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Abstract 
The molecular-replacement equations, in which electron- 
density averaging and skew averaging have been unified, 
were used in reciprocal space to refine and extend the 
resolution of phased reflections. A procedure has been 
developed for the treatment of molecular envelopes of 
general shape. The equations were successfully applied 
to the reflection data of bacteriophage qoX 174 (60-fold 
redundancy). Truncation of the G diffraction function 
beyond the first few nodes did not have a significant 
effect on the quality of the molecular-replacement equa- 
tions. Reciprocal-space molecular-replacement averag- 
ing should prove to be a useful alternative to real-space 
averaging. Strategies are discussed that are possible only 
in reciprocal space. 

Introduction 
Phase determination in the presence of non- 
crystallographic redundancy generated by local 
molecular symmetry is now a well established technique 
(Lawrence, 1991). It has been used to extend phases 
derived from crude, 20/~, resolution, hollow-shell 
models to at least 3.5 A resolution in a number of 
viral structures [cowpea chlorotic mottle virus (Speir, 
Munshi, Baker & Johnson, 1993), canine parvovirus 
(Tsao, Chapman, Wu, Agbandje, Keller & Rossmann, 
1992), ~X174 (McKenna, Xia, Willingmann, llag 
& Rossmann, 1992), foot-and-mouth disease virus 
(Acharya, Fry, Stuart, Fox, Rowlands & Brown, 1989) 
and MS2 (Valeg~rd, Liljas, Fridborg & Unge, 1990)]. 
The power of non-crystallographic restraints on phase 
determination was first fully demonstrated by real-space 
averaging of structurally equivalent sections of electron 
density (Matthews, Sigler, Henderson & Blow, 1967; 
Buehner, Ford, Moras, Olsen & Rossmann, 1974; 
Fletterick & Steitz, 1976). While initially real-space 
averaging was used only for phase improvement, 
its use for phase extension to higher resolution is 
more recent. Gaykema, Hol, Vereijken, Soeter, Bak 
& Beintema (1984) extended the phases from 4.0 
to 3.2A resolution in the structure determination of 
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hemocyanin. Subsequently, a rather poor phase set for 
human rhinovirus 14 at 6A resolution was extended 
to 3.5/~ resolution (Rossmann, Arnold, Erickson, 
Frankenberger, Griffith, Hecht, Johnson, Kamer, Luo, 
Mosser, Rueckert, Sherry & Vriend, 1985; Arnold, 
Vriend, Luo, Griffith, Kamer, Erickson, Johnson & 
Rossmann, 1987). Similar results were also reported 
shortly afterwards in the structure determination of 
poliovirus (Hogle, Chow & Filman, 1985). Nowadays, 
it is common to use non-crystallographic symmetry for 
phase extension where the starting phase set is based 
merely on a crude model, such as a hollow sphere 
representing a virus. A variety of computer programs 
have been written that can cope with anticipated real- 
space problems (Bricogne, 1976; Johnson, 1978; Jones, 
1992; Rossmann, McKenna, Tong, Xia, Dai, Wu, Choi 
& Lynch, 1992; Rossmann, McKenna, Tong, Xia, Dai, 
Wu, Choi, Marinescu & Lynch, 1992). 

Although electron-density averaging realizes the orig- 
inal hope of using local non-crystallographic symmetry 
for ab initio phase determination (Rossmann & Blow, 
1962, 1963), the process was originally conceived in 
reciprocal space (Main & Rossmann, 1966; Crowther, 
1967, 1969). It has been shown (Colman, 1974; Ross- 
mann, 1990; Main, 1967; Bricogne, 1974) that real- 
space electron-density averaging is equivalent to solving 
the simple algebraic molecular-replacement equations 
(Main & Rossmann, 1966; Crowther, 1967, 1969; Ross- 
mann, 1990) for the unknown phases. Furthermore, the 
reciprocal-space equations provide insight into the nature 
of the non-crystallographic averaging process, whether it 
be in reciprocal or real space. 

