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It has recently been shown that the standard deviation of local

r.m.s. electron density is a good indicator of the presence of

distinct regions of solvent and protein in macromolecular

electron-density maps [Terwilliger & Berendzen (1999). Acta

Cryst. D55, 501±505]. Here, it is demonstrated that a

complementary measure, the correlation of local r.m.s. density

in adjacent regions on the unit cell, is also a good measure of

the presence of distinct solvent and protein regions. The

correlation of local r.m.s. density is essentially a measure of

how contiguous the solvent (and protein) regions are in the

electron-density map. This statistic can be calculated in real

space or in reciprocal space and has potential uses in

evaluation of heavy-atom solutions in the MIR and MAD

methods as well as for evaluation of trial phase sets in ab initio

phasing procedures.
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1. Introduction

The ®eld of macromolecular crystallography is rapidly moving

towards the automation of many aspects of structure deter-

mination. Processing of diffraction images is now routine and

nearly automatic (Otwinowski & Minor, 1997; Leslie, 1993).

Identi®cation of heavy-atom sites in MIR and MAD data sets

can often be performed in a hightly automated fashion even in

cases where many sites are present (Terwilliger & Berendzen,

1999a; Terwilliger et al., 1987; Chang & Lewis, 1994; Vagin &

Teplyakov, 1998; Sheldrick, 1990; Miller et al., 1994; Brunger et

al., 1998) and an automated procedure has recently been

developed that can carry out all aspects of scaling, heavy-atom

location, re®nement and phase calculation (Terwilliger &

Berendzen, 1999b). For macromolecular crystals that diffract

to very high resolution, procedures based on combinations of

real-space and reciprocal-space direct methods have been

used to determine phases without MIR or MAD experimental

data with considerable success (e.g., Deacon et al., 1998;

Ealick, 1997). Model building of macromolecules into elec-

tron-density maps is also being automated (e.g. Perrakis et al.,

1997; Zou & Jones, 1996).

With the automation of structure solution, reliable methods

for evaluating the quality of electron-density maps are

becoming increasingly important. In the MIR and MAD

methods, for example, the main criterion for judging the

quality of phasing is simply the interpretability of the resulting

electron-density map. This works well when an experienced

crystallographer is evaluating a map, but is not as useful in the

context of automated structure determination. Even more

importantly, when direct methods are used to solve protein

structures, many phase sets need to be evaluated before a

correct one is identi®ed. The choice of an optimal `®gure of



merit' for evaluating the relative qualities of these phase sets is

of major importance (Deacon et al., 1998).

There are several characteristics of macromolecular elec-

tron-density maps which are particularly well suited for use as

measures of quality. These include the connectivity of electron

density corresponding to polypeptide chains in protein-crystal

maps (Baker et al., 1993), the presence of distinct regions of

protein and solvent (Wang, 1985; Xiang et al., 1993; Podjarny et

al., 1987; Abrahams et al., 1994; Zhang & Main, 1990) and

histogram matching of electron densities (Zhang & Main,

1990; Goldstein & Zhang, 1998). Several procedures for

automatic evaluation of the quality of electron-density maps

have recently been described. Most of these are real-space

procedures, but one can be calculated in reciprocal space. One

real-space procedure is based on the connectivity of the

electron-density map (Baker et al., 1993). The measure of

quality is essentially the number of connected segments that

can be identi®ed in the map. Another real-space procedure is

based on the non-random distribution of electron densities in

the unit cell (Goldstein & Zhang, 1998). Histogram-matching

techniques are used to compare the distributions in a trial map

with those expected of macromolecules containing distinct

regions of solvent and macromolecule and thereby to evaluate

the quality of the trial map.

A third procedure for evaluating map quality, which can be

carried out in either real space or reciprocal space, is based,

like the histogram-matching procedure, on the distinction

between protein and solvent regions (Terwilliger &

Berendzen, 1999a). The regions in a protein crystal that

contain disordered solvent are relatively featureless. Conse-

quently, those regions have a low local variation of electron

density. In contrast, regions containing the macromolecule

have atoms at some positions and not at others, leading to a

high local variation of electron density. The presence of

regions of both low local variation and high local variation can

be detected by calculating the standard deviation over the

asymmetric unit of local r.m.s. electron density (Terwilliger &

Berendzen, 1999a; Terwilliger, 1999). This standard deviation

is high when the electron-density map has well de®ned protein

and solvent regions and is low for maps calculated with

random phases.

