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Abstract 

In 1961 Rossmann & Blow published a simple procedure 
for analytically combining the phase probabilities 
derived from various isomorphous derivatives or other 
phase-determining procedures [Rossmann & Blow 
(1961). Acta Cryst. 14, 641--647]. However, they found 
it necessary to make an approximation in obtaining the 
expression for the lack of closure (8) of the phase 
triangle. In 1970 Hendrickson & Lattman [Hendrickson 
& Lattman (1970). Acta Cryst. B26, 136-143] suggested 
an alternative method of defining the lack of closure of 
the phase triangle which did not require any approxima- 
tion in deriving the same analytical expression for the 
phase-probability function. It is now shown that it is 
possible to avoid the Rossmann-Blow approximation 
and thereby maintain the original Meaning of the lack of 
closure as defined by Blow & Crick [(1959). Acta Cryst. 
12, 794-802] and Dickerson, Kendrew & Strandberg 
[(1961). Acta Cryst. 14, 1188-1195]. 

I. Introduction 

Various sources of independent phase information (e.g. 
multiple isomorphous replacement, molecular replace- 
ment, multi-wavelength anomalous dispersion) are often 
available in the course of a structure determination. Phase 
information from all of these sources can be combined by 
multiplying together the phase probabilities from each 
source. The phase probability [P(c0] for a phase angle a 
is dependent on the lack of closure (8) of the phase 
triangle. Assuming a Gaussian distribution of error in the 
lack of closure, P(c0 is expressed as, 

"~ 2 Pi(ot) cx exp[-eT(Ot)/2E i ], (1) 

for the ith heavy-atom derivative, where E i is the 
estimate of the standard error for the lack of closure. 
Finally, the joint phase probability function is, 

Pjoint(°t) = I-I ei(a)cx exp { - E[8~(o0/2Ei2]}. (2) 
i t 

The centroid of the joint phase probability function 
gives the best combined phase (a~st) and a figure of 
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merit (m) as described by Blow & Crick (1959) and 
Dickerson, Kendrew & Strandberg (1961), 

in = Iml exp(iC~best) 

= [ 2fo Pjoint(Ot) exp (iot)dot] / [ Zfo Pjoint(ot)dot ] . (3) 

For the isomorphous-replacement method, Rossmann 
& Blow (1961; hereafter referred to as RB) and earlier 
workers (Blow & Crick, 1959; Dickerson et al., 1961) 
have defined 8 as an error in the observed and calculated 
structure-factor amplitudes of the substituted compounds. 
On the other hand, Hendrickson & Lattman (1970; 
hereafter referred to as HL) define 8 as an error in the 
corresponding intensities. Both RB and HL then obtain 
an analytical expression for the phase-probability 
function, P(c0, in terms of certain coefficients 
A,B,C,D, 
P(,~) 

J'N' exp[A' cos(or-~0)+B' cos 2(or- ~0)] RB 

I, Nexp(A cosot+Bsinot+Ccos2ot+Dsin2a) HL, 

(4) 

where N is the normalization factor and ~0 is the 
heavy-atom phase. These two forms of P(c0 are 
essentially the same, although RB made an approxima- 
tion while deriving P(c 0, whereas HL redef'med the lack 
of closure altogether. In both cases, however, the form of 
(4) provides a simple expression for the probability 
function, which permits combining different probability 
functions by simply adding the coefficients A, B, C 
and D. 

A consistent way of combining the individual 
probability functions requires that e be defined in the 
same manner, i.e. either in structure-factor amplitudes or 
in intensities, in each of the sources of phase information. 
Doing otherwise may violate some of the implicit 
assumptions made in the treatment of errors, such as 
the assumption of Gaussian distribution of error. 
Although the Gaussian distribution of error in e was 
assumed (Blow & Crick, 1959) for the sake of simplicity, 
neither definition of e strictly follows this error 
distribution. The two definitions for e are inconsistent 
if the Gaussian distribution is assumed in both cases. The 
RB definition [shown below in (7)] and HL definition 
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[shown in (9)] for e lead to the following relationship 
between the two e's, as was previously noted by HL, 

