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Most crystallographers today solve protein structures by ®rst

building as much of the protein backbone as possible and then

modeling the side chains. Automating the determination of

backbone coordinates by computer-based interpretation of

the electron density would enhance the speed and possibly

improve the accuracy of the structure-solution process. In this

paper, a new computational procedure called CAPRA is

described that predicts coordinates of C� atoms in density

maps and outputs chains of C� atoms representing the

backbone of the protein. The result constitutes a signi®cant

step beyond tracing the density, because there is ideally a one-

to-one correspondence between atoms predicted in the chains

output by CAPRA and C� atoms in the true structure (re®ned

model). CAPRA is based on pattern-recognition techniques,

including extraction of rotation-invariant numeric features to

represent patterns in the density and use of a neural network

to predict which pseudo-atoms in the trace are closest to true

C� atoms. Experiments with several MAD and MIR electron-

density maps of 2.4±2.8 AÊ resolution reveal that CAPRA is

capable of building �90% of the backbone of a protein

molecule, with an r.m.s. error for C� coordinates of around

0.9 AÊ .
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1. Introduction

Most crystallographers today solve protein structures by ®rst

building as much of the protein backbone as possible and then

modeling the side chains. Automating the determination of

backbone coordinates by computer-based interpretation of

the electron density would enhance the speed and possibly

improve the accuracy of the structure-solution process. In

particular, once the coordinates of C� atoms are known, a

variety of automated techniques can be used to build in side-

chain atoms, such as fragment-library approaches (Holm &

Sander, 1991; Levitt, 1992) or the shape analysis of local

density patterns (Old®eld, 1996; Whelan & Glasgow, 2000;

Holton et al., 2000). However, the most frequent approach

used in practice today consists of skeletonizing a map to

produce pseudo-atoms (e.g. using a tool such as BONES;

Jones et al., 1991) and then manually specifying the desired

position of C� atoms using interactive graphics software such

as O (Jones et al., 1991). It should be emphasized that while a

skeleton (or `trace') provides a very useful and compact

representation of the density in complex maps, most

skeletonization programs do not actually determine C� co-

ordinates (Greer, 1985; Swanson, 1994). Though C� atoms are

often found near branch points, there are many exceptions,

such as breaks in continuity, false connections between side

chains, missing branches owing to weak side-chain density or
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extra branches in the side chains themselves. Thus, a great deal

of human judgement is currently required to interpret

electron-density maps.

In this paper, we introduce a new method for predicting

chains of C� atoms in electron-density maps, called CAPRA

(C-Alpha Pattern Recognition Algorithm). The two essential

features of CAPRA are (i) use of pattern-recognition tech-

niques to recognize regions in a map that are likely to be

centered on true C� atoms and (ii) use of a variety of heur-

istics, e.g. based on geometry and connectivity, to decide how

to link the predicted C� atoms together into linear chains

representing reasonable secondary structures. CAPRA was

developed as the ®rst stage of an automated model-building

procedure in TEXTAL (Holton et al., 2000). It has been used

to automatically build models for a variety of experimental

(MAD- and MIR-phased) electron-density maps in the

2.0±3.0 AÊ resolution range.

2. Background

Currently, the most common practice among crystallographers

in solving protein structures is to identify C� coordinates by

hand, build the backbone into the model and then try to

manipulate various side-chain rotamers to ®t the local patterns

in the electron-density map. However, there have been a

number of efforts to incorporate automated methods into the

process, ranging from skeletonization through attempts to

build complete protein models in an entirely automatic way

(Perrakis et al., 1997). Some methods start by building a trace,

choosing candidate C� locations and then re®ning them based

on geometric constraints. For example, in the X-Power®t

routine (Old®eld, 1996) of the QUANTA package, a chain of

C� atoms is extended by ®nding a position in the density that is

3.8 AÊ from the end of the chain. It balances a number of

criteria, such as proximity to a branch point in the trace and

acceptability of bond angles and torsions, based on probability

distributions for typical C� chains (Old®eld & Hubbard, 1994).

Real-space re®nement against these constraints is then

applied to each chain built.

Another approach to identifying C� locations is `critical

point analysis' (Leherte et al., 1994), which involves analyzing

peaks in the density map. In critical point analysis, gradients in

the density are determined by computing the Hessian and this

is used to search for a ridge (or linear sequence of high-density

grid points) consisting of alternating peaks and saddle points,

assumed to represent the protein backbone. These peaks are

then connected together using minimum-spanning tree graph

algorithms to generate the protein backbone.

A different approach is based on searching a map for

regions of density that resemble prototypical secondary-

structural elements (�-helices and �-sheets) and then utilizing

this interpretation of the density to ®t atoms in expected

positions. This type of approach is generally known as template

convolution. The `templates' are fragments of prototypical

secondary structure. Their ®t to different positions in the map

is calculated by evaluating similarity between the expected

and actual density via convolution. One of the earliest versions

of this approach, ESSENS (Kleywegt & Jones, 1997),

performed the search in a straightforward way. However, the

program is inef®cient because it requires a six-dimensional

search (three real-space dimensions plus three rotational

dimensions for orientation of the fragment). A more compu-

tationally ef®cient version of template convolution was

implemented in FFFEAR (Cowtan, 1998). FFFEAR converts

fragment templates into their reciprocal-space coef®cients by

fast Fourier transform (FFT) and then searches the map for

locations where the pro®les match by simple multiplication

and peak search. A real-space correlation search using Monte

Carlo methods has also been used for rigid-body positioning

of whole domains in maps (Diller et al., 1999).

While template-convolution methods are capable of iden-

tifying C� locations by exploiting the regularity of �-helices

and �-strands, they must be complemented with other tech-

niques to complete the structure by connecting these regular

fragments through loops and random coil. MAID (Levitt,

2001) is an example of a program that does this. Prototypical

helices and strands are shifted along the trace until a good ®t

to the density is detected. These core fragments are then

incrementally extended by adding atoms in the density until

the fragments connect. Each step is interleaved with real-

space re®nement to enhance the ®t, while simultaneously

enforcing sterochemical constraints on bond distances and

angles.