We first derive a general reciprocal-space molecular- 
replacement averaging procedure and then describe its 
application to the reflection data of ~X174. We also 
suggest how the reciprocal-space technique might be 
further improved as it provides opportunities not so 
easily implemented in real space. We have the psycho- 
logical advantage over earlier reciprocal-space attempts 
(Main, 1967; Crowther, 1969) in that we know that non- 
crystallographic symmetry is, indeed, an exceedingly 
powerful phase-determining tool and can readily yield 
accurate phases. 

Averaging electron density 
Three different coordinate systems will be used. 

Acta Crystallographica Section D 
ISSN 0907-4449 @ 1995 



348 MOLECULAR-REPLACEMENT AVERAGING 

(1) The h cell, with fractional coordinates x, contains 
the input electron density. The orthogonalized Cartesian 
coordinates in this cell will be referred to as X. Structure 
factors of this cell are defined as Fh. 

(2) The p cell, with fractional coordinates y, contains 
the output (usually averaged) electron density. The or- 
thogonalized Cartesian coordinates in this cell will be 
referred to as Y. Structure factors of this cell are defined 
as Fp. 

(3) A reference Cartesian coordinate system U with 
respect to which the symmetry elements of the macro- 
molecular assembly will be defined. For example, an 
icosahedral object might have its orthogonal twofold 
axes along the three principal directions of this coor- 
dinate system. 

The averaging process will take the electron density 
in the h cell and place it at equivalent points in the p 
cell for the purpose of computing structure factors. The 
structure factors in the p cell are given by, 

Fp = f pp(y)exp(27rip.y)dy, (1) 
vp 

where Vp is the volume of the p cell and pp(y) is the 
density distribution in the p cell. If the p cell contains 
one molecular assembly in each of m crystallographic 
asymmetric units, and if the intervening electron density 
is assumed to be zero, then 

Fp = ~ f pp(Ym)exp(27rip.ym)dy, (2) 
rn  U m  

where Um is the volume of the molecular assembly 
and Ym is a position vector in the mth crystallographic 
asymmetric unit. The implied simplifying assumption 
that the density is zero between particles can be readily 
modified to be a non-zero constant. Similarly, the deriva- 
tion can be extended to include two or more particles 
per crystallographic asymmetric unit related by improper 
symmetry. 

The density in the p cell, pp, can be replaced by the 
equivalent density Ph of the h cell such that, 

Fp = y~ f ph(x)exp(27rip.ym)dy. (3) 
rn  U,-n 

The input h cell might have the same shape and 
symmetry as the output cell, but the output cell is 
based on solvent flattening and averaging of the non- 
crystallographically related densities in the h cell. 
Alternatively, the input cell might be different crystal 
forms of the same molecular substance which are to be 
averaged into a common orientation in the p cell. The 
relationship between the h and p cell is given by, 

x = [Am]Ym + 6m. (4) 

Here [Am] and 6,~ are the rotational and translational 
relationships between the mth asymmetric unit in the p 

cell with the reference particle in the h cell. If the particle 
in the mth asymmetric unit of the p cell is centered at 
Sp, m and if the reference particle in the h cell is at Sh, 
then it follows from (4), 

~m = Sh -- [Am]Sp,m. (5 )  

Now, if there are N non-crystallographically equivalent 
densities in the particle in the h cell, and if the nth 
position is at x',, then the average of all these density 
values can be used to calculate Fp. From (3) it then 
follows that 

Fp=)--~ f{[~-~ph(xn)]/N}exp(27rip.ym)dy. (6) 
m Um n 

But the electron density in the h cell can be expressed 
as the Fourier summation, 

ph(x) = (1/Vh)~-~Fhexp(-27rih.x), (7) 
h 

where Vh is the volume of the h cell. 
Extending (5), and taking [Am,,,] to be the rotation 

matrix which equivalences the point Ym in the p cell 
to the reference non-crystallographic asymmetric unit in 
the h cell, using (6) and (7), 