EHL = 8RB + 28RBFpH , (5)  

where FpH is the structure-factor amplitude of the heavy- 
atom derivative. If a quantity y is a function of several 
variables xi, i.e. y = y(x~,x2 . . . . .  x,,), then the r.m.s. 
deviation in y(c(,.) is given by, 

i=1 

where or,, is the r.m.s, deviation in the variable x i. Thus, 
assuming FpH to be a constant in (5), the r.m.s, deviation 
EHL of the errors 8HE will be related to the r.m.s. 
deviation ERB of the errors 8RB by, 

EHL = 2(SRB -I- FpH)ERB.  (6) 

This shows that EHL depends upon FpH and 8RB and is 
not a constant for a given derivative, so that P(ot) cannot 
follow a Gaussian distribution in 8. 

Here we show that e can be consistently defined as 
an error in structure-factor amplitudes for the isomor- 
phous-replacement case and an exact expression for (1) 
can be obtained without making the Rossmann-Blow 
approximation. 

2. Lack of closure in the isomorphous replacement 
method 

Dickerson et al. (1961) and RB used the following 
definition for 8, 

e = [Fp + FHI -- IFpHI, (7) 

where Fp, F H, and FpH are the structure factors for the 
native molecule, the heavy-atom substituents alone, and 
the heavy-atom derivative, respectively (Fig. 1). 
Squaring the two sides and rearranging the terms gives, 

e 2 + F~,H + 2eFpH = Fp + F~ + 2FpF u cos(or-  99), 

(8) 

where ot and 99 are the phases for the native molecule and 
the heavy-atom substituents alone, respectively. RB 
neglected the e 2 term in this equation to solve for 8, 
8RB = (iFp + FHI 2 -- IFpHI2)/(2IFpHI), and obtained a 
simple expression for 82/2E 2. HL, on the other hand, 
avoided any such approximation by redefining 8 in terms 
of intensities, 

e = IFp + FHI 2 -- IFpH[ 2. (9) 

However, it is not necessary to make the Rossmann- 
Blow approximation and thus it is possible to maintain 
the original definition of 8. Solving the quadratic 
equation (8) for 8, 

8+ = --Fpn + [F 2 + F~ + 2FpFH COS(Ot - 99)] '/2, (10) 

anr.hence, 

(82/2E 2) = P + Rcos(u - 99) q: S[1 + T cos(a - 99)] I/2 

(11) 

where, 
"~ "~ 2 P = (Fp + Ffi + Ff, H ) / 2 E ,  R = F p F H / E  2, 

S = FpH(F ~ + F2)l /2/E 2, and 

r = 2 e p r . / ( e ~  + e~)  _< 1. 

(1 l) can be rewritten by using the expansions, 
0<3 

(1 +x) l /2  = E[(1/2)!xq/[(1/2-n)!n!] (Ixl < 1), 
n=0 

and 
,1 

cosn(O) = l /2"  ~ [n! cos(n - 2m)Ol/[(n - m)!m!l, 
m=0 

to give, 

(12) 

-82 /2E 2 : - P  - R cos(o~ - 99) 
o ~  

+ S ~ k 1/2"{[(1/2)!T" 
n=0 m=0 

x cos(n - 2m)(ot - qg)] 

-- [(1/2 - n)!(n - m)!m!]}, (13) 

From this equation it is possible to extract the 
coefficients for the phase-probability expression (4), for 
example, 
coefficient of cos ct ( 'A') 

= - R + S  + - ~ - -  + - - ~  + . . .  cos 99, 

coefficient of sin c~ ( 'B') 

= - R - t - S  ~ - + - ~ g - + ~ + . . .  sin99, 

coefficient of cos 2or ( 'C')  

[T2 5T 4 3 1 5 T 6  ] 
= 7 = S  ~ 7 + - ~ - + ~ + . . .  cos299, 

coefficient of sin 2or ( 'D')  

= T S  ~ - + - - ~ - + ~ + . . .  sin299. 