A recent development has been to integrate building of

partial models with phase improvement. Firstly, a map is

searched for regions that look like prototypical structures (for

example using template convolution), a partial model is

constructed based on this and then the model is back-

transformed to generate calculated phases which are

combined with the original phases and experimental ampli-

tudes to produce more accurate maps. This approach is the

basis of RESOLVE (Terwilliger, 1999) and its recent model-

building extension (Terwilliger, 2002) which implements a

statistical form of density modi®cation based on Bayesian

probability. This formalism helps to address the problem of

model bias by controlling the relative contribution to phase

updating, based on the relative degree of belief in the initial

phase estimates versus the quality of the ®t of a fragment to

the density. MAIN (Turk, 2001) also iterates model building

with re®nement. The unique aspect of MAIN is that it exploits

the chirality of C� atoms found in l-amino acids, which helps

produce more accurate backbone geometry. As the cycles of

re®nement iterate, MAIN is able to produce increasingly

interpretable maps and concomitantly more accurate and

complete models.

Finally, C� coordinates may be predicted in the process of

building complete models, such as by ARP/wARP (Perrakis et

al., 1997). ARP/wARP uses the `free-atom insertion' method

to incrementally extend partial models by adding a few

pseudo-atoms (scatterers) at the periphery of the model and

re®ning their ®t to the density through consistency with

observed amplitudes in reciprocal space. These pseudo-atoms

are then interpreted as side-chain and backbone atoms and

included in the model and the whole process iterates. ARP/



wARP has been used to build very accurate models, including

accurate coordinates for C� locations. However, the success of

ARP/wARP, as with several of the other approaches, seems to

be limited to maps of relatively high resolution.

3. Methods

Given an electron-density map as input, CAPRA ultimately

generates a set of C� chains that characterize the protein

backbone. The chains are represented in the form of a list of

ATOM records (atomic coordinates) in PDB format.

Although ideally CAPRA would output a single chain of

length equal to the number of residues expected in the

protein, it often outputs a set of smaller chains of varying

length, depending on the quality of map.

CAPRA is based on the principles of pattern recognition.

The goal of the software is to recognize when regions of

density are located at or near a true C� atom in a way that

mimics the crystallographer's ability to recognize C� locations

visually. CAPRA uses a neural network which has been

trained on prior examples of regions of density whose distance

to true C� atoms is known to make these predictions. Feature

extraction is used to characterize patterns in the density and

these features are provided as input to the neural network.

The CAPRA method consists of a sequence of eight major

steps (Fig. 1). Firstly, the electron density is scaled to a uniform

level, which is similar to map normalization. The map is then

traced (or skeletonized) to produce a set of pseudo-atoms that

lie along the centers of contours of density in the map. Each of

these pseudo-atoms is considered to be a candidate for a

predicted C� atom. Next, numeric features are calculated

based on patterns of the density in the region around each

pseudo-atom. These features are input to a neural network

that makes a prediction about the likely distance from each

pseudo-atom to a true C� atom.

Given this predicted distance for each pseudo-atom, a

subset of the pseudo-atoms called `way-points' is selected. The

way-points are the pseudo-atoms predicted to be closest to

true C� atoms among their neighbors. The connectivity among

way-points in initially determined by the trace. However, this

produces an over-determined graph with excess links,

including many branches and cycles. Hence, the next step is to

reduce this graph to a subset of linear chains by making

choices about which connections are most likely to represent

legitimate backbone connections, as opposed to spurious

connections through side chains, solvent, noise in the density

etc. Finally, a simple re®nement procedure is applied to the C�

chains to adjust the inter-C� distance to be about 3.8 AÊ and to

smooth out other imperfections, such as implausible angles.

CAPRA can work with maps in any space group, based on

any unit-cell parameters; the unit-cell axes do not have to be

orthogonal. No speci®c grid spacing is required. However, it is

important that the map covers at least one entire molecule;

cases where CAPRA is run on an asymmetric unit in which the

borders of the map cut the molecule into pieces will not

produce good results because CAPRA will end up identifying

many short disconnected fragments that appear to terminate

at the edge of the map.

3.1. Map scaling and tracing

The ®rst steps in CAPRA are to scale the density and trace

the map. Firstly, the map is scaled in order to make the

magnitude of the density patterns roughly comparable among

maps. The density-scaling process involves collecting statistics

on 1000 randomly sampled 5 AÊ spheres throughout the map,

restricting attention to the top 10% with the highest variance,

which are most likely to represent protein rather than solvent.

The threshold levels are determined above which 20% of the

highest density points lie (�1) and below which 20% of the

lowest density points lie (�2). All density values �ijk are then

scaled linearly so that these thresholds are mapped to �1, [i.e.

�1 = 1, �2 =ÿ1 and the average of the two thresholds is set to 0,

(�1 + �2)/2 = 0],

�0ijk � ��ijk ÿ ��1 � �2�=2�=���1 ÿ �2�=2�:

The result is similar to normalizing the map (so that it has a

mean of zero and a standard deviation of 1.0), though the

CAPRA scaling routine is less sensitive to varying proportions

of solvent content.

Next, we trace the map. Our map-tracing routine, `Tracer', is

a variant of other standard skeletonization routines that have

been described in the literature (Greer, 1985; Swanson, 1994;

Jones et al., 1991). An orthogonal 0.5 AÊ grid (with 0.5 AÊ

spacing in x, y and z directions) is constructed over the entire

map, densities are interpolated at each grid point and all the

grid points that fall within a contour level of 1.0 (that is, with

density > 1.0) are collected into a list. The 0.5 AÊ grid spacing

was chosen as a compromise between the

desire to provide initial candidate

pseudo-atoms that are suf®ciently close

to true C� atoms (maximum distance

from any coordinate to the closest grid

point is <0.877 AÊ ) and the desire to

minimize computation.

The initial list of grid points, called

candidates, that fall inside the 1.0 scaled

contour is sorted by density. Points in this

list are then considered for deletion in

order from the lowest density to the

highest. A candidate grid point is deleted
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Figure 1
Steps in the CAPRA method.
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unless doing so would create a discontinuity in the

surrounding 3 � 3 � 3 box of grid points. A discontinuity

occurs when, by removing the grid point in the middle, the

remaining candidates in the surrounding box are broken into

two or more separate clusters (see Fig. 2). Since this algorithm

is applied to candidates in order from lowest density ®rst, it

has a tendency to incrementally remove grid points at the

periphery of the regions inside the contours and these regions

shrink toward the medial axis (ridge of highest density, along

the center of the contoured regions) until a critical point is

reached at which removing any more points would disconnect

the trace. What remains is the skeleton of the density: chains

of grid points within the map that represent the shape of the

density contours in a compact form.

