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data published for the pure metals, calibration of the
X-ray camera for the measurements on the alloys was
not considered necessary.

The room temperature lattice constants obtained by
Hultgren & Zapffe and by Kondrashev et al. are com-
pared with the values obtained in this investigation in
Fig. 1. The data of this investigation are in excellent
agreement with those obtained by Hultgren & Zapffe.
In contrast to the observations of Kondrashev et al.,
whose alloys were obviously not in equilibrium, the cell
constants follow a smooth curve with a considerable
positive deviation from Vegard’s law. The molar volumes
(V) and the relative integral molar volumes (4V¥,
volumes of mixing), calculated from the relation

AVH =V —(Nn;iVni + Npa V) ,

where N; and V? are respectively the mole fraction and
molar volume of pure component %, are also shown in
Table 1. In many respects the volume of mixing presents
a more realistic picture of the effects of alloying than
do the cell constants, since a solution which obeys
Vegard’s law represents a negative deviation from the
rule of mixtures in a volume sense.

In view of the recent suggestions, e.g. Myalikgulyev
(1959) and Permanova (1961), that a superstructure
exists at about 75 at.% Pd, the cell constants of the
77-7 at.% Pd alloy were determined as a function of
time at 700 (7 days) and 510 °C (14 days). It was ex-
pected that if the system tended toward long-range
order, the ordering reaction would be accompanied by
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an increase in volume as in the similar Fe-Pd system
which forms a superlattice below 800 °C (Hultgren &
Zapffe, 1939). However, within the precision of the
measurements, the cell dimensions remained constant at
3-868 (0) and 3858 (4) A respectively.

The authors would like to thank the Battelle Memorial
Institute for performing the chemical analyses and the
International Nickel Company for furnishing the high-
purity Ni and Pd used in the investigation.
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A set of phase relationships must be satisfied whenever
the asymmetric unit contains some non-crystallographic
symmetry. For instance if there are two molecules or
subunits in the asymmetric unit which are related by
a local twofold axis, as is the case for a-chymotrypsin
(Blow, Rossmann & Jeffery, 1964), there are conditions
which the phase angles must fulfill if the electron density
distributions of the two subunits are to be equal. The
derivation of the necessary conditions has been given
by Rossmann & Blow (1963) (equations (7) and (8)).
These two equations may be combined to give an
equation of the form

3 Aij exp [0 +o5 +@i)] = S5 (1)
i

for each reflection. Here ¢ and j identify the individual
reflections, and the quantities Ay, S; and @i can be
calculated from a knowledge of the structure amplitudes
and the rotational and translational relationship between
the two independent molecules. «; and «; are the phases
of the ¢th and jth structure factor. In any one equation
there are few terms with significantly large magnitudes
Aij.

Since writing the previous paper (Rossmann & Blow,

1963) we have found an alternative procedure leading
towards a solution of these equations which we believe
to be superior, as it considers the interdependence of
each of the terms in a single equation instead of treating
them independently. Also, the amount of computation
involved is greatly reduced.

Let us write (1) as

exp (ing) 3 Ayj exp [Hog + @iy)] = S; (2)
j

or
T oxp [i(ai + DPp)] + Ass exp ¢(20; + @is) =S5 (3)
where
Tiexp (1D:) = 3 Ay exp [i(og +pi)] - (4)
j+i

At any stage of the refinement we have an estimate
of the phase angle «; from previous results. The precision
of this estimate can be expressed in terms of a figure
of merit m; (Dickerson, Kendrew & Strandberg, 1961)
which varies from unity for complete certainty about
the phase angle to zero when there is no phase informa-
tion. We propose to replace (4) by the following ex-
pression for actual calculation:
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T§ exp (i105) = 3 Agymy exp [i(o§+@is)] - (5)
i

The right hand side of equation (4) represents a series
of steps each of length A4;; in a direction making an angle
(o + i) with the real axis on an Argand diagram. In
summation (5) each step has been shortened by a factor
mj. Because o; is not accurately known, a probability
distribution exists for exp (ixs). m; exp (iaf) is the cen-
troid of this distribution. Similarly, the summation (5)
represents the centroid of the probability distribution
for T'; exp (o1 + Di).