(14) 

3. Discussion 

A comparison of the terms in (14) with the corresponding 
ones arrived at by RB shows them to be similar, although 
not the same (Table 1). Extensive numerical tests show 
that RB and HL expressions lead to closely similar 
results, provided a suitable choice of the standard error 
ERB and EHL are made. It should be noted that EHL is an 
error between intensities, whereas ERB is an error 
between amplitudes. 

(13) contains, apart from the four terms shown in (14), 
higher order terms such as cos k(ot - 99) for k > 3. These 
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Coefficient 
of the term 

cos(o~ - ~o) 

cos 2(a - tp) 

Table 1. Comparison of  approximate and exact RB coefficients 

Rossmann-Blow Equivalent expression from (14) 
expression (for e+ solution only) 

[(FpFH)/(2F2HE2)](F~8 - F 2 _ F 2 H )  [(FpFn)/(2F~HE2)][--2F~H + 2F~HI(F~, + F~) '/2 +. . .1  

(-FpF~)/(4F~H E 2) [(-F~F~)/(4F~H E 2)]{ F3H/(F~ + F~)3/2 + (5F~F~ Fin)/[4(F~ + F~)7/2] + . . .  } 

are small compared with the lower order terms when k < 2 
because they form a series which starts with T k, where 
T < 1. Therefore, depending upon the magnitude of T, 
these higher order terms may be safely neglected. 
Furthermore, it will be necessary to use only the first 
few terms to evaluate each of the coefficients in (14). 
Blow & Crick (1959), RB and HL had shown that the 
joint probability function ejoint(Ot) can be unimodal or 

Fig. i. Relation between the structure-factor amplitudes of native 
molecule (Fv), substituting atoms (FH), and the substituted 
compound (Fpn). Lack of closure (e) defines the difference between 
the magnitudes of calculated FpH and observed FpH. 

(a) (b) 
Fig. 2. Relation between the two solutions of e (e+ and e_) in terms of 

Fp, F n, and Fpn. As shown in (a), e+ is the magnitude of the distance 
connecting the head of the Fp vector to that of the Fpn vector, while 
e_ is the negative of the distance connecting the head of the Fp vector 
to the farthest point on the Fpn phase circle such that the connecting 
line passes through the center of the FpH phase circle. As the native 
phase angle a varies, the magnitude of - e _  approaches a minimum 
at the centroid phase (ot~t) so that the probability function P(ce) 
reaches a maximum. However, if the two phase circles (Fp's and 
FpH's) are close together as in (b), the centroid phase occurs at the 
other side of the intersection of the phase circles, leading to a 
minimum - e _  at 0tbcst + rr. 

bimodal, and that it will depend upon the dominance of 
A' coefficient over B' in (4). However, (13) shows that, 
with the presence of higher order terms [cos k(c~- ~o) 
when k > 3], the joint probability function could 
be multimodal, and this has been confirmed 
numerically. 

(13), along with the terms in (14), are written for both 
the solutions of e (e+ and e_), of which e+ corresponds 
to the physical solution. This is because e+ represents the 
difference between the magnitudes of the observed and 
calculated structure-factor amplitudes of the heavy-atom 
derivative [see (10)]. On the other hand, e_ is the 
negative of the sum of the observed and calculated 
structure-factor amplitudes. However, in the single 
isomorphous replacement case, the e_ solution leads 
directly to the centroid phase (C%~st) as the probability 
function P(a) peaks at only one place in the phase space, 
namely at C%~st -t-nrr, n = 0 or 1. e_ corresponds to the 
negative of the distance connecting the head of the Fp 
vector to a point on the FpH phase circle such that the 
connecting line passes through the center of the FpH 
phase circle. It can be seen (Fig. 2) that - e_  is minimum 
when 9 is equal to O~best or O~best -4- Yr. 

4. Conclusions 

While the fuller expressions given by (13) and (14) are 
precise in terms of the assumed definition of the phase 
triangle lack-of-closure error, it is unlikely that their use 
in calculating and combining phases will make any 
useful change to the quality of the resultant electron- 
density map. The purpose of this paper is merely to show 
that an approximation-free analytical expression for the 
probability function can be obtained without having to 
redef'me the meaning of the error. 
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