3.2. Prediction using a neural network

Given that the pseudo-atoms in the trace initially come

from a 0.5 AÊ grid, our experiments have shown that there are

typically around ten pseudo-atoms per residue, including 4±5

along the backbone as expected. Hence, one of the major

challenges of CAPRA is deciding which subset of the pseudo-

atoms represent C� atoms in the true structure. The approach

taken by CAPRA is to use pattern-recognition techniques to

recognize which pseudo-atoms look more like C� atoms, based

on their surrounding patterns of density. This is accomplished

in two steps: feature extraction and use of a neural network. In

particular, the calculated features are used as input to the

neural network, which predicts, for each pseudo-atom, a

numeric estimate of how far away it appears to be from a true

C� atom.

Feature extraction involves calculation of various numeric

values that characterize the patterns of density in regions

around each pseudo-atom. In CAPRA, we de®ne regions as

spheres of up to 4 AÊ in radius. Since we ultimately want to

recognize when a region is centered on a C� atom regardless of

the direction of the backbone or orientation of the side chain,

it is important for the features to be rotation invariant, such

that their scalar values do not change when an arbitrary

rotation transform is applied. We use the same rotation-

invariant features in CAPRA as are used in TEXTAL.

Examples include mean and standard deviation of density in

region, higher-order statistics, distance to center of mass,

moments of inertia, ratios of moments of inertia and some

specialized geometric features (see Holton et al., 2000, for

details of feature de®nitions). These feature values are all

independent of orientation (i.e. they remain constant even if

the region is rotated) and represent aspects of the shape and

symmetry of the density patterns in a quantitative way. In

CAPRA, these features are calculated over spheres of both 3

and 4 AÊ radius. Counting both radii, there are a total of 38

features.

Once these features are calculated, they are fed into a

neural network to predict how far away the center of the

region is from a C� atom in the true structure. The neural

network is a standard feed-forward network (Hinton, 1989)

with one input layer consisting of the 38 features, one layer of

hidden units with sigmoid thresholds, and one output node:

the predicted distance (unthresholded). The hidden layer has

20 nodes and the network is fully interconnected between

layers (Fig. 3). The size of the hidden layer was chosen to be 20

nodes because experiments showed that fewer nodes (10)

resulted in convergence to a higher mean-squared error, while

more nodes (30) did not signi®cantly improve the accuracy of

the network. Each link between nodes a and b has a real-

valued weight wa,b. Each node, j, has an internal activation

level, actj, and an output, outj, which is the thresholded version

of the activation. In general, the activation levels of non-input

nodes, j, in the network are calculated as weighted linear sums

over their inputs, i, plus a tunable bias parameter (Fig. 4),

actj �
P

i

wi;j � outi � biasj:

For the single-output node the output level is equal to its

activation, whereas for the hidden nodes the output is the

Figure 2
Illustration of how Tracer determines local connectivity for decision-
making during the reduction of grid points. Initially, all grid points in the
contour are included. They are then incrementally dropped, in order of
lowest density ®rst, as long as this does not break local connectivity. Local
connectivity is determined by examining the points in a surrounding 3� 3
� 3 box (shown in two dimensions here); + signs are points with high
density, while ÿ signs are points outside the contour. Panel (a) shows a
case where dropping the point in the middle will not create disconnected
components, so the point may be eliminated. Panel (b) shows a case
where dropping the point in the middle would create two separate
connected components. Hence, this point would not be eliminated
because it is critical to maintaining the connectivity of the trace.

Figure 3
Structure of neural network used in CAPRA.



thresholded version of the activation using the sigmoid

squashing function,

outj �
1

1� exp�ÿactj�
:

Feed-forward neural networks of this type can be trained

using the well known back-propagation algorithm (Hinton,

1989). Back-propagation is based on running the neural

network forward on training data, for which the target output

values are known, and then distributing the blame for

discrepancies backward through the network in proportion to

the contribution of the nodes, in order to update the weights

on the links (the free parameters of the model). If the relative

errors on the successors of node j are �k, then the error on

node j can be calculated as

�j � outj�1ÿ outj�
P

k

wj;k � �k:

This formula is determined from the partial derivative of the

error of the whole network as a function of the output of node

i using the chain rule and exploiting the differentiability of the

sigmoid function. The weights are updated in proportion to

these internal distributed errors,

�wj;k � ÿ�outj�k;

where � is a learning-rate constant. The bias parameter for

each node can be updated similarly by treating it in a uniform

way as a weight on a link of constant input value, 1.

This back-propagation process is iterated over many

training examples. The training examples consisted of a

sample of grid points in a calculated (Fc) map at 2.8 AÊ reso-

lution. The map was generated using the coordinates from the

large �/� protein 1fdi, with 715 residues. The structure factors

were calculated from the model, using B factors as given in the

original PDB ®le, and a map was then calculated with re¯ec-

tions from 20 down to 2.8 AÊ by FFT using X-PLOR (BruÈ nger,

1992). After scaling the map, a random subset of 10 000 grid

points that occurred inside the 1.0 contour level was selected.

For each point, the feature vectors were calculated and the

true distance to the closest C� atom was measured, which

ranged from almost 0 up to 6 AÊ (but still inside the 1.0

contour). The measured distances were used as the target

values on the output node for back-propagation. The network

was trained for over 100 epochs, using an adaptively

decreasing learning-rate parameter, until the network error

converged. The ®nal mean-squared error of the distance

predictions was 0.592.

While the map of a large protein with a mixture of

secondary-structure types was intentionally chosen for

training to minimize bias (i.e. to ensure a representative

distribution of patterns from helical, extended and coiled

regions), it should be acknowledged that this single map

calculated with model phases does not represent the full

spectrum of types of noise and errors found in real maps,

which can be derived from a wide range of factors affecting

data measurement. Nonetheless, our results show that use of

patterns from this idealized map to train the neural network

enables it to recognize C� locations with reasonable accuracy

in real maps, at least at resolutions around 2.8 AÊ . The reso-

lution limit of 2.8 AÊ was chosen for the training set because

this is in the middle of the typical range of resolutions that can

be expected to come from data sets collected at synchrotrons

via MAD.

3.3. Selection of way-points

Prediction of the approximate distance from each pseudo-

atom in the trace to a true C� atom is used to help select the

subset of the trace atoms that most closely represent C� atoms.

These are called way-points. Way-points are selected in the

following manner. Firstly, all the pseudo-atoms are ranked by

their predicted distance to a C� atom, from closest to farthest.