The values T and @f calculated from (5) may now
be substituted back in (3) in place of T'; and @;. Because
of the error which we know exists, we do not seek an
explicit value of «;, but determine how closely (3) is
satisfied as a function of «;. The ‘lack of closure’ error
(Fig. 1)

e(og) =|(T¢ exp [¢(o; +DE)] + Ass exp [€(20; + i) 1 —Ss)] (6)

may be compared with an expected root mean square
error E.

Fig. 1. Any one equation can be represented by the sum of
two vectors, T'¢ and A4;; rotating at a speed of « and 2x
respectively. The distance ¢(x) between the end of the sum
of three vectors and the point S; on the real axis represents
the lack of closure of that equation for any angle «.

By assuming a normal distribution of error, we may
now set up a probability function for the phase angle x;:

Pi(x) =exp [ —&¥(«)/2E7] . (7

To form an estimate of E we have to recognize, first,
that the quantities 4sj, @i, St which are assumed known,
will contain errors due to inaccuracy in measured F’s,
errors in the rotational and translational parameters,
and errors in choosing an envelope for each independent
subunit. The mean square contribution to ¢ of all these
errors may be taken as some constant, e?. A much more
significant source of error is that whenever exp (ioy)
oceurs in (2), we employ the approximation m; oxp (4cf).
It may be shown that {(exp io;—n;exp iaf)?)=1—m]
(see Dickerson, Kendrew & Strandberg, 1961), where the
symbol { ) represents the averaging with appropriate
weights over all the possibilities. Although the distribu-
tion of error for a single term will have a marked
dependence on phase angle, it seems a sufficient ap-
proximation to use the sum of the squares of the mag-
nitudes of the errors as a measure of the mean square
error in the summation (5) thus:

t=e2t ZAH(1—m]) . (8)
et
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The probabilities defined by (7) can now be calculated
by using (6) and (8). They may then be used to find a new
phase angle and figure of merit in just the same way
that this is done for the isomorphous replacement
technique (Blow & Crick, 1959; Dickerson, Kendrew &
Strandberg, 1961)

mP(zx) exp (tx)do
i . 9
‘ P(x)dx

0

mg exp (tof) = o

When new values have been calculated for all the values
of my, oy by (9), a further round of refinement may be
begun.

Tt is evident that this type of procedure will cause (1)
to be better satisfied when some critical estimates of
the «; exist. If the procedure is commenced with no
phase information except that «,, the phase of the F(000)
term, is zero, so that my=1, and all other m; are zero,
then the early stages of the procedure run closely parallel
to the method described previously (Rossmann & Blow,
1963). However, the interdependence of significant terms
is considered from the beginning. The method can also
be used when phase information is available which would
not in itself be sufficient to allow the structure to be
solved, such as that obtained from a single isomorphous
pair of non-centrosymmetric crystal structures. In such
a case one might expect that the bimodal phase prob-
ability curves obtained from the single isomorphous
replacement method would become unimodal as refine-
ment proceeds, selecting one of the two alternative
phase angles as correct.

If the arrangement of subunit centres is centro-
symmetric, the necessary conditions expressed by (1)
will be equally well fulfilled by the enantiomorphic
as by the true structure. Once, however, any one phase
has been selected in favor of one enantiomorph, the
solutions of the remaining phases must then all satisfy
this enantiomorph. However, this last condition is
difficult to achieve in practice, for no phase is known
with certainty, and less still do we know in advance
which phase will unequivocally distinguish between the
two enantiomorphs. Thus, unless some other information
is available, as for instance X-ray data for the same
subunit from another crystal form, we may find our
solution to be a combination of the two enantiomorphic
forms.

The approach described in this paper was developed
while we were both on the staff of the Medical Research
Council Laboratory of Molecular Biology, Hills Rd.,
Cambridge, England, and was tested by using computa-
tional facilities provided by the Medical Research
Counecil.
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