Although the standard deviation of local r.m.s. electron

density and the histogram-matching approaches are useful in

evaluating whether distinct regions of protein and solvent

exist in a map, they do not take full advantage of the spatial

extent and separation of protein and solvent regions. The

standard deviation, for example, is only a measure of how

much variation there is of local r.m.s. electron density from

place to place in the unit cell. It cannot distinguish between

cases where regions of low and high local r.m.s. electron

density are very small and are interspersed among each other,

and the very different case where the regions of low and high

local r.m.s. electron density are contiguous and very large in

extent. Correct macromolecular electron-density maps ordi-

narily correspond to the second case, where regions of high

and low r.m.s. electron density are each very large and

contiguous. The extents of protein and solvent regions are

often so large that there are only one or a few distinct regions

of protein and of solvent in the asymmetric unit.

Here, we present a measure of the quality of macro-

molecular electron-density maps which is based on the spatial

separation of large contiguous regions of high or low r.m.s.

electron density. This new measure is complementary to the

standard deviation of local r.m.s. electron density we have

previously used and can be combined with it to generate a

composite measure of quality which is more useful in discri-

minating correct from incorrect maps than either measure

alone. The measure does not depend on atomicity and can

therefore be used with X-ray data at resolutions as low as 4 AÊ .

We show that it can be calculated in either real or reciprocal

space.

2. Methods

2.1. Calculation of the correlation of local r.m.s. density from
an electron-density map

The correlation of local r.m.s. electron density in neigh-

boring regions of the unit cell was obtained from electron-

density maps calculated on a grid with a spacing of approxi-

mately one-third of the resolution of the data, without

including the F000 term in the Fourier synthesis. To calculate

the correlation of the local r.m.s. density, the asymmetric unit

of the map is divided into cubes with edges of 5 grid units. (The

method is relatively insensitive to the size of the cubes over

the edge range 3±9 units for maps calculated at a resolution of

3 AÊ .) Partial cubes with less than half the volume of a full cube

are ignored. The r.m.s. electron density in each cube is

calculated using the grid points in the cube which are

contained within the asymmetric unit of the crystal. The

correlation coef®cient for r.m.s. electron density is then

calculated for all pairs of neighboring cubes.

2.2. Reciprocal-space calculation of correlation of local
r.m.s. density

A means of calculating the correlation of the local r.m.s.

density in reciprocal space would be useful in applications

such as evaluation of phase sets in ab initio methods for phase

determination. If a reciprocal-space calculation were used,

then fewer Fourier transforms would have to be calculated.

We have therefore developed a reciprocal-space formulation

of this measure of map quality. To do this, we have used an

approach similar to the one we recently described for calcu-

lation of �R, the standard deviation of local r.m.s. density of a

map (Terwilliger, 1999).

Because the procedure for calculating the correlation of

local r.m.s. density described above is not well suited to a

reciprocal-space description, we ®rst reformulated this calcu-

lation slightly, substituting local mean-square density for local

r.m.s. density so as not to require a square-root calculation. As

these two quantities are very closely related, we anticipated

that the two calculations would yield very similar results.

The calculation of correlation of local mean-square density

is based on the local mean-square density of the map, �2(x),
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which we will de®ne here to be averaged over a region de®ned

by a Gaussian function

�2�x� � R �2�x0�g�xÿ x0�d3x0; �1�
where g(x) is a three-dimensional Gaussian function with unit

volume and a variance (in each direction x, y, z) of �2,

g�x� � �1=2��3=2�1=�3� exp�ÿ0:5kxk2=�2�: �2�
The goal is to calculate a quantity for a map that describes how

correlated the local mean-square density �2(x) at coordinates

x is with the local mean-square density �2(x + x0) a distance

kx0k away at coordinates x + x0. This correlation CC is calcu-

lated over the entire unit cell

CC �
R
��kx0k ÿ d�dx0

R ��2�x� ÿ �2���2�x� x0� ÿ �2�dxR ��2�x� ÿ �2�2dx
; �3�

where �(kx0k ÿ d) is a three-dimensional Dirac distribution

(zero unless kx0k = d) and is normalized so that it has unit

volume; �2 is the mean-square density in the map.