Pseudo-atoms with predicted distances to C� atoms of >3 AÊ

are discarded, as they are very unlikely to represent true C�

atoms and are more often associated with side chains. The top

atom in the list is then selected as a way-point, or candidate C�

atom, and all the remaining atoms in the list that are within

2.5 AÊ of this atom, which have worse predictions by de®nition,

are deleted. This process is repeated, picking the next best

pseudo-atom, removing its neighbors and so on. Candidate C�

atoms are thus picked in a random order throughout the map,

giving preference to the best ones ®rst according to the neural

net predictions.

After picking the way-points, their connectivity is estab-

lished based on the trace. From each way-point, contiguous

sequences of adjacent pseudo-atoms are followed from the

trace radially outward until either another way-point is

encountered or a 5 AÊ cutoff is reached. While there is no

enforcement or constraint on the distance between neigh-

boring way-points (only that they are no closer than 2.5 AÊ and

no farther than 5 AÊ ), they are on average spaced about 3.8 AÊ

apart, as expected; furthermore, there is typically only one

way-point in the proximity of each true C� atom (i.e. a one-to-

one correspondence).

3.4. Extraction of linear chains

Since the connectivity among selected way-points, or

candidate C� atoms, is determined by the trace of the density,

this often produces an over-connected graph with many
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Figure 4
Details of a typical node in a neural network. The central node, j, ®rst
takes a weighted sum over its inputs (large circle with a �) and then
thresholds this value to output a signal between 0 and 1 (small circle with
an S curve). Each node also has a bias input, which, along with all the
weights in the network, is trained via back-propagation. In a network with
a single hidden layer, as is used in CAPRA, the input layer (containing
node i) would contain the input feature values and the output layer (node
k) would have a single node without a threshold.
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extraneous edges (C�ÐC� links). For example, there may be

branches (e.g. into side chains) or loops owing to disul®de

bridges, side-chain or backbone contacts, or noise in the

density. This graph must ultimately be reduced to a sub-graph

of linear chains representing only the protein backbone.

The process of extracting linear chains of C� atoms starts by

computing connected components of the graph. This is

accomplished by partitioning them according to the connec-

tivity relation, i.e. iteratively merging groups of nodes when-

ever a connection between them exists until only separated

clusters remain. Chains are then extracted using one of two

strategies depending on the size of the connected component.

Both strategies attempt to identify long chains that contain

way-points with good neural net scores; that is, low predicted

distances to true C� atoms. Both strategies also try to follow

plausible secondary structures recognized in the map. Putative

secondary-structure elements are identi®ed by looking for

connected fragments of seven consecutive C� atoms that are

either relatively straight or helical, according to geometric

constraints, as described below and links between C� atoms in

such fragments are given preference. For smaller components

(with <20 way-points), an exhaustive search is performed over

all pathways between any pair of atoms that can be connected

to identify the chain that maximizes a score (see below) based

on these criteria. For larger connected components (with �20

way-points), a strategy is used in which branch-points (way-

points with connections to three or more neighbors) are

individually considered for reduction to a linear path by

clipping one of the extra branches. A scoring function is

described below that is again designed to re¯ect the prefer-

ence criteria above. The most obvious branch links are

dropped ®rst and this process is repeated until there are no

more branch-points remaining, leaving a sub-graph consisting

of typically several linear chains.

3.4.1. Secondary-structure analysis. To formalize this, we

®rst need to describe how the putative secondary-structure

elements in the map are analyzed. An exhaustive list of all

heptamers of connected C� atoms (fragments of length seven)

throughout the entire map is formed. Each fragment is then

evaluated geometrically for linearity or helicity. The linearity

of a fragment is determined by the ratio between the overall

end-to-end distance and the sum of the distances of conse-

cutive pairs of atoms in the fragment,

linearity�p1 . . . p7� �
dist�p1; p7�P6

i�1

dist�pi; pi�1�
:

A connection between way-points is identi®ed as a potential

link within a �-strand if it belongs to a fragment whose line-

arity score is >0.8. The helicity of a fragment is determined by

average absolute deviation of C� bond angles from 95� and

torsion angles from 50� among consecutive way-points along

the fragment (these angles are the ideal parameters for a helix;

Old®eld & Hubbard, 1994),

helicity�p1 . . . p7� �
1

5

P5

i�1

abs�95ÿ angle�pi; pi�1; pi�2��

� 1

4

P4

i�1

abs�50ÿ torsion�pi; pi�1; pi�2; pi�3��:

A connection between any pair of way-points in the graph is

identi®ed as a potential link within an �-helix if it belongs to a

fragment whose helicity score is <20.0 (representing mean

absolute angle deviation).

3.4.2. Exhaustive search for chains in small connected
components. This secondary-structure analysis is used to

extract chains from both small and large connected compo-

nents. For small connected components, with fewer than 20

way-points, an exhaustive depth-®rst search is used to

enumerate all possible paths between each pair of way-points.

Each path is scored according to the function

scoreshort�p1 . . . pn� � nÿPn
i�1

predi �
Pnÿ1

i�1

ss�pi; pi�1�;

where n is the length of the chain, predi is the neural net

prediction of distance from way-point i in the chain to the

closest C� atoms and ss(i, i + 1) is a bonus for links along

secondary structures,

ss�p; q� � 0:8 if �p; q� 2 helices

or 0:6 if �p; q� 2 strands; else 0:

Slight preference is given to helices since they are recognized

with greater speci®city in maps by the procedure; straight

fragments of length seven are sometimes observed traversing

perpendicularly across the main chain along spurious side-

chain connections. The chain in the connected component that

maximizes this score is returned. Hence longer chains are

preferred, especially if they follow secondary structures, as

long as they do not contain way-points with poor (high)

predicted distances to C� atoms. Chains of length less than six

are ®ltered out and dropped from the output.

3.4.3. Clipping branch points in large connected compo-
nents. For larger connected components, with 20 or more way-

points, this exhaustive enumeration of chains is too inef®cient.

Instead, a heuristic approach is taken in which branch points

are identi®ed and incrementally reduced by clipping one or

more incident edges until the resulting sub-graph is comple-

tely linear. Firstly, cycles in the connected component are

eliminated by removing all C�ÐC� links and then adding them

back one at a time in order from best link to worst (the quality

of a link is de®ned to be the maximum of the predicted

distances to a true C� between the two way-points that are

connected by the link), while rejecting those edges that would

create a cycle. Hence, the worst links, i.e. those adjacent to

way-points with high predicted distances to C� atoms, tend to

get dropped to break cycles. Next, all branch-points are

reduced to at most three-way connections by dropping

whichever additional links connect the branch-point to the

fewest atoms (smallest sub-component) of the graph (recall

that the graph is acyclic now, so each link at a branch-point

connects to a disjoint subset of atoms in the graph).