Fp = (1/NVh)~-~-~-~Fhexp [-27rih.(Sh -[Am,n]Sp,m) ] 
r a r t  h 

x f exp[27ri(p - h[Am,',]ym)]dy. 
Um 

Now setting y' = Ym - S p , m ,  that is changing origin for 
the integral to the center of the mth particle, and if U is 
the volume of one particle (U = UI = U2 = . . .  ), 

Fp = (U/NVh)EFhEEGhp,.' ,  
h m n 

X exp[27ri(p.Sp,m - h.Sh)] (8) 

where 

Ghpmn = (l/U) f exp[27ri(p - h[Am,',].y')]dy'. (9) 
u" 

where 

Fp = ~-~Fhahp, (10) 
h 

ahp = ( U / N V h ) ~ - - ~ - - ~ G h p m n  
m n 

× exp [27ri(p.Sp,m - h.sh)]. (11) 

Here the complex coefficients abe are dependent only 
on the non-crystallographic symmetry operators and the 
limits of the integration volume Urn. 

Phase refinement proceeds by substituting the ob- 
served structure amplitudes and current phases in the 

The volume U'm is centered at the origin. 
Equation (8) can be written as 
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fight-hand side of (10) and, hence, computing a new 
set of 'calculated' amplitudes and phases, Fp. The new 
calculated phases are then used in the next refinement 
iteration in the same manner as has frequently been 
described for real-space averaging (Arnold, Vriend, Luo, 
Griffith, Kamer, Erickson, Johnson & Rossmann, 1987; 
Rossmann, 1990; Rossmann, McKenna, Tong, Xia, Dai, 
Wu, Choi, Marinescu & Lynch, 1992). (10) shows that 
the computation time for reciprocal-space molecular- 
replacement averaging is proportional to the number 
of reflections in the p cell, the number of symmetry 
operators of the molecular assembly, the number of 
symmetry operators of the p cell (excluding Bravais 
centering) and the number of reflections in the h cell 
that are used in the summation. 

The reciprocal-space procedure can be used for: 
(1) skew averaging where the p cell is defined as one 

with its axes parallel and perpendicular so as to orient 
the structure in the desired direction. 

(2) Averaging between non-crystallographically re- 
lated units within the same cell, in which case the h 
and p cells have the same dimensions. 

(3) Averaging the electron density in a variety of 
different h cells and placing these into a common p cell. 

Matrix algebra 

Orthogonalizing and deorthogonalizing matrices will be 
defined in accordance with the notation of Rossmann & 
Blow (Rossmann & Blow, 1962). 

Thus, 

Y = [~r] Y, Y = [/~rlY / 
x [c~h]X, X [/4h]x " (12) 

J 

It will be assumed that the molecular assembly which 
is present in all the crystal forms has a closed ooint- 
group symmetry. If the center of the point group is 
placed at the origin of a Cartesian coordinate system 
U, then the symmetry operators of the point group can 
be represented as a set of rotation matrices 

U,, = [I,,]U~ (n = 1, 2 . . . . .  N). (13) 

where N (defined above) is the total number of asymmet- 
ric objects in the point group. A 'standard' orientation 
of the point group can be chosen such that some of the 
symmetry operators lie along special directions of the 
coordinate system. The three twofolds of the point group 
222, for example, could be aligned along the Cartesian 
coordinate axes. The rotation matrices would then all be 
diagonal. 

The orientation of the reference molecular assembly 
in each input h cell can be determined with an ordinary 
(Rossmann & Blow, 1962) or locked (Rossmann, Ford, 
Watson & Banaszak. 1972; Tong & Rossmann, 1990) 
rotation function. Similarly, the orientation of the ref- 
erence molecular assembly in the output p cell can be 

arbitrarily defined for skew averaging and it will be the 
same as in the h cell for averaging within a given unit 
cell. Let 

Xn = [Eh]Un and Y1 = [EplUl. (14) 

Furthermore, let the crystallographic symmetry in the 
p-cell be represented by 

y,, = [T,,,]y~ + tin, (15) 

where [Tm] and tm are the crystallographic rotation and 
translation operators, respectively. Neglecting, temporar- 
ily, the translational elements, from (12), (13), (14) and 
(15), 

Xm,n = [ozhl[Eh][In][Epl ][flp][[Tml]Ym. 