(3) can be used to calculate the correlation of local mean-

square density in a map in real space. To calculate the same

quantity in reciprocal space, we ®rst rewrite it as

CC �
R
��kx0k ÿ d�u�x0�dx0 ÿ ��2�2R
��kx0k�u�x0�dx0 ÿ ��2�2 ; �4�

where the correlation u(x0) between local mean-square

densities separated by the vector x0 is given by

u�x0� � R ��2�x����2�x� x0��dx; �5�
which can be recognized as the Patterson function of the local

mean-square density �2(x).

Next, we follow our previous approach (Terwilliger, 1999)

and note that the coef®cients Bh of the Fourier series repre-

sentation of �2(x) can be calculated from the structure factors

Fh using the relation

Bh �
P

k

FkFhÿk; �6�

summing over all values of k. The values of Fk are the same as

those used to calculate an electron-density map [�(x)]. We

now take advantage of the fact that the local mean-square

density �2(x) in (1) is the convolution of �2(x) with the

Gaussian function g(x). The coef®cients Rh of the Fourier

series representation of the convolution �2(x) are then simply

the products of the coef®cients Bh and the coef®cients Gh for

the Fourier series representation of the Gaussian,

Rh � BhGh; �7�
where the coef®cients of the Fourier transform of the Gaus-

sian function are given by

Gh � exp�ÿ2�2�2S2
h� �8�

and Sh is the magnitude of the scattering vector khk = 2sin�/�.

Since u(x0) (5) is the Patterson function of �2(x), the co-

ef®cients Uh in its Fourier transform are the squares of the

magnitudes of Rh (7),

Uh � kRhk2: �9�
The ®nal set of coeff®cients needed (Th) are those for

�(kx0k ÿ d), an in®nitely thin shell of radius d with unit

volume. These can be shown to be given by

Th � sin�2�dSh�=2�dSh: �10�
We are now in a position to evaluate (4) in reciprocal space.

The numerator of (4) contains two terms, the integral of the

product �(kx0k ÿ d)u(x0) and the square of the mean value of

�2. Using the fact that the integral over the unit cell of any

term in a Fourier series with any other term is zero unless the

terms have identical indices and noting that both � and u are

real functions, the integral of the product can be reduced to

the expressionR
��kx0k ÿ d�u�x0�dx0 �P

h

ThUh; �11�

where the sum is over all indices h. Similarly, the square of the

mean value of �2 can be rewritten using only h = 000 terms as

��2�2 � T000U000: �12�
The denominator in (4) is identical to the numerator, except

that the separation d is zero in the denominator, yielding the

result that Th = 1 for all indices h. Substituting using (9), this

yields the following reciprocal-space expression for the

correlation of local mean-square density,

CC � P
h 6��000�

ThG2
hkRhk2

� P
h 6��000�

G2
hkRhk2: �13�

All of the quantities in (13) are readily calculated using (7),

based on the same amplitudes and phases of structure factors

(Fh) which would be used to calculate an electron-density map

and using the expressions for Gh and Th in (8) and (10),

respectively.

(13) has a quite simple interpretation. The numerator is the

average value at a radius d of the Patterson function of the

squared electron density after smoothing. The Th terms

represent the selection of the distance d. The Gh terms

represent the Gaussian smoothing (averaging) of the

Patterson function and the Rh are the coef®cients of the

Fourier series for the squared electron density. Another way

to say this is that the numerator of (13) is the correlation of the

squared electron density, after smoothing, at a distance d. The

denominator is the value of the same Patterson function at the

origin. The denominator is the correlation of the squared

electron density, after smoothing, with itself. The overall CC is

the ratio of these two quantities.

Two parameters are required to evaluate (13), the variance

�2 of the Gaussian used to smooth the Patterson function (2)

and the radius d at which the correlation is calculated (3). Our

analysis of the real-space measure of correlation of local r.m.s.

density above showed that the precise size of the region

averaged (corresponding roughly to � in the reciprocal-space

version) had only a small effect in the range 3±9 AÊ . We chose

the width of the Gaussian distribution � to be 3 AÊ so that the

local regions to be compared were largely contained within a

region of dimensions 5 AÊ . We then chose the separation d to



be twice this so that the compared regions would not overlap

signi®cantly.