At this point, we can assume the large connected compo-

nent is acyclic and contains only nodes with at most three

connections (degree � 3). The goal is to produce a linear sub-

graph that contains only nodes with degree at most two. For

each branch point, there are three possible actions, corre-

sponding to clipping one of the three links. Hence, we use an

evaluation function to determine which link of which branch

point is best to clip. Note that clipping any such link at a

branch point will produce two disconnected components

owing to the acyclicity.

Suppose a way-point w is a branch point connected to three

other atoms called p, q and r. The score of clipping a particular

link, say wÐp, is computed by (i) rewarding it if wÐq and

wÐr are members of a putative helix or strand, (ii) penalizing

it if wÐp itself is a member of an apparent secondary structure

and hence bad to clip, (iii) rewarding it if the set of atoms that

would be clipped off is small, (iv) rewarding it if the sets of

atoms that remain connected are both large, (v) rewarding it if

there is a nearby way-point, up to three steps away, with a poor

(high) predicted C� distance in the resulting clipped compo-

nents and (vi) penalizing it if a nearby bad atom remains in the

non-clipped portion.

Formally, the score is calculated in two phases: ®rstly, the

atoms are ranked by consensus votes and then a quantitative

score is computed to break ties and re®ne the ranking.

According to the criteria above, clipping a given link at a given

branch point might satisfy or violate a number of rules, both

for the link to be clipped, say wÐp, and for the two that

remain, wÐq and wÐr, forming the sequence qÐwÐr.

However, for example, if the two links that remain connected

are part of a common secondary structure and the link that is

clipped is not part of any secondary structure, or leads off into

a sub-graph of only a few atoms, or is connected to an atom

with a very poor neural net score, then these criteria reinforce

each other and the decision is relatively obvious that this is a

good link to clip.

Thus, each link is analyzed by the above criteria and points,

or votes, are accumulated. A link to be clipped receives two

points if the non-clipped links at the same branch point are

part of a putative helix and one point for a strand. It receives

an extra vote if it connects to a group of atoms of size < 10 but

the other links connect to groups of size > 20, so that prefer-

ence is given for keeping links that maintain connectivity of

long chains. Finally, if a link at a branch point leads to a small

group of atoms (size < 6) that contains a way-point whose

predicted distance to a C� is >2.0 AÊ , it is given another vote for

being clipped.

If only one link at a given branch point received any votes,

then it may be clipped and the degree of priority is propor-

tional to the number of votes it received. However, there are

also frequently ambiguous cases, where there are votes for

clipping more than one of the links at a given branch-point,

making the decision less obvious. To resolve these ambiguities,

a re®nement of the score is computed. It is the number of

votes, minus 0.04 if the link itself is in a helix, minus 0.02 if the

link is in a strand, plus a weighted function of the size of the

clipped and non-clipped fragments. If the clipped fragment is

small (size � 6), then 0.04 is added for each atom less than six;

the same points are subtracted if the size of the non-clipped

fragment is this small. If the clipped or non-clipped fragment is

of medium size (6 < n � 20), a penalty of 0.0015 is subtracted

for each atom less than 20 (but >6); this is because, all things

considered, clipping off groups of atoms of this intermediate

size (e.g. 6±20) tends to fragment the resulting structure

excessively. These microscores typically cannot override the

number of votes received by a link, but they can be used to

re®ne the ranking and typically play more of a role in making

decisions when it is not obvious which link at a branch-point to

clip.

While the complex scoring functions used at this stage may

seem simplistic (in comparison to the neural network), they

re¯ect a knowledge-based approach in which expertise about

how to distinguish the true backbone pathway from among a

set of pseudo-atoms is encoded in weights that are ®ne-tuned

for making the correct decisions.

3.4.4. Refinement. The ®nal step in the CAPRA process is a

modest form of re®nement of the C� coordinates. Owing to the

manner in which way-points are selected, adjacent C� atoms

do not always have exactly a 3.8 AÊ distance. The way-points

are initially selected from pseudo-atoms in the trace, which are

restricted to a 0.5 AÊ grid, and they are chosen in random order

throughout the map based on the neural net predictions,

without regard to the distance to neighbors, except that they

are constrained to not be closer than 2.5 AÊ . Hence, the

distance between consecutive C� atoms tends to vary widely

between 2.5 and 5 AÊ . Also, there can be implausible angles,

such as kinks in the chain with angles <70�.
There are many possible approaches to re®nement of the C�

chains. One approach would be to build and re®ne a poly-

alanine backbone (similar to MAIN; Turk, 2001) and then

apply standard real- or reciprocal-space re®nement. The

constraints on chirality of C� atoms, commitment to direc-

tionality of backbone and planarity of the peptide bond can

help place the C� atoms in more plausible positions. A similar

approach would be to actually build a complete model, with all

the additional backbone and side-chain atoms (e.g. using the

TEXTAL program; Holton et al., 2000) and then apply real-

space re®nement to that model. A very different approach

would be to clean up the geometry by recognizing secondary-

structure elements in the map and replacing them with

`idealized' templates [see MAID (Levitt, 2001) and

RESOLVE (Terwilliger, 2002)].

In contrast, the approach used in CAPRA is a simpli®ed

re®nement of pure C� chains without adding additional

backbone atoms. First, a pair of adjacent C� atoms is randomly

picked and their coordinates are each perturbed randomly and

independently by up to 0.3 AÊ in all three directions. An

objective function is then evaluated and if the energy has gone

down the perturbations are kept, otherwise the perturbations

are discarded. This is repeated for each chain until no

decreases in energy are observed for 1000 iterations. The

objective function has the following terms: (i) a quadratic term

for deviation of distance between consecutive C� atoms from

3.8 AÊ , (ii) a quadratic term for deviation of distance of each C�
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from its original position, (iii) a quadratic term for angles of

<90� among three consecutive atoms and (iv) the magnitude

of the density. Torsion angles are not restrained.

This simple re®nement procedure tends to regularize the

backbone so that the C�ÐC� distances are more reasonable,

typically in the range of 3.6±4.0 AÊ . This distance improvement

also improves the visual appearance of helices and strands

slightly. However, the overall r.m.s.d. of predicted C� coordi-

nates to those in a re®ned model is reduced by only a tenth of

an aÊngstrom or so.

4. Results

To evaluate CAPRA, we ran it on several real electron-density

maps generated from MAD or MIR experimental data. The

maps cover a range of medium resolutions (2±3 AÊ ) and

include a variety of �-helical and �-sheet structures.