Comparison with (5) shows that 

[Ar,,,l = [~thl[Ehl[l,][Epl][flpl[[Tml]. (16) 

Evaluation of the G function 

If the molecular mask is spherical with a radius of r, the 
G function can be calculated analytically (Rossmann & 
Blow, 1962) from 

G = [3(sin2rrHr - 2rrHrcos2rcHr)]/(2rcHr) 3, (17) 

where H is the length of the reciprocal-space vector 
(P - h[A,,,.,,l). 

If a more accurate definition is available for the enve- 
lope of the molecular assembly, an easy way to define the 
mask is by reference to the Cartesian coordinate system 
U. If (U. V, W) defines an integral grid point ia this 
system, the mask can be defined as 

U,VI(WI,W2),(W3,W4) . . . . .  (W2k. 1 , W 2 k ) ]  , 

where for every grid point, (u,v) are k pairs of num- 
bers (wl,w2), etc., which specify the initial and final 
grid-ooint ranges along w that are protein rather than 
solvent. Similar to the derivation (16), the fractional 
u,v,w coordinates can be mapped into the p cell. Then 
from (9) 

Ghpmn = (D3 / U) Y'~exp [2rri(p - h[A,,l)  
k 

• [Tm][col[EplI/4,luk ] , (18) 

where /3, is the fractionalization matrix in the U cell 
and D is the grid interval in the mask cell. Note that the 
translational components can be ignored when mapping 
y to u, as the limits of the integration volume U" are 
centered at the origin. Now define 

h' = (p - h[Am,n])'[Tm][(~p][Ep]If4u]. 

Hence, 
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Ghpmn = (O3/U)y ']~y]mask(U,V,W) 
U 11 W 

x exp[-27ri(h'u + k'v + l'w)/L], (19) 

where L is the length of the edges of the cell U in which 
the mask is defined. 

A Fourier transformation of (19), in which all the 
U,V,W points inside the mask are set to unity and all 
other points are set to zero, will sample G sufficiently 
finely. Although the quantities h' will be non-integral 
values, if L is chosen to be eight to ten times larger than 
the longest molecular dimension, only integral values 
of h' need be considered. Alternatively, the summations 
over W between pairs of values W2k-l, W2k can be 
expressed analytically as the sum of a geometric series. 
From (18), 

G hpmn = (D3/U)Ey]exp[-27ri(h'U + UV)/L] 

x y]{exp[(-2rril'W2k_,)/L] 
k 

+ exp[-27ril'(W2k_, + 1)/L] + . . .  }. 

The series in braces is a geometric series with a ratio 
exp(-27ril'/L). Now, the sum of a geometric series with 
ratio x is given by 

n = j  

x "  = ( x  j ÷  ~ - x i ) / ( x -  1). 
n = l  

Thus, it follows that 

Ghpm, = (D3/U)~_.Y']exp[-Zrri( h'U + k'V)/L] 
u 1) 

× E[-i/Zsin( l'/L)] 
k 

x {exp[(-2rril'/L)(Wz,_, + ½)] 

-exp[(-ZTri l ' /L)(W2k_,-  1)]}. (20) 

Further calculations using (20) can be carried out ei- 
ther by direct summation or by a two-dimensional fast 
Fourier transformation over the U and V directions. 

