimental phases is shown in Fig.

7(a). This map has a correlation with the model gene 5 protein

map of 0.56. The electron-density map calculated from

combined phases is shown in Fig. 7(b). This new electron-

density map has a correlation to the model map of 0.65.

Finally, the combined phases and the experimental structure-

factor amplitudes were used in statistical density modi®cation

using the same parameters as those used to obtain the original

RESOLVE phase probabilities. The resulting map is shown in

Fig. 7(c); it is very similar to the original

RESOLVE map shown in Fig. 5(a), but

is slightly improved, with a correlation

to the model gene 5 protein map of 0.82

(compared with 0.79 for the original

RESOLVE map).

A key element of the process used

here is to remove information about the

density at each point x from the analysis

of patterns of density around of x. We

tested the importance of this step by

repeating the entire process of gener-

ating templates and histograms and

then applying them to the gene 5

protein MAD data, but without

removing this information. In this case,

the recovered image had a higher

correlation with the model map than in

the test case described above (0.55

compared with 0.25) and the smoothed

recovered image had a correlation of

0.59, compared with 0.42. On the other

hand, the correlation of errors between

the recovered image and the starting

RESOLVE map was also much higher

(0.68 compared with 0.15), as was the

correlation of errors between the

smoothed recovered image and the

starting RESOLVE map (0.85

compared with 0.23). Finally, the

Figure 7
Phase improvement using template matching
on gene 5 protein MAD data. (a) SOLVE
electron-density map for gene 5 protein. (b)
Electron-density map calculated using
observed structure-factor amplitudes and
combined phases. The combined phases
consisted of the SOLVE phase estimates
combined with the phases estimated using
statistical density modi®cation based on the
reconstructed density shown in Fig. 6(b). (c)
RESOLVE electron-density map after one
cycle of statistical density modi®cation starting
with the map shown in (b). All contours are at
0.8�.



resulting combined phases were used as

a starting point for density modi®ca-

tion, but in this case no improvement in

the ®nal map was obtained (correlation

coef®cient with the model map of 0.79

in both cases), supporting the idea that

this step is an important element in the

process.

3.6. Iterative local pattern
identification and density modification

Fig. 1 illustrated an iterative process

for phase improvement based on the

local pattern identi®cation described

here. In this process, the pattern-

identi®cation step is always carried out

on the best available map and then the

resulting phase information is

combined with experimental phase

information to yield an improved

starting point for density modi®cation.

The ®rst cycle in this iterative process

for phase improvement is identical to

the process described above. Subse-

quent cycles simply iterate the process.

Fig. 8 shows the results of applying the

process to SAD data collected on

nusA protein from Thermotoga mari-

tima (D. H. Shin, H. T. Nguyen, J.

Jancarik, H. Yokota, R. Kim & S.-H.

Kim, unpublished data; PDB code 1l2f)

at a resolution of 2.4 AÊ . Fig. 8(a) shows

a section through the RESOLVE
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Figure 8
Phase improvement using template matching on nusA SAD data. (a) RESOLVE electron-density
map for nusA protein calculated without pattern matching. (b), (c) and (d) Electron-density maps
after one, three and ®ve cycles of density modi®cation including pattern matching, respectively. All
contours are at 1.5�.

Table 2
Application of iterative statistical density modi®cation with local pattern recognition.

For each experimental data set, density modi®cation was carried out using default inputs for RESOLVE (Terwilliger, 2000) and phase probabilities calculated
using SOLVE (Terwilliger & Berendzen, 1999). The process shown in Fig. 1 was then carried out, including the identi®cation and use of local patterns of density.
Non-crystallographic symmetry was not included in any density-modi®cation procedures in these tests. The correlation coef®cient of the resulting electron-density
maps to those calculated with phases obtained from the re®ned models of each structure are listed. Additionally, the number of residues that could be
automatically modeled and assigned to sequence and the number that could be modeled (whether or not assigned to sequence) with RESOLVE (Terwilliger,
2003a,b) using default parameters are listed. As the number of residues obtained with automated model building is somewhat sensitive to the parameters and
details of the methods used, models were built with versions 2.02, 2.03, 2.04 and 2.05 of RESOLVE and the average numbers of residues built are reported.

Structure
UTP-
synthase²

Armadillo
repeat of
�-catenin³

Gene 5
protein§

Hypothetical
(P. aerophilum
ORF)} NusA²²

NDP-
kinase³³

Resolution (AÊ ) 2.8 2.7 2.6 2.6 2.4 2.4
Type of experiment SAD MAD MAD MAD SAD MAD
RESOLVE map correlation to model map

With local patterns 0.760 0.874 0.815 0.821 0.847 0.649
Without local patterns 0.727 0.872 0.786 0.811 0.648 0.586

Residues in re®ned model 1012 (2 � 506) 455 86 494 (2 � 247) 344 556 (3 � 186)
Main-chain residues built by RESOLVE (%)

With local patterns 72 78 72 76 56 76
Without local patterns 72 78 69 76 49 76

Side-chain residues built by RESOLVE (%)
With local patterns 34 58 52 65 21 18
Without local patterns 24 58 51 61 5 4

² Gordon et al. (2001). ³ Huber et al. (1997). § Skinner et al. (1994). } NCBI accession No. AAL64711; Fitz-Gibbon et al. (2002). ²² D. H. Shin, H. T. Nguyen, J. Jancarik, H.
Yokota, R. Kim & S.-H. Kim, unpublished work; PDB code 1l2f. ³³ PeÂdelacq et al. (2002).
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electron-density map obtained without using local pattern

matching. Figs. 8(a), 8(b) and 8(c) show the density-modi®ed

map after one, three and ®ve cycles using local pattern

matching. The correlation coef®cient of the starting

RESOLVE electron-density map with a map calculated from

the re®ned model of nusA is 0.65; the map after ®ve cycles has

a correlation of 0.85.