Table 1 summarizes the details of these test cases. All of these

maps have had some form of density-modi®cation applied,

such as solvent ¯attening (Cowtan, 1998).

CzrA (chromosome-determined zinc-responsible operon

A) is a metal-ion regulatory protein from Staphalococcus

aureus (Christoph Eicken, manuscript in preparation). It

consists of four �-helices and is a dimer in the asymmetric unit.

CzrA was originally solved by collecting a 2.8 AÊ MAD data

set, building a model and then performing molecular repla-

cement with a similar protein recognized in the PDB, with

phase extension to 2.3 AÊ . In these experiments, we used the

earlier 2.8 AÊ map.

IF-5a (translation initiation factor 5a) is involved in protein

synthesis and cell-cycle regulation in Pyrobaculum aerophilum

(Peat et al., 1998). It consists of a pair of SH3-like �-barrel

domains and has a disordered N-terminal tail of about eight

amino acids. IF-5a was initially solved at 1.75 AÊ using

RESOLVE (Terwilliger, 1999). In our experiments, we used a

2.8 AÊ map generated by limiting the structure factors used in

the FFT, since CAPRA works best at this resolution (see

below).

MVK (mevalonate kinase) is a metabolic protein from

Methanococcus jannaschii (Yang et al., 2002). MVK is a

medium-sized protein with 317 amino acids, including both �
and � secondary structures. The map for MVK was generated

from 2.4 AÊ MAD data.

PCA (mycolic acid cyclopropane

synthase) from Mycobacterium tubecu-

losis is involved in the fatty-acid

biosynthesis pathway I (Huang et al.,

2002). PCA has a deep hydrophobic

pocket in which a long-chain fatty acid

is inserted with the help of ACP (acyl-

carrier protein). At the base of the

pocket, a ligand, S-adenosyl homo-

cysteine (SAH), sits ready to transfer a

methyl group to reduce a double bond

in the mostly saturated aliphatic chain.

Density for the SAH molecule is visible

in the map. However, the density for a large 12-residue loop

which is purported to be the docking location for ACP is very

weak and was not built in the original model. The original map

was generated at 2.8 AÊ , after which a second round of data

collection was performed and the phases were extended to

2.0 AÊ to build the re®ned structure. The earlier 2.8 AÊ map is

the one used in this study.

P2 myelin is a retinol-binding protein that performs fatty-

acid transport (Cowan et al., 1993). This protein consists of a

�-barrel fold and was crystalized with a molecule of oleic acid

bound. P2 myelin crystallizes as a trimer in the asymmetric

unit and the structure was originally solved (built manually)

from an MIR map calculated at 2.7 AÊ resolution. In the map

used in our experiments, ten rounds of symmetry-averaging

had been applied using RAVE (Kleywegt & Read, 1997),

producing very high-quality density.

Fig. 5 shows an example of some of the main steps in

CAPRA for a portion of CzrA. The four panels show the trace

of the initial density (contoured at a threshold of 1.0 in the

scaled map), choice of way-points (subset that are predicted to

be locally closest to true C� atoms), connectivity of way-points

(based on the trace) and ®nally selection of a subset of the

links that form linear chains (i.e. eliminating cycles and clip-

ping branches).

One of the key computational steps in CAPRA is estimation

of the distance between pseudo-atoms in the trace and true C�

atoms in the map, which is predicted using the neural network.

Fig. 6 shows a histogram of the errors in these predictions for

pseudo-atoms in the trace of MVK that are between 0 and 5 AÊ

away from a true C� atom in the re®ned structure. The errors

are calculated as absolute value of the difference between the

predicted and actual measured distances. The distances

predicted by the neural network are fairly well correlated with

the true distances (r = 0.56) and the vast majority of points are

predicted to within 1 AÊ of their true distance. Hence, the

neural network predicts closer atoms to have smaller distance

values and atoms with larger predicted distances are less likely

to be near true C� atoms. The method by which way-points are

selected exploits this effect by choosing pseudo-atoms in the

trace that are predicted to be closest to true C� atoms in each

local area, provided they are at least 2.5 AÊ apart.

The results of running CAPRA on these ®ve models are

summarized in Table 2. The portion of the molecule that was

interpretable by CAPRA, relative to the portion of the map

Table 1
Proteins used in this study.

Protein
PDB
code

Final
resolution
(AÊ ) Method

Resolution
used in this
study (AÊ )

Secondary
structure

Size (No. of
amino acids)
re®ned/total

Phase
error²
(�)

CzrA 2.3 MAD/MR 2.8 � 94/104 46
IF-5a 1bkb 1.75 MAD 2.8 � 136/139 30
MVK 1kkh 2.4 MAD 2.4 �/� 317/317 46
PCA 1l1e 2.0 MAD 2.8 �/� 262/287 54
P2 myelin 1pmp 2.7 MIR 2.7 � 131/131 n.a.

² Phase error was calculated for each map as the mean absolute difference between the experimental phases for the map
used (not available for P2) and ideal phases calculated from the re®ned model by FFT.



interpretable via manual model-building, ranges from 80±

95%. The r.m.s. error of the predicted C� coordinates, relative

to their true coordinates in the re®ned model, is 0.8±1.1 AÊ for

CAPRA on these maps. (A breakdown of these r.m.s. scores in

terms of secondary structure is presented later.) Typically,

CAPRA produces several (4±11) chains for these structures,

with at least one chain of length greater than 50 residues in

each case. However, the number of insertions and deletions

was low; only a few (1±6) atoms were not matched one-to-one

in each structure. On average, more than half of the molecule

was ®tted with coordinates that had less than 1.0 AÊ r.m.s.

error. The CAPRA chains generally followed the true

connectivity of the backbone and only demonstrated cross-

overs between non-contiguous portions of the molecule in

three cases.

In CzrA, CAPRA built ®ve chains, of which one covered

almost half of the molecule (53/104 residues). In addition,

there were several `tails' that crossed over into the other

molecule in the asymmetric unit, owing to close contacts

within the dimer (these were manually clipped off for the

analysis above). CAPRA did not build parts of the N- and

C-terminal ends, as well as a �-hairpin loop, where density was

quite weak owing to disorder. The CAPRA model for CzrA

had the highest r.m.s. error (1.08 AÊ ) of all ®ve test cases.

However, after an initial model had been manually built with

this 2.8 AÊ map, a structural homolog was discovered in the

PDB and the ®nal structure was solved at 2.3 AÊ by molecular

replacement (MR). In this 2.3 AÊ MR map, CAPRA was able

to ®t the same portion of the structure (about 80%) with an

r.m.s. error of only 0.69 AÊ , including two long chains of 64 and

19 residues interrupted only by three disordere residues in the

�-hairpin region.