To test the validity of the treatment above and to 
check the effect of different mask grid sampling on the 
mask transform, a sphere of radius 35 A, was placed on 
mask grids with 1, 2, 3 and 4 A intervals, respectively. 
The resulting spherical mask was then transformed using 
(20), sampling the G function to its third node. The G- 
function values calculated based on this transform were 
then compared with those calculated directly from the 
analytical expression (17) (Table 1 and Fig. 1). The 
agreement (expressed as a conventional crystallographic 
R factor) between the two sets of G values was only 2% 
if 1/~ grid intervals were used to define the mask. The 
calculations also show that a relatively coarse grid can 
be used in defining the mask, resulting in considerable 
savings in computer time needed for the transform. 

Table 1. G-function calculation by mask transform of a 
spherical envelope 

The G-function was calculated for a sphere of  radius 35 ,~. 

Grid interval (,~) i 2 3 4 
No. of grid points in mask 183191 23473 6989 3067 
R factor* (%) 2.0 4.4 5.0 8.7 
CPU time (min) 24 7 3 2 

* R factor is calculated between the G function value from the mask 
transform and that from the analytical equation. 

Masks are inherently low-resolution objects. There- 
fore, the G function will assume large values only when 
the length of H is small. For a spherical mask, the 
G function reaches its first zero when Hr is 0.72 and 
its value never exceeds 0.09 after the first node. For 
a general mask, the G function will no longer assume 
real values unless the mask has a center of symmetry. 
The amplitude of the G function, nevertheless, will 
be significant only in the region where (p - h[Am,,,]) 
is small. Therefore, to speed up the calculation, the 
summation over the h-cell reflections can be restricted to 
only the first few nodes of the G function. This results in 
a truncation of the G function and introduces errors in the 
molecular-replacement equation. Such an approximation 
is used successfully in reciprocal-space rotation-function 
calculations (Rossmann & Blow, 1962). 

Comparison with real-space molecular-replacement 
averaging 

The time required for calculations that are involved in 
real-space and reciprocal-space molecular-replacement 
averaging are compared in Table 2. The sampling of 
the real space (electron density) can be varied, though 
usually a grid size between 1/2.5 and 1/6 of the resolu- 
tion of the reflection data is used. In practice, sampling 
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0.0 1[0 2.0 
Hr 

Fig. 1. Comparison of the calculation of the G function for a perfect 
sphere of radius 25 & using the analytical function (17) (thick line) 
or as the transform of a mask (20) (thin line) on a 4/~ grid. 
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of 1/3 is ample if an eight-point interpolation is used 
between grid points without loss of accuracy or rate 
of convergence (Rossmann, McKenna, Tong, Xia, Dai, 
Wu, Choi & Lynch, 1992). (10) can be taken as the 
reciprocal-space equivalent of real-space interpolation. 
The G function is the weighting factor for this inter- 
polation for the h reciprocal lattice points around the 
non-integral reciprocal lattice position given by p[Am.n]. 
Due to the coarse sampling in reciprocal space, the 
interpolation must involve more points; for example, 
truncation of G at the first node requires at least a box 
size of 3 x 3 x 3 or 27 terms. On the other hand, there 
are roughly only (1/3) 3 as many structure factors as there 
are electron-density points to sample. 

With reciprocal-space averaging, it is possible to 
consider subsets of reflections in the calculation. This is 
the major advantage of the reciprocal-space method over 
the real-space method, where all the reflections must 
be considered simultaneously. As a simple example, 
only those reflections near the edge of the resolution 
range need to be considered in a phase extension. The 
phase information for lower resolution reflections need 
be updated only periodically by including all reflections 
in the calculation. 