3. Results and discussion

We used model data to examine the utility of the correlation of

local r.m.s. electron density in adjacent regions of a map in

distinguishing between electron-density maps of high and low

quality. Model structure factors were generated using

coordinates determined recently in our laboratory of a de-

halogenase enzyme from Rhodococcus species ATCC 55388

(American Type Culture Collection, 1992), which contained

316 amino-acid residues and crystallized in space group P21212

with unit-cell dimensions a = 94, b = 80, c = 43 AÊ (J. Newman,

personal communication). The resolution range used in the

model calculations was 3±20 AÊ . Varying phase errors were

then applied to these model structure factors to yield 4830

phase sets with mean values of the effective ®gure of merit

hcos�'i ranging from 0.0 to 1.0 (�' is the phase error).

Two automated measures of the quality of each electron

density were then calculated for each map and compared with

the true effective ®gure of merit of the map (obtained using

the known phase errors). The two measures were the standard

deviation of local r.m.s. electron density (SD; Terwilliger &

Berendzen, 1999a) and the correlation of local r.m.s. electron

density (CC) described here. Fig. 1 shows the values of each

measure of map quality for the 4830 phase sets we examined.

The two criteria have similar overall characteristics. For maps

based on phase sets with effective ®gures of merit greater than

about 0.4, each criterion appears to be strongly related to the

®gure of merit of the map. For maps of lower quality, the two

criteria are weakly related to the ®gure of merit of the map.

The utility of each criterion for ranking maps in order of

quality is examined in more detail in Fig. 2(a). All pairs of

phase sets which differed in ®gure of merit by 0.05 � 0.025

were listed. For each pair, it was then determined whether the

standard deviation of local r.m.s. density (SD) or correlation

of local r.m.s. density (CC) criteria would have correctly

identi®ed the better of the two phase sets. The fraction of

correct decisions of this type are plotted in Fig. 2(a) as a

function of map quality (®gure of merit). For pairs of maps

with effective ®gure of merit of less than 0.2, neither criterion

is very useful in identifying the better of the two phase sets.

For pairs of maps with ®gures of merit from 0.2 to 0.4,

however, Fig. 2(a) illustrates that the new correlation criterion

(CC) is more likely to identify the better of the two phase sets

than the standard-deviation criterion (SD). For example, the

likelihood that the SD criterion would correctly identify the

better of two maps with an average effective ®gure of merit of

0.22 and differing by 0.05 is about 0.52, while the CC criterion

would have a likelihood of 0.56. For maps with an effective

®gure of merit above about 0.5, both criteria are very reliable,

but the SD criterion is more useful than the correlation CC.

A composite criterion Z based on both the SD and CC

measures of map quality was also tested. This composite was
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Figure 1
Standard deviation of local r.m.s. density (SD) and correlation of local
r.m.s. density (CC) for model data sets. The values of SD and CC were
calculated for 4830 model phase sets as described in the text. The ®gure of
merit of each map is the value of hcos�'i for that map. The values of SD
(circles) and CC (squares) are shown for each phase set.

Figure 2
Probability of identifying the better of two model phase sets. (a) All pairs
of phase sets in Fig. 1 differing in ®gure of merit by 0.05 � 0.025 were
examined. The fraction of cases in which the SD or CC values were higher
for the phase set with the higher ®gure of merit is plotted as a function of
the mean ®gure of merit for the two maps. (b) As in (a), except that a
different set of 4000 model phase sets were used and the analysis was
performed in reciprocal space. The 364 terms in the series representations
of SD or CC (see text) with the smallest values of Gh were included. The
width (standard deviation) of the Gaussian function used to de®ne the
local region was � = 3 AÊ and the radius of the shell function for the
calculation of CC was 10 AÊ .
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calculated as the sum of the SD and CC measures, after

normalizing each based on their means and standard devia-

tions for the data points in Fig. 2(a) in the range of map quality

0.0±0.1. This normalization procedure is a simple way of

weighting the two criteria so that equal changes in each

criterion relative to their respective standard deviations lead

to equal changes in Z. Fig. 2(a) shows that the composite score

Z is more useful than either of the individual criteria in

identifying the better of two phase sets. In the range of map

quality 0.2±0.4, the composite Z is slightly better than the

correlation (CC) criterion and much better than the SD

criterion. In the range 0.4±0.5, it is much better than either the

SD or CC criteria, and for maps with quality above 0.5, the

composite Z is about equal to the SD criterion and much

better than the correlation CC.