In IF-5a, CAPRA built four chains, including chains with 52

and 46 residues. The density was of high quality, owing to

re®nement with RESOLVE, and the r.m.s. error for the C�

atoms predicted by CAPRA was 0.78 AÊ , covering 93% of the

molecule. In one experiment, the resolution of the map for

IF-5a was varied by limiting the structure factors used in the

FFT. For a 2.1 AÊ version of the map, the accuracy of CAPRA

was found to be only 1.23 AÊ , while for a 2.8 AÊ version of the

same map the accuracy of CAPRA was 0.86 AÊ (before running

the ®nal C� re®nement step). We

conclude from this experiment that

CAPRA probably works best at 2.8 AÊ ,

because that is the resolution of the

map on which the neural network was

trained. Further evidence for this is

given below.

MVK is a medium-sized protein with

317 residues and a mixture of �-helices

and �-sheets. CAPRA ®tted 95% of the

molecule with an r.m.s. error of 0.83 AÊ .

Fig. 7 shows some examples of the

chains of C� atoms built by CAPRA for

MVK. Even the pleats in the �-sheets

are modeled correctly.

PCA was more fragmented than the

other models, with seven of the 11 chains having a length less

than 20. This map was only of medium quality, based on the

density generated from an initial MAD data set of 2.8 AÊ

resolution that had been collected, although the ®nal re®ned

structure was solved at 2.0 AÊ using a second round of data

collection. In addition to 15 residues on the N-terminus, there

are residues forming several large helices that project out from

the molecule which could not be built (manually or by

CAPRA) in the initial map. However, there were also two

small loops (four and seven residues) and a buried �-strand

(eight residues long) that were not built by CAPRA, even

though they did have well de®ned density. Furthermore, there

was a spurious connection between residues 227 and

280 through some noisy density in the core of the molecule.

Finally, there was one span of three residues (33±35) in the

core which CAPRA bypassed with three `false' C� atoms

through a patch of density arising from a glutamine side chain

from a non-contiguous part of the molecule, giving the

appearance of a brief separation from the main path of the

backbone. Correctly, CAPRA did not ®t the density for the

SAH ligand buried in the core of the molecule, probably

because the corresponding region of density was small and not

connected to anything else.

Hence, while CAPRA built most of the PCA molecule

(81%) with high accuracy (0.89 AÊ ), it made several errors,

some of which were genuine mistakes and others of which

arose from either absent or noisy density. For a comparison, a

2Fo ÿ Fc map (with calculated rather than experimental

phases) was constructed for PCA from structure factors

deposited in the PDB (PDB code 1l1e). Two maps at different

resolutions were generated. For one map at 2.0 AÊ resolution,

the accuracy of the C� atoms predicted by CAPRA was found

to be 1.10 AÊ . For a 2.8 AÊ map generated from the same data,

the r.m.s. error was found to be 0.86 AÊ . These observations,

along with those for IF-5a above, suggest that either (i) higher

resolution maps should be systematically reduced in resolu-

tion before running CAPRA on them or (ii) different para-

meter sets for the neural network should be generated by

training them on different resolution maps.

In the 2.7 AÊ MIR map for P2 myelin, CAPRA produced six

chains of lengths ranging from eight to 63 residues. These
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Table 2
Results of CAPRA.

Protein
Resolution
used² (AÊ )

Portion of
structure
built³ (%)

R.m.s.
error§
(AÊ )

No. of
chains
output

Length of
longest
chain

No. of
insertions
and deletions}

No. of atoms
under 1 AÊ ²²

Cross-
overs³³

CzrA 2.8 81 (84/104) 1.08 5 53 2, 2 41 (49%) 0
CzrA/MR§§ 2.3 80 (83/104) 0.69 2 64 0, 1 76 (92%) 0
IF-5a 2.8 93 (127/136) 0.78 4 52 3, 1 108 (85%) 0
MVK 2.4 95 (298/317) 0.83 6 101 4, 6 236 (79%) 0
PCA 2.8 81 (212/262) 0.89 11 50 2, 4 150 (71%) 1
P2 myelin 2.7 85 (111/131) 0.91 6 63 3, 2 84 (76%) 2

² The resolution of the map given as input to CAPRA. ³ The ratio and proportion of the structure built, compared with
the manually built and re®ned model. § The r.m.s. error of the C� predictions relative to the re®ned model. } The
number of insertions and deletions, determined by one-to-one matching to closest C� atoms in the re®ned
structure. ²² The number of atoms in the CAPRA model that had less than 1 AÊ r.m.s. error. ³³ The number of
spurious connections, or crossovers, between non-contiguous parts of the molecule. §§ For comparison, the results of
CAPRA on the 2.3 AÊ molecular-replacement map for CzrA are included in this table, though our conclusions in this paper
are based only on the MAD and MIR maps.
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included two crossovers between discontiguous regions. There

were three short stretches of ®ve residues or less that were not

built by CAPRA. Among the chains that were built, CAPRA

only made two deletions, one short-cut across the two distal

residues of a �-hairpin turn and three separate insertions. The

overall r.m.s. error was 0.91 AÊ and 84 of 111 predicted C�

atoms were within 1 AÊ of their correct positions relative to the

re®ned model. Interestingly, one of the C� chains extended

into the interior of the molecule, tracing the path of the bound

oleic acid, a long-chain fatty acid that looks somewhat like

protein backbone.

In order to evaluate whether the

accuracy of CAPRA is biased toward any

particular type of secondary structure, a

detailed analysis of the r.m.s. scores

above was carried out using secondary-

structure annotations by the DSSP

program (Kabsch & Sander, 1983). It

could be hypothesized that CAPRA

might be more accurate in well de®ned

secondary structure regions (�-helices and �-sheets) in

comparison to random coil, especially because the regular

secondary structures are most often found buried and rigid,

whereas coil (which includes turns) more often occurs at the

surface, where density is often weaker. Table 3 shows the r.m.s.

scores for the various secondary-structure components in each

of the ®ve proteins used in this study. The number of instances

of each secondary-structure type are indicated in the table and

it should be noted that some proteins contain very little of

certain types of secondary structure (for example, P2 myelin is

mostly �-sheet and contains very little �-helix, whereas the

Figure 5
Illustration of the major steps in CAPRA in a map for CzrA. (a) Trace atoms in yellow, with density contour in blue. (b) Light-blue atoms are selected
way-points (candidate C� atoms, those with locally best neural net scores). (c) White links represent connectivity among way-points based on trace. (d)
Green links represent linear chains of predicted C� atoms [a subset of those in (c) by clipping cycles and branches]. (All images in this paper were created
with SPOCK, a molecular-graphics program written by Dr Jon A. Christopher; http://quorum.tamu.edu/spock.)