Application to bacteriophage ~oX174 
Crystals of ~X174 belong to the space group P21 with 
a = 305.6, b = 360.8, c = 299.5/~ and # = 92.89 ° 
(McKenna, Xia, Willingmann, Ilag, Krishnaswamy, 
Rossmann, Olson, Baker & lncardona, 1992; McKenna, 
Xia, Willingmann, Ilag & Rossmann, 1992). The virus 
particle is situated at (0.2505, 0.2500, 0.2505) in the 
asymmetric unit. The orientation of the particle at this 
position is related to the defined standard orientation by 
an Eulerian rotation of (82.15, 92.35, 81.64 °) (McKenna, 
Xia, Willingmann, Ilag & Rossmann, 1992). The phased 
reflection data between 30 and 9/~ resolution, after 
real-space averaging at 9/~ resolution, was used as the 
starting phase set. A molecular mask was determined by 
using the qoX 174 electron density in the p cell and skew 
averaging it into an h cell with cell dimensions of a = 
b = c = 330/~ and a = [~ = 3' = 90 ° • The breakdown 
of the local icosahedral symmetry reduces the height 
of the averaged density beyond the confines of the 
virus particle and provides a basis for recognizing the 
limits of the molecular envelope. Details of the structure 
were removed by local smearing (Wang, 1985). The 
solvent content of the crystal cell based on the resultant 
molecular mask was 55%. As the particle possesses 
532 symmetry, the mask is centrosymmetric and the G 
function is entirely real. 

Phases were extended from 9.0 to 7.9/~, resolution 
in six steps. Several cycles were carried out at each 
step. The solvent region was assumed to have zero 
density. (In the real-space averaging, the solvent region 
was reset to its average value for each cycle.) At each 

step the resolution was extended by the length of the 
shortest reciprocal lattice vector (b*). To speed up the 
calculations, only those phases were determined that 
were in a thin shell at the highest current resolution limit. 
The thickness of the shell was set equal to the width 
of the integration box. When the integration box was 
3 x 3 x 3, the shell contained about 13 500 reflections. 
After extension to 7.9 A, one pass was carried out using 
all 70 404 reflections. Extension beyond 7.9 A resolution 
was not pursued as the structure of qaX174 had been 
previously determined using real-space averaging, and 
as the general properties of the reciprocal-space method 
had then been reasonably explored. 

Four factors were varied to monitor their effects on 
the results of the calculation: the number of cycles at 
each extension step, the size of the artificial mask U 
cell, the size of the integration box, and the removal 
of small G-function values (Table 2). The mask was 
placed in U cells with 3300 or 6600A on edge. The 
calculation of the transform by direct summation to h'of 
55 (a total of 348 254 reflections) took 3 CPU hours on 
an SGI Indigo R4000. Using a larger U cell made little 
difference in this case. A larger U cell may prove to be 
more advantageous in other problems as the sampling 
of the G function would be more accurate. There is 
little penalty on computing time for using a larger U 
cell. Greater truncation of the G function led to a slight 
speeding up of the calculation but also worsened the 
results. Using a larger integration box produced slightly 
more accurate phase angles for the phase-extended re- 
flections. However, the correlation coefficient was lower 
and the execution time was much longer. Significant 
improvements were obtained by running more cycles 
of averaging at each extension step. The average phase 
change at the last cycle was 1 o after ten cycles and 0.2 ° 
after 20 cycles. A comparison with the phase angles after 
real-space averaging at 30-7.9 A resolution showed that 
reciprocal-space calculations gave essentially the same 
results (Table 2 and Fig. 2). The greater the care taken 
in reciprocal space (the larger the integration box size, 
the less truncation of the G function and the number of 
iteration cycles), the better is the phase agreement. Dif- 
ferences between the reciprocal- and real-space method 
are within the range expected by comparing with phases 
computed from atomic positions. The somewhat lower 
quality of test E remains unexplained, although it may 
be related to the point of truncation of the G function. 

The real-space averaging and phase extension from 
9 to 7.9A resolution took about 30CPU hours on a 
Cyber 205. A direct comparison of the CPU performance 
of the two techniques is difficult as the real-space 
averaging program had been extensively vectorized and 
optimized for the Cyber. The CPU performance of the 
reciprocal-space approach in the current implementa- 
tion is probably inferior to the real-space one, though 
many improvements are possible in the execution of the 
reciprocal-space calculations. 
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Table 2. Quali ty  o f  phas ing  under  di f ferent  computa-  
t ional  condi t ions 

Test calculations with the ~0X 174 data. 