Both of the criteria examined here (SD and CC) can be

calculated in either real space or reciprocal space. Fig. 2(b)

shows the results of a test with 4000 model phase sets, where

SD and CC were calculated in reciprocal space, as described in

previous work (Terwilliger, 1999), or with (13), respectively.

The reciprocal-space calculations are carried out with a series

representation (13) in which the Gaussian terms Gh strongly

reduce the contribution of high-order terms. Consequently, we

only used the lowest order terms with values of Gh > 0.1 in the

series for these calculations. As anticipated, the reciprocal-

space calculations yielded measures of both SD and CC which

have properties very similar to those calculated for related

quantities in real space.

Model data sets were also used to test the range of reso-

lution over which the correlation of local r.m.s. density (CC)

was a useful measure of map quality. Fig. 3 is a repetition of

the CC analysis in Fig. 2(a) for maps calculated at three

resolutions: 3, 4 and 6 AÊ . Fig. 3 shows that the utility of the

correlation CC in distinguishing between maps of slightly

different quality is best at higher resolution, but is still of some

use for maps calculated at a resolution as low as 6 AÊ .

The correlation of local r.m.s. density (CC) was tested for

utility with real data by including it in a repetition of the

automated structure determination (Terwilliger & Berendzen,

1999b) of the Rhodococcus dehalogenase based on experi-

mental data (J. Newman, unpublished data) at a resolution of

2.8 AÊ . As the structure of the dehalogenase has been re®ned

at a resolution of 1.5 AÊ , the quality of electron-density maps

calculated from each trial heavy-atom solution during the

structure determination could be assessed using the correla-

tion coef®cient to the model map (Fig. 4). Anomalous differ-

ences were not used in this test, so heavy-atom solutions were

translated and inverted as necessary to match the origin used

for the model structure. Fig. 4 shows the relationship between

the quality of electron-density maps calculated during this

automated dehalogenase structure determination and the

values of the standard deviation SD (Fig. 4a) and correlation

CC (Fig. 4b) of local r.m.s. density. The linear correlation

coef®cient for the data in Fig. 4(a) (SD) is 0.89; for CC it is

0.90. We conclude that both criteria would be very useful in

ranking trial electron-density maps.

4. Conclusions

The standard deviation and correlation of local r.m.s. electron

density in a map are complementary properties of the map.

Figure 3
Effect of the resolution of the map on the probability of identifying the
better of two phase sets.

Figure 4
SD and CC of maps calculated during a structure determination with real
data. Automated structure determination of a dehalogenase enzyme was
carried out using SOLVE (Terwilliger & Berendzen, 1999b), as described
in the text. The 178 trial heavy-atom solutions examined during the
structure determination were each used to calculate an electron-density
map. The values of SD (a) and CC (b) calculated from these maps are
plotted as functions of the correlation of the map to a map calculated with
phases based on a re®ned model of the dehalogenase.



Each statistic can be a good indicator of the quality of

macromolecular electron-density maps. The standard devia-

tion of local r.m.s. density is essentially a measure of how much

variation there is in the local roughness of the map from place

to place in the map. The correlation of local r.m.s. density, in

contrast, is a measure of how contiguous the ¯at (or rough)

regions of the map are. A high-quality map of a macro-

molecular structure with signi®cant solvent regions will have

both a high standard deviation and a high correlation of local

r.m.s. electron density. Our results from model and real data

indicate that both statistics are useful and that a combination

of the two statistics is more useful than either alone in ranking

the quality of electron-density maps.

We have recently shown that the standard deviation of local

r.m.s. density can be expressed in a reciprocal-space formu-

lation (�R; Terwilliger, 1999). The reciprocal-space formula-

tion can be calculated rapidly using a relatively small number

of terms in a series approximation. It can also be differentiated

and therefore potentially used as a target for optimizing

phases. A similar approach has been applied here to express

the correlation of local r.m.s. density in reciprocal space. These

real-space and reciprocal-space formulations have potential

applications in ranking phase sets obtained from heavy-atom

solutions to MIR and MAD experiments as well as in density-

modi®cation and direct-methods approaches to macro-

molecular phase determination.
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