Table 3
Analysis of r.m.s. scores by secondary structure based on DSSP.

CzrA IF-5a MVK PCA P2 myelin

R.m.s. for � (AÊ ) 1.03 (n = 58) 0.57 (n = 4) 0.76 (n = 128) 0.87 (n = 99) 1.15 (n = 16)
R.m.s. for � (AÊ ) 1.25 (n = 11) 0.78(n = 75) 0.78 (n = 76) 0.90 (n = 36) 0.79 (n = 67)
R.m.s. for coil (AÊ ) 1.15 n = 15) 0.79 (n = 48) 0.95 (n = 94) 0.92 (n = 77) 1.03 (n = 28)
R.m.s. combined (AÊ ) 1.08 (n = 84) 0.78 (n = 127) 0.83 (n = 298) 0.89 (n = 212) 0.91 (n = 111)



opposite is true for CzrA). While the r.m.s. scores are slightly

higher for coil versus the predominant secondary structure in

some instances, CAPRA generally ®ts all three types of

regions with similar accuracy.

In terms of run-time, on average-sized maps (e.g. an

asymmetric unit with one protein of 100±300 residues),

CAPRA typically takes less than 1 h to run (our experiments

were run on a 400 MHz R12000 processor of an SGI Origin

2000). The majority of the CPU time is spent in calculating

features for regions of density around all the pseudo-atoms in

the trace.

5. Discussion

In this paper, we have presented a new method for modeling

protein backbones by predicting the coordinates of C� atoms.

The method goes beyond basic tracing of a map by using a

neural network to recognize which locations in a map look

most like typical C� atoms, based on local patterns in the

density. Speci®cally, rotation-invariant numeric features that

characterize density patterns are extracted around each point

(pseudo-atom in the trace) and the neural network outputs a

scalar value that represents an estimate of the distance to the

nearest true C� atom. CAPRA then uses a number of heur-

istics to link candidate C� atoms together into linear chains,

including analysis of connectivity and plausible secondary

structures. In the experimental (MAD and MIR) maps of 2.4±

2.8 AÊ resolution examined in this paper, CAPRA was able to

®t approximately 90% of the backbone structures with around

0.9 AÊ r.m.s. error.

There are a number of ways in which an accurate method

for recognizing C� coordinates in a map could be used. For

example, these coordinates could be input to a fragment-based

modeling program, such as Levitt's segment match modeling

algorithm (Levitt, 1992) to automatically generate coordinates

for other backbone and side-chain algorithms. Prior to now, C�

coordinates had to be picked manually, perhaps as a subset of

the BONES pseudo-atoms; CAPRA enables the automation

of this step. In a similar way, CAPRA is being used as the ®rst

stage in TEXTAL (Holton et al., 2000), which also uses feature

extraction and pattern recognition to build in side-chain and

other backbone atoms.

Automation of model building will become increasingly

important as structural genomics projects gain momentum

(Burley et al., 1999). While advances

have been made in nearly every other

step of protein crystallography, from

robotic crystallization to the use of

synchrotrons for rapid data collection

and the development of improved

computational methods for heavy-

atom searches, model building has

remained a relatively manual proce-

dure, requiring the skill and time of a

human crystallographer. CAPRA and

TEXTAL as a whole, have the potential

to reduce the time and effort spent by

expert crystallographers in building

models for more straightforward cases

(or the easier parts of maps), allowing

crystallographers to focus their atten-

tion on addressing the more proble-

matic cases. CAPRA and TEXTAL are

being incorporated as modules into the

PHENIX software system, an inte-

grated Python-based crystallographic
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Figure 7
Stereoview of predicted C� chains (in green) for MVK (in white).

Figure 6
Histogram of absolute value of errors between predicted and actual
distances between pseudo-atoms in the trace of MVK and true C� atoms
in the re®ned structure, in increments of 0.1.
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computing environment (Adams et al., 2002).

In fact, CAPRA could potentially be used on synchrotron

beamlines themselves to quickly evaluate the quality of data

being collected, based on the number and lengths of chains

extracted, in order to make judicious decisions about how best

to use remaining beam time. The C� chains output by CAPRA

could also be used for automated density-based fold recog-

nition (Diller et al., 1999; Old®eld, 2002), e.g. to pull similar

structures out of the PDB for attempting molecular replace-

ment. Importantly, the pattern-recognition routines in

CAPRA are tuned for medium-resolution maps (around

2.8 AÊ ), which are predominant among MAD data sets

currently being collected at synchrotrons; CAPRA does not

require higher resolution data to produce accurate results.

One of the limitations of CAPRA is that it only generates

chains of C� atoms, not complete backbones containing N

atoms and carbonyl C atoms and O atoms. In fact, CAPRA

does not even attempt to determine the directionality of the

backbone and the order in which the chains are output is

random. If directionality could be robustly determined, then a

simple solution would be to build in extra atoms to form a

polyalanine backbone and then re®ne it by real-space re®ne-

ment. Instead, CAPRA relies on the subsequent model-

building stages of TEXTAL to build-in both backbone and

side-chain atoms using pattern recognition. TEXTAL often

chooses the correct directionality of the backbone by

exploiting the fact that certain side-chain conformations

constrain the location of the carbonyl O atom to be on one

side of the C� or the other.

An interesting extension of CAPRA would be to use the C�

chains to perform some kind of phase improvement. For

example, CAPRA could be iterated with phase recombination

and map generation to try to incrementally improve the

quality of the density and produce better re®ned models.

CAPRA does not currently do this, although this strategy is

explicitly used in some other model-building methods

(Terwilliger, 2002; Turk, 2001). However, we have run a

preliminary experiment in which the small clusters of tracer

atoms which are often found in spurious patches of density in

solvent are eliminated and new phases are calculated from the

reduced trace, treating each trace atom as having one-quarter

of the scattering power of a carbon, since they are spaced 0.5±

1.0 AÊ apart. When recombined with the experimental phases

using SIGMAA (Read, 1986), the quality of the density

improved slightly. Still, it is anticipated that building more

complete models, with all the additional side-chain and

backbone atoms, might be more successful.
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