(i) Definition of the test conditions 
U cell No. of Integration CPU 

Test a (A) IGlmin* cycles box size (h)Jf 
A 6600 0.01 10 3 x 3 × 3 33 
B 6600 0.01 20 3 x 3 x 3 66 
C 6600 0.10 10 3 x 3 x 3 27 
D 3300 0.01 10 3 x 3 x 3 33 
E 3300 0.01 10 5 x 5 x 5 183 

(ii) Phase comparison among the different tests 
Average phase difference (o) 

Test (CC).~ B C D E 30--7.9 A§ 9-7.9 ,~,§ 
A 0.809 30 25 5 44 27 45 
B 0.827 -- 48 30 33 22 27 
C 0.796 - -  - -  24 53 32 60 
D 0.807 - -  - -  - -  4 4  27 46 
E 0.742 . . . .  29 38 

* All terms were removed for which G < IGlrnin. 
t CPU time on an SGI Indigo R4000 computer. 
$ Average correlation coefficient, CC, over the resolution range 30- 

7.9 ,~, where CC = [Y~((Fo) - Fo)((Fc) - Fc)]/{[Y~((Fo) - Fo) 2 
x Y~((Fc)- Fc)2]l/2}. (Fo) is the mean of the observed structure 
amplitudes, Fo, divided into ten resolution ranges. (Fc) is the mean of 
the calculated structure amplitudes from equation (10) divided into 
similar resolution ranges. 

§ Average difference with respect to phase angles obtained from real- 
space averaging. 

C o n c l u d i n g  r e m a r k s  

A number of earlier, partially successful, attempts 
have been made to determine phases using non- 
crystallographic symmetry in reciprocal space 
(Crowther, 1967, 1969; Main, 1967; Johnson, 1978). 
These were made prior to the extensive success and 
experience with real-space averaging. The formulation 
of the reciprocal-space process has a great deal of 
elegance and can be expressed very simply in terms 
of (10). In contrast, real-space averaging requires 

° 1 "" 50 
40 '̧ 
30 

~ 20 
~ 10 
e.., 
e~ 

0.9 ~ e- 
o 

• =~ 0 . 8  

0.7 

0.5 

/ 

188 liO l iO 98 9.0 85 80 
Resolution (~,) 

Fig. 2. Top, mean difference between phases computed by real- and 
reciprocal-space methods. Bottom, comparison of real-space (thin) 
and reciprocal-space (thick) calculated amplitudes with observed 
amplitudes. 

a series of procedures: averaging, Fourier analysis 
and Fourier synthesis. Hence, in this paper we have 
re-examined the reciprocal-space method. However, 
what we report here is merely the beginning. We again 
demonstrate the validity of the method and the effect of 
the necessary approximation in reciprocal space caused 
by the truncation of the G function. We also, for the 
first time, apply a careful molecular mask in reciprocal 
space, as opposed to a simple spherical envelope. 

The reciprocal-space method has some intrinsic 
advantages, particularly when extending phases. Only 
those equations need be used for which the terms 
on the right-hand side are based on good phases for 
large amplitude coefficients. Thus, phase extension can 
proceed along chosen pathways in reciprocal space 
which permit good phase determination. In contrast, 
in real space phase extension has to proceed in shells 
of reciprocal space representing small increments of 
resolution. It may be possible to proceed with reciprocal- 
space determinations by using only a subset of structure 
factors with large amplitudes. Also it may be possible 
to weigh each coefficient independently in (10) with a 
weight representing the current quality of the phase 
information. All these techniques suggest that the 
reciprocal-space method is more flexible than the real- 
space method and may be made more powerful by its 
ability to determine each phase sequentially. This also 
then permits updating of the current phase information 
after each new phase has been determined from the 
current phase set and, therefore, should lead to more 
rapid convergence. 

The current extensive success with real-space averag- 
ing has discouraged the development of the complemen- 
tary reciprocal-space method. Here, however, we have 
made a new attempt at developing phase determination 
in reciprocal space. 
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