Table 2 summarizes the results of applying this process to

experimental data from crystals of several different proteins.

The greatest improvement in map quality was obtained for

cases where the original RESOLVE map had a correlation

with the model map of less than 0.7, with smaller improve-

ments obtained when the RESOLVE map was better than this.

To provide a rough measure of the utility of the method, the

automatic model-building capability of RESOLVE was

applied to the maps obtained for each structure with and

without information from local patterns (Table 2). The

percentage of main-chain residues built was essentially the

same with and without information from local patterns for all

the structures except nusA, which increased from 49 to 56%

with the use of local patterns. On the other hand, the

percentage of residues assigned to sequence and side chains

built increased, on average, from 11 to 24% for those struc-

tures where the map correlation was considerably improved

(UTP-synthase, nusA, NDP-kinase). This indicates that the

map improvement can be enough to make a signi®cant

difference in the ability of automated procedures to build a

complete atomic model.

Although the templates used in this procedure were

calculated using data to 2.6 AÊ , the procedure is not strongly

dependent on resolution. Using the nusA data as a test case,

the effect of resolution was examined by truncating the

analysis at resolutions of 2.4 (all data), 2.6, 2.8 and 3.0 AÊ ,

respectively. The correlation of the original RESOLVE maps

at each of these resolutions with the model maps calculated at

the same resolutions were similar (0.65, 0.66, 0.69 and 0.69,

respectively), as were the correlations of the ®nal maps density

modi®ed including the local pattern information (0.85, 0.85,

0.85 and 0.86, respectively).

4. Prospects

We have shown here that local features of electron-density

maps can be used as an important source of information in a

density-modi®cation procedure. The improvements in map

quality obtained using the information from local patterns

range from none (0.87 to 0.87 for �-catenin) to small (from

0.79 to 0.82 in correlation coef®cient for gene 5 protein) to

very substantial (from 0.65 to 0.85 in correlation coef®cient for

nusA).

The computational requirements of the methods are

moderate. Carrying out a complete set of ®ve cycles of pattern

identi®cation and density modi®cation using local patterns

takes 90 min on a Compaq 833 Mhz Alpha for the `hypo-

thetical' protein from P. aerophilum listed in Table 2 (494

amino acids); standard density modi®cation without using

local pattern information takes about 5 min. Memory

requirements are moderate as well: the libraries of patterns

and indexing tables are large and (along with other parts of

the software) require approximately 700 MB of swap space or

more.

There are many additional applications of the procedures

that we have developed here. A key aspect of the methods is

that the image that is recovered from an electron-density map

has errors that are relatively uncorrelated with those in the

original map. This allows the use of the recovered image in

phase improvement in the moderate-resolution range

demonstrated here. It is also possible that the same approa-

ches could be used for low-resolution as well as very high

resolution phasing and phase extension. Additionally, the

independence of errors means that an image recovered from a

random map will have little or no correlation to the original

map, while an image recovered from a map that has protein-

like features will have a correlation. Consequently, the method

could be used to evaluate the quality of protein electron-

density maps. Similarly, points that are in the solvent region of

a crystal will have local features unlike those found in the

protein region and the methods described here could be used

to distinguish the protein from solvent regions.

A weakness of the pattern-matching approach developed

here is that it cannot readily distinguish protein-like features

that are the result of systematic bias or errors in a map from

those that actually re¯ect protein structure. This may be

re¯ected in the small but signi®cant correlation of errors

between the density-modi®ed model gene 5 protein map and

its recovered image described above. Perhaps more impor-

tantly, it means that the method in its present form is not as

well suited to improving maps that contain signi®cant bias

towards protein-like patterns of density, such as those

obtained using phases from an atomic model, as it is to

improving maps in which the errors are essentially random,

such as those obtained by experiment.

A useful extension of the methods described here will be to

recalculate the templates and histograms using data in various

resolution ranges and using various radii for the regions

considered in obtaining templates and to apply the appro-

priate set to experimental data. The effects of the grid spacing

used in calculations could also be investigated. The use of

correlations to more than two templates could be used in (8) in

estimates of local density (although our preliminary investi-

gations indicated that using a third template added very little

information to the calculation). In each of the cases described

here, the templates and histograms were obtained from model

maps calculated at a resolution of 2.6 AÊ . The use of templates

at varying resolutions could potentially increase the applic-

ability of the method to a wider resolution range. Other

extensions include examining the patterns in different classes

of protein structures and in crystals that contain other struc-

tures such as nucleic acids or various ligands.

The author would like to thank the NIH for generous

support, many colleagues for discussion, W. Weis for the use of

�-catenin MAD data, E. Gordon for the use of dUTPase data,



J. Remington for the use of RFP MAD data, S.-H. Kim for the

use of nusA data and helpful reviewers for useful suggestions.

The work has been carried out as part of the PHENIX project
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